organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Allyl-3-chloro-5-nitro-1H-indazole

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, bDipartimento di Chimica 'G. Ciamician', Università degli Studi di Bologna, Via Selmi 2, I-40126 Bologna, Italy, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP. 1014, Rabat, Morocco
*Correspondence e-mail: hakima_chicha@yahoo.fr

(Received 5 August 2013; accepted 6 August 2013; online 10 August 2013)

In the title compound, C10H8ClN3O2, the indazole ring system makes a dihedral angle of 7.9 (3)° with the plane through the nitro group. The allyl group is rotated out of the plane of the indazole ring system [N—N—C—C torsion angle = 104.28 (19)°]. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming zigzag chains propagating along the b-axis direction.

Related literature

For the pharmacological activity of indazole derivatives, see: Baraldi et al. (2001[Baraldi, P. G., Balboni, G., Pavani, M. G., Spalluto, G., Tabrizi, M. A., Clercq, E. D., Balzarini, J., Bando, T., Sugiyama, H. & Romagnoli, R. (2001). J. Med. Chem. 44, 2536-2543.]); Rodgers et al. (1996[Rodgers, J. D., Johnson, B. L., Wang, H., Greenberg, R. A., Erickson-Viitanen, S., Klabe, R. M., Cordova, B. C., Rayer, M. M., Lam, G. N. & Chang, C. H. (1996). Bioorg. Med. Chem. Lett. 6, 2919-2924.]); Li et al. (2003[Li, X., Chu, S., Feher, V. A., Khalili, M., Nie, Z., Margosiak, S., Nikulin, V., Levin, J., Sparankle, K. G., Fedder, M. E., Almassy, R., Appelt, K. & Yager, K. M. (2003). J. Med. Chem. 46, 5663-5673.]); Lin et al. (2008[Lin, X., Busch-Petersen, J., Deng, J., Edwards, C., Zhang, Z. & Kerns, J. K. (2008). Synlett, 20, 3216-3220.]). For a similar compound, see: El Brahmi et al. (2012[El Brahmi, N., Benchidmi, M., Essassi, E. M., Ladeira, S. & El Ammari, L. (2012). Acta Cryst. E68, o3368.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8ClN3O2

  • Mr = 237.64

  • Monoclinic, P 21 /c

  • a = 13.3025 (6) Å

  • b = 11.2505 (5) Å

  • c = 7.3092 (3) Å

  • β = 91.343 (2)°

  • V = 1093.59 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 296 K

  • 0.41 × 0.34 × 0.22 mm

Data collection
  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS: Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.654, Tmax = 0.747

  • 14430 measured reflections

  • 3069 independent reflections

  • 1852 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.136

  • S = 1.02

  • 3069 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.93 2.46 3.274 (2) 146
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Indazole derivatives are an important class of heterocyclic pharmaceuticals because of their significant and broad spectrum of biological properties, including antitumor, anti-HIV, antimicrobial, anti-inflammatory, and contraceptive activities (Baraldi et al., 2001; Rodgers et al., 1996; Li et al., 2003; Lin et al., 2008). The present work is a contribution to the investigation of indazole derivatives (El Brahmi et al., 2012).

In the molecule of 1-allyl-3-chloro-5-nitro-1H-indazole, the dihedral angle between the indazole system and the plan through the atoms forming the nitro group is of 7.9 (3)° and it is nearly perpendicular to the allyl group as indicated by the dihedral angle of 80.8 (3)°.

In the crystal, the molecules are interconnected by C–H···O hydrogen bonds forming zigzag chains running along the b axis as shown in Fig. 2 and Table 2.

Related literature top

For the pharmacological activity of indazole derivatives, see: Baraldi et al. (2001); Rodgers et al. (1996); Li et al. (2003); Lin et al. (2008). For a similar compound, see: El Brahmi et al. (2012).

Experimental top

To a solution of 3-chloro-5-nitroindazole (6.13 mmol) in acetone (15 ml) was added potassium hydroxide (6.8 mmol). After 15 mn at 298 K, allyl bromide (12.26 mmol) was added dropwise. Upon disappearance of the starting material as indicated by TLC, the resulting mixture was evaporated. The crude material was dissolved with EtOAc (50 ml), washed with water and brine, dried over MgSO4 and the solvent was evaporated in vacuo. The resulting residue was purified by column chromatography (EtOAc/hexane 3/7). The title compound was recrystallized from ethanol.

Refinement top

H atoms were located in a difference map and treated as riding with C–H = 0.97 Å, and C–H = 0.93 Å for methylene and aromatic H atoms, respectively. U(H) was set to 1.2Uiso(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Partial crystal packing for the title compound showing C–H···O hydrogen bonds as dashed lines, showing a zigzag chain running along the b axis.
1-Allyl-3-chloro-5-nitro-1H-indazole top
Crystal data top
C10H8ClN3O2F(000) = 488
Mr = 237.64Dx = 1.443 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3069 reflections
a = 13.3025 (6) Åθ = 2.4–29.6°
b = 11.2505 (5) ŵ = 0.34 mm1
c = 7.3092 (3) ÅT = 296 K
β = 91.343 (2)°Block, colourless
V = 1093.59 (8) Å30.41 × 0.34 × 0.22 mm
Z = 4
Data collection top
Bruker X8 APEX
diffractometer
3069 independent reflections
Radiation source: fine-focus sealed tube1852 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 29.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS: Sheldrick, 2008)
h = 1818
Tmin = 0.654, Tmax = 0.747k = 1015
14430 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: difference Fourier map
wR(F2) = 0.136H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.069P)2 + 0.0517P]
where P = (Fo2 + 2Fc2)/3
3069 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C10H8ClN3O2V = 1093.59 (8) Å3
Mr = 237.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.3025 (6) ŵ = 0.34 mm1
b = 11.2505 (5) ÅT = 296 K
c = 7.3092 (3) Å0.41 × 0.34 × 0.22 mm
β = 91.343 (2)°
Data collection top
Bruker X8 APEX
diffractometer
3069 independent reflections
Absorption correction: multi-scan
(SADABS: Sheldrick, 2008)
1852 reflections with I > 2σ(I)
Tmin = 0.654, Tmax = 0.747Rint = 0.046
14430 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.02Δρmax = 0.27 e Å3
3069 reflectionsΔρmin = 0.33 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.39644 (11)0.25338 (16)1.0420 (2)0.0451 (4)
C20.29681 (11)0.22952 (14)0.97697 (19)0.0415 (4)
C30.24119 (12)0.12846 (15)0.9339 (2)0.0462 (4)
H30.26810.05250.94500.055*
C40.14423 (13)0.14758 (16)0.8741 (2)0.0517 (4)
C50.10115 (12)0.26115 (18)0.8562 (2)0.0549 (5)
H50.03460.26850.81600.066*
C60.15549 (13)0.36043 (16)0.8970 (2)0.0508 (4)
H60.12780.43600.88480.061*
C70.25499 (12)0.34380 (14)0.9583 (2)0.0428 (4)
C80.32262 (15)0.55248 (16)1.0068 (3)0.0596 (5)
H8A0.37940.58461.07630.071*
H8B0.26160.57851.06500.071*
C90.32387 (17)0.59986 (17)0.8194 (3)0.0666 (5)
H90.38140.58660.75260.080*
C100.2520 (2)0.6582 (2)0.7404 (5)0.1088 (10)
H10A0.19310.67340.80250.131*
H10B0.25880.68520.62100.131*
N10.32739 (10)0.42252 (13)1.01153 (19)0.0492 (4)
N20.41482 (10)0.36715 (13)1.06173 (19)0.0503 (4)
N30.08324 (14)0.04395 (18)0.8226 (2)0.0720 (5)
O10.12321 (14)0.05345 (16)0.8167 (3)0.0968 (6)
O20.00516 (13)0.06089 (18)0.7844 (3)0.1118 (7)
Cl10.48743 (3)0.15046 (5)1.08995 (7)0.0677 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0412 (8)0.0522 (10)0.0417 (8)0.0014 (7)0.0009 (6)0.0049 (7)
C20.0419 (8)0.0462 (9)0.0364 (7)0.0014 (7)0.0006 (6)0.0022 (7)
C30.0520 (10)0.0463 (9)0.0404 (8)0.0039 (7)0.0034 (7)0.0008 (7)
C40.0497 (10)0.0619 (12)0.0435 (8)0.0181 (8)0.0021 (7)0.0055 (8)
C50.0388 (9)0.0757 (13)0.0500 (10)0.0016 (9)0.0047 (7)0.0016 (9)
C60.0458 (9)0.0567 (11)0.0498 (9)0.0071 (8)0.0024 (7)0.0017 (8)
C70.0428 (8)0.0458 (9)0.0398 (8)0.0012 (7)0.0008 (6)0.0017 (7)
C80.0678 (12)0.0427 (10)0.0679 (12)0.0045 (8)0.0037 (9)0.0069 (8)
C90.0795 (14)0.0424 (11)0.0778 (13)0.0081 (10)0.0029 (11)0.0029 (10)
C100.139 (3)0.0582 (14)0.127 (2)0.0137 (14)0.056 (2)0.0176 (14)
N10.0485 (8)0.0440 (8)0.0548 (8)0.0036 (6)0.0071 (6)0.0020 (6)
N20.0438 (8)0.0544 (9)0.0523 (8)0.0044 (6)0.0057 (6)0.0045 (7)
N30.0667 (11)0.0798 (13)0.0694 (11)0.0279 (10)0.0027 (9)0.0118 (10)
O10.0979 (12)0.0673 (11)0.1254 (15)0.0298 (10)0.0049 (11)0.0242 (10)
O20.0639 (10)0.1174 (15)0.1528 (18)0.0334 (10)0.0243 (10)0.0240 (12)
Cl10.0516 (3)0.0709 (4)0.0803 (4)0.0142 (2)0.0084 (2)0.0080 (2)
Geometric parameters (Å, º) top
C1—N21.310 (2)C7—N11.359 (2)
C1—C21.423 (2)C8—N11.464 (2)
C1—Cl11.7056 (17)C8—C91.470 (3)
C2—C31.389 (2)C8—H8A0.9700
C2—C71.406 (2)C8—H8B0.9700
C3—C41.369 (2)C9—C101.286 (3)
C3—H30.9300C9—H90.9300
C4—C51.405 (3)C10—H10A0.9300
C4—N31.465 (2)C10—H10B0.9300
C5—C61.360 (2)N1—N21.3621 (19)
C5—H50.9300N3—O21.217 (2)
C6—C71.400 (2)N3—O11.219 (2)
C6—H60.9300
N2—C1—C2113.02 (14)C6—C7—C2121.48 (15)
N2—C1—Cl1120.71 (12)N1—C8—C9112.52 (16)
C2—C1—Cl1126.27 (14)N1—C8—H8A109.1
C3—C2—C7121.26 (15)C9—C8—H8A109.1
C3—C2—C1135.84 (16)N1—C8—H8B109.1
C7—C2—C1102.90 (14)C9—C8—H8B109.1
C4—C3—C2115.89 (16)H8A—C8—H8B107.8
C4—C3—H3122.1C10—C9—C8125.4 (3)
C2—C3—H3122.1C10—C9—H9117.3
C3—C4—C5123.49 (16)C8—C9—H9117.3
C3—C4—N3117.96 (18)C9—C10—H10A120.0
C5—C4—N3118.54 (17)C9—C10—H10B120.0
C6—C5—C4120.86 (16)H10A—C10—H10B120.0
C6—C5—H5119.6C7—N1—N2111.97 (13)
C4—C5—H5119.6C7—N1—C8127.90 (15)
C5—C6—C7117.01 (16)N2—N1—C8119.96 (14)
C5—C6—H6121.5C1—N2—N1105.13 (13)
C7—C6—H6121.5O2—N3—O1123.54 (19)
N1—C7—C6131.54 (16)O2—N3—C4117.4 (2)
N1—C7—C2106.97 (14)O1—N3—C4119.02 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.463.274 (2)146
Symmetry code: (i) x, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.463.274 (2)145.7
Symmetry code: (i) x, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBaraldi, P. G., Balboni, G., Pavani, M. G., Spalluto, G., Tabrizi, M. A., Clercq, E. D., Balzarini, J., Bando, T., Sugiyama, H. & Romagnoli, R. (2001). J. Med. Chem. 44, 2536–2543.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Brahmi, N., Benchidmi, M., Essassi, E. M., Ladeira, S. & El Ammari, L. (2012). Acta Cryst. E68, o3368.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, X., Chu, S., Feher, V. A., Khalili, M., Nie, Z., Margosiak, S., Nikulin, V., Levin, J., Sparankle, K. G., Fedder, M. E., Almassy, R., Appelt, K. & Yager, K. M. (2003). J. Med. Chem. 46, 5663–5673.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLin, X., Busch-Petersen, J., Deng, J., Edwards, C., Zhang, Z. & Kerns, J. K. (2008). Synlett, 20, 3216–3220.  Web of Science CrossRef Google Scholar
First citationRodgers, J. D., Johnson, B. L., Wang, H., Greenberg, R. A., Erickson-Viitanen, S., Klabe, R. M., Cordova, B. C., Rayer, M. M., Lam, G. N. & Chang, C. H. (1996). Bioorg. Med. Chem. Lett. 6, 2919–2924.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds