organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(+)-(S)-N-[(1-Benzo­thio­phen-2-yl)methyl­­idene]-1-(naphthalen-1-yl)ethyl­amine

aLab. Síntesis de Complejos, Facultad de Ciencias Químicas, Benemérita, Universidad Autónoma de Puebla, PO Box 1067, 72001 Puebla, Pue., Mexico, and bCentro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: angel.mendoza@correo.buap.mx

(Received 14 August 2013; accepted 21 August 2013; online 31 August 2013)

In the title compound, C21H17NS, the C=N double bond shows an E conformation. The dihedral angle between the mean planes of the naphthyl residue and the benzo­thio­phene residue is 89.14 (6)°. The crystal packing is stabilized by inter­molecular C—H⋯π inter­actions, building a ribbon structure along the a axis.

Related literature

For Schiff bases, see: García et al. (2011[García, T., Bernès, S., Flores-Alamo, M., Hernández, G. & Gutiérrez, R. (2011). Acta Cryst. E67, o1648-o1649.]); Bernès et al. (2010[Bernès, S., Hernández, G., Portillo, R., Cruz, S. & Gutiérrez, R. (2010). Acta Cryst. E66, o1322-o1323.]); Jeon et al. (2005[Jeon, S.-J., Li, H. & Walsh, P. J. (2005). J. Am. Chem. Soc. 127, 16416-16425.]); Noyori (2005[Noyori, R. (2005). Chem. Commun. pp. 1807-1811.]); Tanaka & Toda (2000[Tanaka, K. & Toda, F. (2000). Chem. Rev. 100, 1025-1074.]).

[Scheme 1]

Experimental

Crystal data
  • C21H17NS

  • Mr = 315.42

  • Orthorhombic, P 21 21 21

  • a = 5.6423 (3) Å

  • b = 8.0808 (4) Å

  • c = 36.3864 (19) Å

  • V = 1659.01 (15) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.70 mm−1

  • T = 298 K

  • 0.93 × 0.17 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur (Atlas, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.665, Tmax = 1

  • 8690 measured reflections

  • 2844 independent reflections

  • 2417 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.092

  • S = 1.01

  • 2844 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack parameter determined using 839 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack (2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.])

  • Absolute structure parameter: 0.021 (17)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the S1/C2/C3/C4/C9, C12/C13/C18/C19/C20/C21 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯Cg1i 0.93 2.73 3.491 (4) 139
C11—H11BCg2ii 0.96 2.59 3.724 (5) 149
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL2013; software used to prepare material for publication: SHELXL2013.

Supporting information


Comment top

Schiff base compounds are widely studied and used, attracting much attention in both organic synthesis and metal ion complexation. Recently, we have focused our attention on the synthesis of chiral Schiff bases by using green techniques (García et al., 2011; Bernès et al., 2010). In continuation of this work, we synthesized the title compound using the solvent-free approach because the reactions occur under mild conditions and usually require easier workup procedures and simpler equipment. Other advantages of solvent-free reactions encompass cost saving, decreased reaction times along with reduced energy consumption, as well as increased safety (Jeon et al., 2005; Noyori, 2005; Tanaka & Toda, 2000)

The C=N double bond shows an E configuration. The dihedral angle between the mean planes of the naphthyl residue and the benzothiophene residue is 90.86 (6)°. The crystal packing is stabilized by intermolecular C—H···π interactions (Table 2; cg1 is the centroid of the ring composed of S1, C2, C3 C4, and C9, cg2 is the centroid of the ring composed of C12, C13, C18, C19, C20, and C21).

Related literature top

For Schiff bases, see: García et al. (2011); Bernès et al. (2010); Jeon et al. (2005); Noyori (2005); Tanaka & Toda (2000).

Experimental top

Under solvent-free conditions, (S)-(-)-(1-naphthyl)ethylamine (0.21 g, 1.2 mmol) and benzo[b]thiophene-2-carboxaldehyde (0.20 g, 1.2 mmol) were mixed at room temperature obtaining a white solid. The crude was recrystallized from CH2Cl2 affording colorless crystals of the title compound. Yield 94%; mp 125–127 °C. Analysis: [α]D25 = +318 (cL, CHCl3). FT—IR (KBr): 1621 cm-1 (C=N). 1H NMR (400 MHz, CDCl3/TMS) δ = 1.76, 1.78 (d, 3H, CHCH3,), 5.40, 5.42, 5.44, 5.45(q, 1H, CH), 7.32–7.89 (m, 12 H Ar), 8.20, 8.23 (d, 1H cyclo S), 8.54 (s, 1 H, HC=N). 13C NMR (100 MHz, CDCl3/TMS) δ = 24.20 (CCH3), 64.87 (CHCH3), 122.66 (Ar), 123.58 (Ar), 124.14 (Ar), 124.43(Ar), 125.36 (Ar), 125.66 (Ar), 125.90 (Ar), 127.47 (Ar), 127.62 (Ar), 128.91 (Ar), 130.58(Ar), 133.93 (Ar), 139.31 (Ar),140.57 (Ar), 143.16 (Ar), 153.61 (HC=N). MS—EI: m/z= 315 (M+).

Refinement top

H atoms linked to C atoms were placed in geometrical idealized positions and refined as riding on their parent atoms, with C—H = 0.93–0.96 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(methyl C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXL2013 (Sheldrick, 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
(+)-(S)-N-[(1-Benzothiophen-2-yl)methylidene]-1-(naphthalen-1-yl)ethylamine top
Crystal data top
C21H17NSF(000) = 664
Mr = 315.42Dx = 1.263 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 2302 reflections
a = 5.6423 (3) Åθ = 4.8–73.7°
b = 8.0808 (4) ŵ = 1.70 mm1
c = 36.3864 (19) ÅT = 298 K
V = 1659.01 (15) Å3Plate, translucent colourless
Z = 40.93 × 0.17 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur (Atlas, Gemini)
diffractometer
2844 independent reflections
Graphite monochromator2417 reflections with I > 2σ(I)
Detector resolution: 10.5564 pixels mm-1Rint = 0.053
ω scansθmax = 66.1°, θmin = 4.9°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
h = 66
Tmin = 0.665, Tmax = 1k = 99
8690 measured reflectionsl = 4343
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0363P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.092(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.25 e Å3
2844 reflectionsΔρmin = 0.18 e Å3
208 parametersAbsolute structure: Flack parameter determined using 839 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack (2004)
0 restraintsAbsolute structure parameter: 0.021 (17)
Crystal data top
C21H17NSV = 1659.01 (15) Å3
Mr = 315.42Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 5.6423 (3) ŵ = 1.70 mm1
b = 8.0808 (4) ÅT = 298 K
c = 36.3864 (19) Å0.93 × 0.17 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur (Atlas, Gemini)
diffractometer
2844 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
2417 reflections with I > 2σ(I)
Tmin = 0.665, Tmax = 1Rint = 0.053
8690 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.092Δρmax = 0.25 e Å3
S = 1.01Δρmin = 0.18 e Å3
2844 reflectionsAbsolute structure: Flack parameter determined using 839 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack (2004)
208 parametersAbsolute structure parameter: 0.021 (17)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.66160 (15)0.33795 (10)0.20762 (2)0.0504 (2)
C130.8326 (7)0.6220 (4)0.07300 (9)0.0526 (8)
C50.8422 (8)0.4832 (4)0.30726 (10)0.0559 (8)
H50.96650.54390.31730.067*
C90.6413 (6)0.3627 (4)0.25514 (9)0.0453 (7)
C30.9946 (6)0.4998 (4)0.24067 (10)0.0492 (8)
H31.13230.55990.24510.059*
C40.8335 (6)0.4527 (4)0.26915 (10)0.0467 (7)
C20.9289 (5)0.4490 (4)0.20692 (11)0.0485 (7)
C11.0499 (6)0.4771 (4)0.17269 (10)0.0506 (8)
H11.1820.5460.17250.061*
C60.6675 (8)0.4233 (5)0.32929 (11)0.0612 (9)
H60.67350.44350.35440.073*
N10.9833 (5)0.4116 (4)0.14263 (9)0.0557 (7)
C120.9580 (6)0.4687 (4)0.07747 (10)0.0524 (8)
C80.4653 (6)0.3017 (4)0.27776 (11)0.0553 (9)
H80.33980.24120.26810.066*
C101.1270 (7)0.4460 (5)0.10929 (10)0.0563 (9)
H101.21550.5490.1130.068*
C190.6218 (8)0.5002 (6)0.02083 (11)0.0696 (11)
H190.510.50860.00210.083*
C180.6615 (8)0.6360 (5)0.04455 (10)0.0626 (9)
C111.3029 (8)0.3034 (6)0.10488 (12)0.0797 (13)
H11A1.40380.29830.12610.12*
H11B1.39750.32140.08330.12*
H11C1.21770.20120.10250.12*
C170.5403 (10)0.7867 (6)0.04014 (15)0.0848 (15)
H170.42720.79660.02170.102*
C70.4790 (7)0.3319 (5)0.31476 (11)0.0611 (10)
H70.3620.29130.33030.073*
C140.8719 (9)0.7621 (5)0.09573 (12)0.0659 (11)
H140.98160.75520.11470.079*
C150.7523 (10)0.9062 (6)0.09026 (14)0.0851 (15)
H150.78250.9970.10520.102*
C200.7450 (8)0.3587 (6)0.02515 (12)0.0700 (11)
H200.71820.27040.00930.084*
C160.5852 (10)0.9180 (6)0.06237 (15)0.0950 (18)
H160.50341.01670.05890.114*
C210.9123 (7)0.3431 (5)0.05316 (10)0.0610 (9)
H210.99560.24430.05540.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0487 (4)0.0531 (4)0.0493 (4)0.0025 (4)0.0075 (4)0.0035 (4)
C130.0587 (19)0.0561 (19)0.0431 (17)0.0004 (18)0.0125 (17)0.0075 (14)
C50.059 (2)0.0567 (19)0.0522 (19)0.002 (2)0.0078 (19)0.0037 (16)
C90.0447 (16)0.0411 (14)0.0501 (17)0.0052 (15)0.0051 (16)0.0011 (13)
C30.0460 (19)0.0482 (17)0.054 (2)0.0028 (15)0.0055 (16)0.0030 (15)
C40.0446 (17)0.0415 (14)0.0541 (18)0.0071 (16)0.0046 (18)0.0002 (14)
C20.0472 (17)0.0431 (16)0.0552 (19)0.0040 (13)0.0013 (17)0.0042 (16)
C10.0484 (18)0.0518 (18)0.051 (2)0.0041 (15)0.0027 (17)0.0030 (16)
C60.070 (2)0.065 (2)0.0485 (19)0.005 (2)0.002 (2)0.0040 (18)
N10.0539 (17)0.0614 (17)0.0517 (18)0.0019 (15)0.0030 (14)0.0063 (15)
C120.055 (2)0.0558 (18)0.0461 (19)0.0009 (17)0.0109 (17)0.0041 (16)
C80.0486 (19)0.0497 (19)0.068 (2)0.0031 (16)0.0031 (18)0.0008 (17)
C100.058 (2)0.061 (2)0.0497 (19)0.0035 (18)0.0073 (18)0.0045 (16)
C190.077 (3)0.082 (3)0.049 (2)0.005 (2)0.004 (2)0.006 (2)
C180.067 (2)0.070 (2)0.0502 (19)0.007 (2)0.008 (2)0.0127 (18)
C110.070 (3)0.103 (4)0.066 (3)0.022 (3)0.012 (2)0.017 (3)
C170.093 (3)0.090 (3)0.072 (3)0.025 (3)0.001 (3)0.015 (3)
C70.061 (2)0.060 (2)0.062 (2)0.003 (2)0.0126 (19)0.009 (2)
C140.085 (3)0.059 (2)0.054 (2)0.003 (2)0.010 (2)0.0002 (17)
C150.127 (4)0.060 (2)0.069 (3)0.007 (3)0.022 (3)0.000 (2)
C200.087 (3)0.070 (3)0.053 (2)0.009 (2)0.003 (2)0.009 (2)
C160.128 (5)0.073 (3)0.084 (4)0.039 (3)0.020 (3)0.016 (3)
C210.073 (2)0.0584 (19)0.052 (2)0.0054 (18)0.0099 (18)0.0017 (19)
Geometric parameters (Å, º) top
S1—C91.744 (3)C8—H80.93
S1—C21.755 (3)C10—C111.529 (6)
C13—C141.419 (5)C10—H100.98
C13—C181.420 (6)C19—C201.347 (6)
C13—C121.436 (5)C19—C181.414 (6)
C5—C61.359 (6)C19—H190.93
C5—C41.409 (5)C18—C171.406 (6)
C5—H50.93C11—H11A0.96
C9—C81.380 (5)C11—H11B0.96
C9—C41.402 (5)C11—H11C0.96
C3—C21.347 (5)C17—C161.358 (7)
C3—C41.430 (5)C17—H170.93
C3—H30.93C7—H70.93
C2—C11.438 (5)C14—C151.361 (6)
C1—N11.272 (5)C14—H140.93
C1—H10.93C15—C161.388 (7)
C6—C71.399 (6)C15—H150.93
C6—H60.93C20—C211.395 (6)
N1—C101.485 (5)C20—H200.93
C12—C211.371 (6)C16—H160.93
C12—C101.511 (6)C21—H210.93
C8—C71.371 (6)
C9—S1—C290.70 (18)C12—C10—H10108.9
C14—C13—C18117.9 (4)C11—C10—H10108.9
C14—C13—C12123.0 (4)C20—C19—C18120.4 (4)
C18—C13—C12119.1 (3)C20—C19—H19119.8
C6—C5—C4119.5 (4)C18—C19—H19119.8
C6—C5—H5120.2C17—C18—C19121.7 (4)
C4—C5—H5120.2C17—C18—C13118.9 (4)
C8—C9—C4121.6 (3)C19—C18—C13119.4 (4)
C8—C9—S1126.7 (3)C10—C11—H11A109.5
C4—C9—S1111.7 (3)C10—C11—H11B109.5
C2—C3—C4113.9 (3)H11A—C11—H11B109.5
C2—C3—H3123.1C10—C11—H11C109.5
C4—C3—H3123.1H11A—C11—H11C109.5
C9—C4—C5118.4 (4)H11B—C11—H11C109.5
C9—C4—C3111.5 (3)C16—C17—C18121.2 (5)
C5—C4—C3130.1 (4)C16—C17—H17119.4
C3—C2—C1127.6 (3)C18—C17—H17119.4
C3—C2—S1112.3 (3)C8—C7—C6120.5 (4)
C1—C2—S1120.1 (3)C8—C7—H7119.7
N1—C1—C2122.6 (3)C6—C7—H7119.7
N1—C1—H1118.7C15—C14—C13121.3 (5)
C2—C1—H1118.7C15—C14—H14119.3
C5—C6—C7121.1 (4)C13—C14—H14119.3
C5—C6—H6119.5C14—C15—C16120.2 (5)
C7—C6—H6119.5C14—C15—H15119.9
C1—N1—C10117.6 (3)C16—C15—H15119.9
C21—C12—C13118.2 (3)C19—C20—C21120.7 (4)
C21—C12—C10121.5 (3)C19—C20—H20119.6
C13—C12—C10120.2 (3)C21—C20—H20119.6
C7—C8—C9118.8 (4)C17—C16—C15120.6 (4)
C7—C8—H8120.6C17—C16—H16119.7
C9—C8—H8120.6C15—C16—H16119.7
N1—C10—C12107.7 (3)C12—C21—C20122.1 (4)
N1—C10—C11107.4 (3)C12—C21—H21118.9
C12—C10—C11114.9 (3)C20—C21—H21118.9
N1—C10—H10108.9
C2—S1—C9—C8178.8 (3)C1—N1—C10—C1195.0 (4)
C2—S1—C9—C40.0 (2)C21—C12—C10—N199.0 (4)
C8—C9—C4—C51.2 (5)C13—C12—C10—N178.2 (4)
S1—C9—C4—C5179.9 (3)C21—C12—C10—C1120.6 (5)
C8—C9—C4—C3178.8 (3)C13—C12—C10—C11162.1 (3)
S1—C9—C4—C30.1 (3)C20—C19—C18—C17178.3 (4)
C6—C5—C4—C90.9 (5)C20—C19—C18—C130.0 (6)
C6—C5—C4—C3179.1 (3)C14—C13—C18—C170.2 (6)
C2—C3—C4—C90.2 (4)C12—C13—C18—C17179.6 (4)
C2—C3—C4—C5179.9 (4)C14—C13—C18—C19178.5 (4)
C4—C3—C2—C1179.4 (3)C12—C13—C18—C191.2 (6)
C4—C3—C2—S10.2 (4)C19—C18—C17—C16177.9 (5)
C9—S1—C2—C30.1 (3)C13—C18—C17—C160.4 (7)
C9—S1—C2—C1179.5 (3)C9—C8—C7—C60.2 (6)
C3—C2—C1—N1173.8 (4)C5—C6—C7—C80.5 (6)
S1—C2—C1—N16.7 (5)C18—C13—C14—C150.9 (6)
C4—C5—C6—C70.0 (6)C12—C13—C14—C15178.9 (4)
C2—C1—N1—C10178.2 (3)C13—C14—C15—C161.0 (7)
C14—C13—C12—C21177.7 (4)C18—C19—C20—C210.4 (7)
C18—C13—C12—C212.0 (5)C18—C17—C16—C150.3 (8)
C14—C13—C12—C105.0 (5)C14—C15—C16—C170.4 (8)
C18—C13—C12—C10175.3 (3)C13—C12—C21—C201.7 (6)
C4—C9—C8—C70.7 (5)C10—C12—C21—C20175.6 (3)
S1—C9—C8—C7179.4 (3)C19—C20—C21—C120.4 (6)
C1—N1—C10—C12140.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the S1/C2/C3/C4/C9, C12/C13/C18/C19/C20/C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8···Cg1i0.932.733.491 (4)139
C11—H11B···Cg2ii0.962.593.724 (5)149
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the S1/C2/C3/C4/C9, C12/C13/C18/C19/C20/C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8···Cg1i0.932.733.491 (4)139
C11—H11B···Cg2ii0.962.593.724 (5)149
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

Support from VIEP-UAP (GUPJ-NAT10-G) is acknowledged.

References

First citationBernès, S., Hernández, G., Portillo, R., Cruz, S. & Gutiérrez, R. (2010). Acta Cryst. E66, o1322–o1323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGarcía, T., Bernès, S., Flores-Alamo, M., Hernández, G. & Gutiérrez, R. (2011). Acta Cryst. E67, o1648–o1649.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJeon, S.-J., Li, H. & Walsh, P. J. (2005). J. Am. Chem. Soc. 127, 16416–16425.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNoyori, R. (2005). Chem. Commun. pp. 1807–1811.  Web of Science CrossRef Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, K. & Toda, F. (2000). Chem. Rev. 100, 1025–1074.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds