organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 5-amino-1-[(4-methyl­phen­yl)sulfon­yl]-1H-pyrazole-4-carboxyl­ate

aChemistry Department, Faculty of Science, Ain Shams University, Abbassia 11566, Cairo, Egypt, bFaculty of Education, Ain Shams University, Abbassia, Cairo, Egypt, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
*Correspondence e-mail: elgawy@sci.asu.edu.eg

(Received 30 June 2013; accepted 12 July 2013; online 3 August 2013)

In the title mol­ecule, C13H15N3O4S, the benzene and pyrazole rings are inclined to each other at 77.48 (3)°. Two amino H atoms are involved in bifurcated hydrogen bonds, viz. intra­molecular N—H⋯O and inter­molecular N—H⋯O(N). The inter­molecular hydrogen bonds link the mol­ecules related by translation in [100] into chains. A short distance of 3.680 (3) Å between the centroids of benzene and pyrazole rings from neighbouring mol­ecules shows the presence of ππ inter­actions, which link the hydrogen-bonded chains into layers parallel to the ab plane.

Related literature

For background details and information on the synthesis, see: Elgazwy, Ismail et al. (2012[Elgazwy, A.-S. S. H., Ismail, N. S. M., Atta-Allah, S. R., Sarg, M. T., Soliman, D. H. S., Zaki, M. Y. & Elgamas, M. A. (2012). Curr. Med. Chem. 19, 3967-3981.]); Elgazwy, Soliman et al. (2012[Elgazwy, A.-S. S. H., Soliman, D. H. S., Atta-Allah, S. R. & Ibrahim, D. A. (2012). Chem. Cent. J. 6, 1-18.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15N3O4S

  • Mr = 309.34

  • Monoclinic, P 21 /n

  • a = 6.27869 (7) Å

  • b = 15.43607 (12) Å

  • c = 15.27141 (13) Å

  • β = 96.2633 (9)°

  • V = 1471.24 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.14 mm−1

  • T = 100 K

  • 0.25 × 0.12 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur (Atlas, Nova) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.800, Tmax = 1.000

  • 51079 measured reflections

  • 3043 independent reflections

  • 3035 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.074

  • S = 1.05

  • 3043 reflections

  • 201 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H01⋯O1i 0.852 (18) 2.554 (17) 3.0631 (13) 119.3 (13)
N3—H01⋯O2 0.852 (18) 2.237 (17) 2.8624 (13) 130.3 (14)
N3—H02⋯O3 0.865 (18) 2.456 (17) 2.9775 (13) 119.4 (13)
N3—H02⋯N2i 0.865 (18) 2.206 (18) 3.0216 (14) 157.1 (15)
Symmetry code: (i) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

During the course of our studies directed toward exploring the synthetic potential of 2,3-dihydroprazoles and thiazoles for synthesizing of novel antibacterial agents (Elgazwy, Ismail et al., 2012), we have recently reported various successful approaches for synthesis of 3,5-diaryl-4,5-dihydropyrazole analogues by the reaction of chalcones with thiosemicarbazide or with hydrazine hydrate in the presence of acetic acid (Elgazwy, Soliman et al., 2012). In conjunction with this work, we report here the title compound (I).

In (I) (Fig. 1), the benzene and pyrazole rings form a dihedral angle of 77.48 (3)°. Each amino hydrogen is involved in bifurcated hydrogen bond (one intra- and one intermolecular, Table 1), as was implied by the broad and downfield-shifted peak of the ethyoxy protons in the 1H NMR. The intermolecular interactions, for which the acceptors are a tosyl oxygen and a pyrazole nitrogen, link the molecules related by translation parallel to the a axis. Short distance of 3.680 (3) Å between the centroids of benzene and pyrazole rings from the neighboring molecules shows a presence of ππ interactions, which link further hydrogen-bonded chains into layers parallel to ab plane.

Related literature top

For background details and information on the synthesis, see: Elgazwy, Ismail et al. (2012); Elgazwy, Soliman et al. (2012).

Experimental top

The reaction of unsaturated ketones of (E)-ethyl 2-cyano-3-ethoxyacrylate with 4-methylbenzenesulfonohydrazide was conducted in the presence of ethanol at reflux for 16 h. The 4,5-dihydro-1H-pyrazole analogues were obtained regiospecifically with satisfactory yields (60–96%). In most cases, N-1 was substituted by a strongly electron-withdrawing group that hindered the elimination of water and a subsequent aromatization of the pyrazole ring. For the title compound, we further employed an ethyl carboxylate at C-4 and an amino group at C-5. Pyrazoles showed sets of 1H and 13C NMR data that corresponded to the proposed structures. Compound (3) showed 1H NMR chemical shifts as a characteristic AB system. The 13C NMR spectra showed typical chemical shifts of 4,5-dihydro-1H-pyrazole rings on average at δ 157.0 (C-3), 46.4 (C-4), 88.4 (C-5). It is noteworthy that C-5 showed similar chemical shifts for series (3–18), emphasizing the similarity of the inductive effect of amino group.

To a solution of 4-methylbenzenesulfonohydrazide (1.86 g m, 0.01 mol) in absolute ethanol (20 ml) was added (E)-ethyl 2-cyano-3-ethoxyacrylate (1.69 g m, 0.01 mol). The reaction mixture was heated at reflux temperature for 16 h. The reaction mixtures were cooled at room temperature and the solvents were evaporated under reduced pressure, the resulting solids were crystallized from ethanol to afford solid (I). Yield 201 mg, 65%; m.p 135–137 °C dec. Diffraction-quality crystals were grown by slow diffusion of ethanol solution. IR (cm-1): (NH) 3480, (CO),1693, (CN) 1615. 1H NMR (300 MHz, DMSO-d6): δ 1.29 (t, 3H, 1–3JH,H = 7.2, O—CH2—CH3), 2.34 (s, 3H, CH3), 4.18 (q, 2H, 1–3JH,H = 2.7, O—CH2-CH3), 4.22 (s, 2H, –NH2), 7.46 (d, 2H, J = 8.1 Hz, Ph—H(m)), 7.84 (d, 2H, J = 8.1 Hz, Ph—H(O)), 7.90 (s, 1H, pyrazole-H) p.p.m.. GC/MS: m/z (%) 309 (8.37), 245 (6.07), 199 (5.90), 155 (12.81), 91 (33.88), 63 (91.51),44 (100). Analysis: Calcd. for C13H15N3O4S (309): C, 50.47; H, 4.89; N, 13.58; Found: C, 50.49; H, 4.90; N, 13.55.

Refinement top

The amino H atoms were located on a difference map and isotropically refined. C-bound H atoms were geometrically positioned (C—H 0.95–0.99 Å), and refined using a riding model, with Uiso(H) fixed to 1.2 – 1.5 × U(eq) of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 50% probabilty displacement ellipsoids.
Ethyl 5-amino-1-[(4-methylphenyl)sulfonyl]-1H-pyrazole-4-carboxylate top
Crystal data top
C13H15N3O4SF(000) = 648
Mr = 309.34Dx = 1.397 Mg m3
Monoclinic, P21/nMelting point: 408 K
Hall symbol: P 2ynCu Kα radiation, λ = 1.54184 Å
a = 6.27869 (7) ÅCell parameters from 45300 reflections
b = 15.43607 (12) Åθ = 4.1–75.6°
c = 15.27141 (13) ŵ = 2.14 mm1
β = 96.2633 (9)°T = 100 K
V = 1471.24 (2) Å3Column, colourless
Z = 40.25 × 0.12 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur (Atlas, Nova)
diffractometer
3043 independent reflections
Radiation source: Nova (Cu) X-ray Source3035 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.3543 pixels mm-1θmax = 75.8°, θmin = 4.1°
ω scansh = 67
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1919
Tmin = 0.800, Tmax = 1.000l = 1919
51079 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.6757P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
3043 reflectionsΔρmax = 0.34 e Å3
201 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0050 (4)
Crystal data top
C13H15N3O4SV = 1471.24 (2) Å3
Mr = 309.34Z = 4
Monoclinic, P21/nCu Kα radiation
a = 6.27869 (7) ŵ = 2.14 mm1
b = 15.43607 (12) ÅT = 100 K
c = 15.27141 (13) Å0.25 × 0.12 × 0.10 mm
β = 96.2633 (9)°
Data collection top
Oxford Diffraction Xcalibur (Atlas, Nova)
diffractometer
3043 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3035 reflections with I > 2σ(I)
Tmin = 0.800, Tmax = 1.000Rint = 0.024
51079 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.34 e Å3
3043 reflectionsΔρmin = 0.39 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

2.2393 (0.0028) x + 11.4616 (0.0048) y - 9.2011 (0.0057) z = 0.8382 (0.0021)

* 0.0093 (0.0008) C11 * -0.0049 (0.0008) C12 * -0.0055 (0.0009) C13 * 0.0116 (0.0008) C14 * -0.0075 (0.0008) C15 * -0.0030 (0.0008) C16

Rms deviation of fitted atoms = 0.0076

- 1.0360 (0.0033) x + 12.4363 (0.0050) y + 8.9114 (0.0069) z = 7.4119 (0.0015)

Angle to previous plane (with approximate e.s.d.) = 77.48 (0.03)

* 0.0208 (0.0006) N1 * -0.0138 (0.0006) N2 * 0.0016 (0.0007) C3 * 0.0109 (0.0007) C4 * -0.0196 (0.0006) C5

Rms deviation of fitted atoms = 0.0150

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.23094 (4)0.321249 (17)0.345762 (16)0.01627 (10)
O10.02102 (13)0.32316 (5)0.37347 (6)0.02126 (19)
O20.41682 (14)0.32016 (5)0.40895 (5)0.02177 (19)
O30.69858 (13)0.55623 (5)0.15472 (5)0.02182 (19)
O40.39748 (12)0.58590 (5)0.06499 (5)0.01882 (18)
N10.25242 (14)0.41272 (6)0.28744 (6)0.01595 (19)
N20.06923 (14)0.43553 (6)0.23043 (6)0.0178 (2)
C30.14389 (17)0.48527 (7)0.17142 (7)0.0168 (2)
H30.05560.51190.12450.020*
C40.36924 (17)0.49552 (7)0.18436 (7)0.0156 (2)
C50.43824 (17)0.44590 (7)0.25821 (7)0.0156 (2)
C60.50665 (17)0.54783 (7)0.13524 (7)0.0158 (2)
C70.52593 (19)0.63686 (7)0.01022 (7)0.0201 (2)
H7A0.63500.60000.01360.024*
H7B0.59990.68430.04490.024*
C80.3728 (2)0.67306 (8)0.06355 (8)0.0272 (3)
H8A0.29890.62530.09660.041*
H8B0.45250.70730.10310.041*
H8C0.26720.71010.03900.041*
C110.24897 (18)0.23989 (7)0.26731 (7)0.0173 (2)
C120.07233 (19)0.22397 (8)0.20604 (8)0.0219 (2)
H120.06010.25260.21040.026*
C130.0935 (2)0.16557 (8)0.13850 (8)0.0248 (3)
H130.02580.15400.09640.030*
C140.2884 (2)0.12352 (8)0.13168 (8)0.0233 (3)
C150.46013 (19)0.13919 (8)0.19509 (8)0.0227 (2)
H150.59140.10940.19170.027*
C160.44368 (18)0.19753 (8)0.26327 (8)0.0200 (2)
H160.56220.20830.30610.024*
C170.3134 (3)0.06341 (9)0.05575 (9)0.0335 (3)
H17A0.36280.09640.00700.050*
H17B0.17510.03640.03620.050*
H17C0.41850.01840.07470.050*
N30.63513 (16)0.43168 (7)0.29848 (7)0.0214 (2)
H020.743 (3)0.4452 (11)0.2705 (11)0.033 (4)*
H010.655 (3)0.3949 (11)0.3402 (11)0.033 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01694 (16)0.01813 (15)0.01412 (15)0.00056 (9)0.00335 (10)0.00249 (9)
O10.0211 (4)0.0234 (4)0.0207 (4)0.0005 (3)0.0088 (3)0.0033 (3)
O20.0227 (4)0.0262 (4)0.0158 (4)0.0007 (3)0.0003 (3)0.0038 (3)
O30.0144 (4)0.0265 (4)0.0243 (4)0.0008 (3)0.0014 (3)0.0056 (3)
O40.0169 (4)0.0225 (4)0.0170 (4)0.0001 (3)0.0019 (3)0.0058 (3)
N10.0135 (4)0.0179 (4)0.0166 (4)0.0008 (3)0.0021 (3)0.0024 (3)
N20.0137 (4)0.0199 (5)0.0196 (5)0.0021 (3)0.0007 (3)0.0024 (4)
C30.0157 (5)0.0177 (5)0.0172 (5)0.0015 (4)0.0022 (4)0.0008 (4)
C40.0149 (5)0.0166 (5)0.0155 (5)0.0013 (4)0.0021 (4)0.0000 (4)
C50.0153 (5)0.0168 (5)0.0150 (5)0.0003 (4)0.0036 (4)0.0014 (4)
C60.0164 (5)0.0156 (5)0.0154 (5)0.0023 (4)0.0025 (4)0.0003 (4)
C70.0248 (6)0.0183 (5)0.0180 (5)0.0018 (4)0.0065 (4)0.0025 (4)
C80.0379 (7)0.0241 (6)0.0196 (6)0.0024 (5)0.0029 (5)0.0056 (4)
C110.0194 (5)0.0161 (5)0.0168 (5)0.0014 (4)0.0040 (4)0.0028 (4)
C120.0203 (6)0.0217 (6)0.0235 (6)0.0034 (4)0.0007 (4)0.0006 (4)
C130.0291 (6)0.0235 (6)0.0210 (6)0.0021 (5)0.0015 (5)0.0005 (5)
C140.0346 (7)0.0171 (5)0.0194 (6)0.0023 (5)0.0084 (5)0.0040 (4)
C150.0247 (6)0.0191 (5)0.0258 (6)0.0059 (4)0.0101 (5)0.0063 (4)
C160.0188 (5)0.0200 (5)0.0215 (6)0.0021 (4)0.0033 (4)0.0057 (4)
C170.0525 (9)0.0260 (6)0.0236 (6)0.0062 (6)0.0116 (6)0.0008 (5)
N30.0149 (5)0.0295 (5)0.0196 (5)0.0002 (4)0.0011 (4)0.0078 (4)
Geometric parameters (Å, º) top
S1—O11.4279 (8)C14—C151.3898 (18)
S1—O21.4311 (8)C14—C171.5065 (17)
S1—N11.6827 (9)C15—C161.3890 (17)
S1—C111.7478 (11)C3—H30.9500
O3—C61.2163 (14)C7—H7A0.9900
O4—C61.3437 (13)C7—H7B0.9900
O4—C71.4546 (13)C8—H8A0.9800
N1—C51.3915 (14)C8—H8B0.9800
N1—N21.4093 (12)C8—H8C0.9800
N2—C31.3089 (14)C12—H120.9500
C3—C41.4160 (15)C13—H130.9500
C4—C51.3927 (15)C15—H150.9500
C4—C61.4492 (15)C16—H160.9500
C5—N31.3375 (14)C17—H17A0.9800
C7—C81.5067 (16)C17—H17B0.9800
C11—C121.3927 (16)C17—H17C0.9800
C11—C161.3937 (16)N3—H020.865 (18)
C12—C131.3870 (17)N3—H010.852 (18)
C13—C141.3990 (18)
O1—S1—O2120.77 (5)C15—C16—C11118.34 (11)
O1—S1—N1105.63 (5)N2—C3—H3123.3
O2—S1—N1105.08 (5)C4—C3—H3123.3
O1—S1—C11110.42 (5)O4—C7—H7A110.5
O2—S1—C11110.17 (5)C8—C7—H7A110.5
N1—S1—C11103.01 (5)O4—C7—H7B110.5
C6—O4—C7115.40 (8)C8—C7—H7B110.5
C5—N1—N2111.48 (8)H7A—C7—H7B108.6
C5—N1—S1126.66 (8)C7—C8—H8A109.5
N2—N1—S1115.43 (7)C7—C8—H8B109.5
C3—N2—N1104.03 (9)H8A—C8—H8B109.5
N2—C3—C4113.39 (10)C7—C8—H8C109.5
C5—C4—C3105.62 (9)H8A—C8—H8C109.5
C5—C4—C6125.13 (10)H8B—C8—H8C109.5
C3—C4—C6129.22 (10)C13—C12—H12120.6
N3—C5—N1123.87 (10)C11—C12—H12120.6
N3—C5—C4130.76 (10)C12—C13—H13119.6
N1—C5—C4105.34 (9)C14—C13—H13119.6
O3—C6—O4123.66 (10)C16—C15—H15119.3
O3—C6—C4124.24 (10)C14—C15—H15119.3
O4—C6—C4112.10 (9)C15—C16—H16120.8
O4—C7—C8106.37 (9)C11—C16—H16120.8
C12—C11—C16121.71 (11)C14—C17—H17A109.5
C12—C11—S1118.75 (9)C14—C17—H17B109.5
C16—C11—S1119.35 (9)H17A—C17—H17B109.5
C13—C12—C11118.71 (11)C14—C17—H17C109.5
C12—C13—C14120.83 (11)H17A—C17—H17C109.5
C15—C14—C13119.07 (11)H17B—C17—H17C109.5
C15—C14—C17120.36 (12)C5—N3—H02117.9 (11)
C13—C14—C17120.56 (12)C5—N3—H01120.2 (11)
C16—C15—C14121.31 (11)H02—N3—H01118.3 (15)
O1—S1—N1—C5169.64 (9)C5—C4—C6—O32.20 (18)
O2—S1—N1—C540.91 (10)C3—C4—C6—O3175.58 (11)
C11—S1—N1—C574.48 (10)C5—C4—C6—O4177.48 (10)
O1—S1—N1—N241.11 (9)C3—C4—C6—O44.74 (16)
O2—S1—N1—N2169.84 (7)C6—O4—C7—C8179.98 (9)
C11—S1—N1—N274.78 (8)O1—S1—C11—C1236.77 (10)
C5—N1—N2—C33.39 (12)O2—S1—C11—C12172.69 (9)
S1—N1—N2—C3157.24 (8)N1—S1—C11—C1275.64 (10)
N1—N2—C3—C41.50 (12)O1—S1—C11—C16148.21 (9)
N2—C3—C4—C50.83 (13)O2—S1—C11—C1612.29 (11)
N2—C3—C4—C6177.28 (11)N1—S1—C11—C1699.39 (9)
N2—N1—C5—N3177.82 (10)C16—C11—C12—C131.26 (17)
S1—N1—C5—N327.56 (16)S1—C11—C12—C13173.65 (9)
N2—N1—C5—C43.92 (12)C11—C12—C13—C140.18 (18)
S1—N1—C5—C4154.18 (8)C12—C13—C14—C151.74 (18)
C3—C4—C5—N3179.10 (12)C12—C13—C14—C17177.06 (11)
C6—C4—C5—N32.68 (19)C13—C14—C15—C161.94 (17)
C3—C4—C5—N12.81 (12)C17—C14—C15—C16176.87 (11)
C6—C4—C5—N1175.41 (10)C14—C15—C16—C110.56 (17)
C7—O4—C6—O32.02 (15)C12—C11—C16—C151.07 (17)
C7—O4—C6—C4177.65 (9)S1—C11—C16—C15173.81 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H02···O30.865 (18)2.456 (17)2.9775 (13)119.4 (13)
N3—H01···O20.852 (18)2.237 (17)2.8624 (13)130.3 (14)
N3—H02···N2i0.865 (18)2.206 (18)3.0216 (14)157.1 (15)
N3—H01···O1i0.852 (18)2.554 (17)3.0631 (13)119.3 (13)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H02···O30.865 (18)2.456 (17)2.9775 (13)119.4 (13)
N3—H01···O20.852 (18)2.237 (17)2.8624 (13)130.3 (14)
N3—H02···N2i0.865 (18)2.206 (18)3.0216 (14)157.1 (15)
N3—H01···O1i0.852 (18)2.554 (17)3.0631 (13)119.3 (13)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors acknowledge the financial support of the Ain Shams University, established and supported under the Egyptian Government Cooperative Research Centers Program.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationElgazwy, A.-S. S. H., Ismail, N. S. M., Atta-Allah, S. R., Sarg, M. T., Soliman, D. H. S., Zaki, M. Y. & Elgamas, M. A. (2012). Curr. Med. Chem. 19, 3967–3981.  Web of Science CAS PubMed Google Scholar
First citationElgazwy, A.-S. S. H., Soliman, D. H. S., Atta-Allah, S. R. & Ibrahim, D. A. (2012). Chem. Cent. J. 6, 1–18.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds