organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1464-o1465

Tri­cyclo­[3.3.1.03,7]nonane-3,7-diyl bis­­(4-methyl­benzene­sulfonate)

aChemistry Department, University of Cyprus, Nicosia, 1678, Cyprus
*Correspondence e-mail: ioannou.savvas@ucy.ac.cy

(Received 13 April 2013; accepted 19 August 2013; online 23 August 2013)

The title compound, C23H26O6S2 was synthesized by esterification of tri­cyclo­[3.3.1.03,7]nonane-3,7-diol with p-toluene­sulfonyl chloride. The mol­ecule has symmetry 2 and is situated on site 4e. The C—C bond length between the quartenary C atoms is 1.598 (2) Å, which is considerably longer than other C—C bonds in the mol­ecule. There are C—H⋯O inter­actions present in the structure. As a consequence, the packing of the molecule (viewed along [100]) appears as chains where the molecules run parallel, but each chain has the opposite direction to the neighboring ones.

Related literature

For reviews on noradamantene and analogous pyramidalized alkenes, see: Borden (1989[Borden, W. T. (1989). Chem. Rev. 89, 1095-1109.], 1996[Borden, W. T. (1996). Synlett, pp. 711-719.]); Vazquez & Camps (2005[Vazquez, S. & Camps, P. (2005). Tetrahedron, 61, 5147-5208.]). For tosyl­ates, see: Hoffman (1965[Hoffman, H. M. R. (1965). J. Chem. Soc. pp. 6753-6761.]). For related structures, see: Ioannou & Nicolaides (2009[Ioannou, S. & Nicolaides, A. V. (2009). Tetrahedron Lett. 50, 6938-6940.]); Ioannou et al. (2010[Ioannou, S., Nicolaides, A. V. & Manos, M. J. (2010). Acta Cryst. E66, o409.], 2012a[Ioannou, S. & Moushi, E. (2012a). Acta Cryst. E68, o1719.]), and for polycyclic compounds prepared from noradamantene, see: Ioannou et al. (2012b[Ioannou, S. & Moushi, E. (2012b). Acta Cryst. E68, o2150.],c[Ioannou, S. & Moushi, E. (2012c). Acta Cryst. E68, o2340-o2341.], 2013[Ioannou, S., Krassos, H. & Nicolaides, A. V. (2013). Tetrahedron, 69, 8064-8068.]). For a description of the Cambridge Crystallographic Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C23H26O6S2

  • Mr = 462.58

  • Monoclinic, C 2/c

  • a = 22.3068 (8) Å

  • b = 7.5667 (2) Å

  • c = 12.7114 (5) Å

  • β = 98.837 (4)°

  • V = 2120.07 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100 K

  • 0.68 × 0.20 × 0.05 mm

Data collection
  • Oxford Diffraction SuperNova diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.933, Tmax = 0.986

  • 17770 measured reflections

  • 2420 independent reflections

  • 2210 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.089

  • S = 1.09

  • 2420 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O3i 0.99 2.49 3.4714 (16) 171
C10—H10⋯O2ii 0.95 2.57 3.2551 (19) 129
C12—H12C⋯O2iii 0.98 2.49 3.4444 (19) 164
Symmetry codes: (i) [-x+1, y-1, -z+{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The tosyl group is one of the best leaving groups (Hoffman, 1965). For this reason, the title compound was synthesized in attempt to form new good precursors for noradamantene (Fig. 1, Borden (1989, 1996); Vazquez & Camps, 2005). Analogous studies have already been carried out by our research group (Ioannou & Nicolaides, 2009, Ioannou et al., 2010, Ioannou & Moushi, 2012a) on other molecules with the same noradamantane skeleton (Ioannou et al., 2010, Ioannou & Moushi, 2012a investigated the same molecules which have been described in Ioannou & Nicolaides, 2009). Synthesis of noradamantene is important for the building of larger polycyclic compounds (Ioannou & Moushi (2012b, 2012c), Ioannou et al., 2013).

The title compound has a 2-fold symmetry (Fig. 2). The C–C bond distance of the quaternary carbons C1— C1i where (i): 1 - x, y, -z+1/2 was found equal to 1.598 (2) Å, which is considerably longer compared to the other C—C bonds in the title molecule. On the other hand, this long bond is comparable to those found in DUNTAI, i.e. tricyclo-[3.3.1.03,7]nonane-3,7-diyldimesylate (Ioannou et al., 2010) with the pertinent C—C bond length equal to 1.597 (3) Å, and in PAVYES, i. e.2,4-dioxa-λ6- thiatetracyclo[5.3.1.15,9.01,5]dodecane-3,3-dione (Ioannou & Moushi, 2012a) with the pertinent C—C bond length equal to 1.581 (3) Å. For the REFCODES, see the Cambridge Crystal Structure Database, version 5.34 (Allen, 2002).

These three compounds have the same noradamantane skeleton (Fig. 1) but different ligands at the C1 and C1i-positions. There are present weak C—H···O interactions in the structure (Table 1).

Related literature top

For reviews on noradamantene and analogous pyramidalized alkenes, see: Borden (1989, 1996); Vazquez & Camps (2005). For tosylates, see: Hoffman (1965). For related structures, see: Ioannou & Nicolaides (2009); Ioannou et al. (2010, 2012a), and for polycyclic compounds prepared from noradamantene, see: Ioannou et al. (2012b,c, 2013). For a description of the Cambridge Crystallographic Database, see: Allen (2002).

Experimental top

4-Toluenesulfonyl chloride (1.240 g, 6.5 mmol) was added slowly at room temperature under stirring into a round bottom flask containing a solution of tricyclo-[3.3.1.03,7]nonane-3,7-diol (100 mg, 0.65 mmol) in pyridine (2 ml). The mixture was refluxed at 115°C for 4 h and let to cool down to room temperature. H2O (20 ml) was added and the mixture was stirred for 5 min at room temperature. A white insoluble solid had formed which was separated by filtration under vacuum. The solid was dissolved in a mixture (10 ml) of hexane:dichloromethane in proportion 2:8. After slow evaporation of about a half of the solvent, colourless needle-like crystals of the title compound with typical length of 4 mm were formed (145 mg, 48% yield). M.p. 146–148°C, δH (300 MHz, CDCl3), 1.44 (s, 2H, CH2-bridge), 2.18 (d, J= 7.5 Hz, 4H, CH2(a)), 2.33 (d, J= 11.1 Hz, 4H, CH2(b)), 2.38 (s, 2H, CH), 2.43 (s, 6H, CH3) 7.28 (d, J= 7.8 Hz, 4H, CHAr), 7.79 (d, J= 7.2 Hz, 4H, CHAr); δC (75.5 MHz, CDCl3) 21.6 (CH3), 32.2 (CH2-bridge), 35.0 (CH), 47.4 (CH2), 91.2 (COTs), 127.5 (CHAr), 129.3 (CHAr), 135.9 (CAr), 144.2 (CAr).

Refinement top

All the H atoms were discernible in the difference electron density map. However, they were situated into the idealized positions and refined with the following constraints: C—H = 0.95 Å, Uiso(H)=1.2Ueq(C) for aryl, and C—H = 0.98 Å, Uiso(H)=1.5Ueq(C) for the methyl atoms. The methyls were allowed to rotate about the C—Cmethyl bonds using the function AFIX 137 of SHELXL-97 (Sheldrick, 2008). The atom H4B which is symmetry equivalent to H4A has been treated as a dummy atom with zero occupation.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Schemes of noradamantane and noradamantene.
[Figure 2] Fig. 2. The title molecule of tricyclo-[3.3.1.03,7]nonane-3,7-diylditosylate with the atom-labelling scheme. The displacement ellipsoids are drawn at the 50% probability level.
Tricyclo[3.3.1.03,7]nonane-3,7-diyl bis(4-methylbenzenesulfonate) top
Crystal data top
C23H26O6S2F(000) = 976
Mr = 462.58Dx = 1.449 Mg m3
Monoclinic, C2/cMelting point = 418–421 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 22.3068 (8) ÅCell parameters from 8343 reflections
b = 7.5667 (2) Åθ = 3.7–28.8°
c = 12.7114 (5) ŵ = 0.29 mm1
β = 98.837 (4)°T = 100 K
V = 2120.07 (13) Å3Needle, colourless
Z = 40.68 × 0.20 × 0.05 mm
Data collection top
Oxford Diffraction SuperNova
diffractometer
2420 independent reflections
Radiation source: sealed X-ray tube, Dual Cu and Mo2210 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 10.4223 pixels mm-1θmax = 27.5°, θmin = 2.9°
ω scansh = 2828
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 99
Tmin = 0.933, Tmax = 0.986l = 1615
17770 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: difference Fourier map
wR(F2) = 0.089H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0398P)2 + 2.9805P]
where P = (Fo2 + 2Fc2)/3
2420 reflections(Δ/σ)max = 0.002
142 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.40 e Å3
55 constraints
Crystal data top
C23H26O6S2V = 2120.07 (13) Å3
Mr = 462.58Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.3068 (8) ŵ = 0.29 mm1
b = 7.5667 (2) ÅT = 100 K
c = 12.7114 (5) Å0.68 × 0.20 × 0.05 mm
β = 98.837 (4)°
Data collection top
Oxford Diffraction SuperNova
diffractometer
2420 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2210 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.986Rint = 0.034
17770 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.09Δρmax = 0.46 e Å3
2420 reflectionsΔρmin = 0.40 e Å3
142 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.598720 (15)0.45011 (4)0.13850 (3)0.01580 (11)
O10.54196 (4)0.40633 (13)0.19292 (7)0.0148 (2)
O20.60807 (5)0.31585 (15)0.06414 (8)0.0211 (2)
O30.58926 (5)0.62764 (14)0.10271 (8)0.0227 (2)
C10.52716 (6)0.22369 (17)0.21565 (10)0.0137 (3)
C20.57714 (6)0.11868 (19)0.28343 (11)0.0174 (3)
H2A0.60190.19400.33710.021*
H2B0.60380.05840.23930.021*
C30.53837 (7)0.01293 (19)0.33508 (12)0.0188 (3)
H30.56340.08630.39090.023*
C40.50000.1274 (3)0.25000.0212 (4)
H4A0.47290.20430.28460.025*
H4B0.52710.20430.21540.025*0.0
C50.50275 (6)0.11637 (19)0.11699 (11)0.0176 (3)
H5A0.53560.05440.08770.021*
H5B0.47950.19080.06090.021*
C60.65974 (6)0.44679 (18)0.24360 (11)0.0156 (3)
C70.71210 (7)0.35649 (19)0.23109 (12)0.0190 (3)
H70.71430.29270.16740.023*
C80.76125 (7)0.35997 (19)0.31229 (12)0.0201 (3)
H80.79760.30010.30330.024*
C90.75821 (7)0.44953 (18)0.40641 (12)0.0183 (3)
C100.70486 (7)0.53899 (19)0.41720 (12)0.0202 (3)
H100.70230.60110.48130.024*
C110.65566 (7)0.53928 (19)0.33660 (12)0.0192 (3)
H110.61970.60160.34460.023*
C120.81125 (7)0.4503 (2)0.49473 (13)0.0244 (3)
H12A0.83790.35010.48600.037*
H12B0.79660.44060.56330.037*
H12C0.83390.56090.49260.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01584 (18)0.01730 (19)0.01524 (18)0.00015 (12)0.00556 (13)0.00160 (12)
O10.0150 (5)0.0138 (5)0.0165 (5)0.0000 (4)0.0057 (4)0.0016 (4)
O20.0217 (5)0.0264 (6)0.0169 (5)0.0014 (4)0.0079 (4)0.0033 (4)
O30.0227 (5)0.0210 (6)0.0252 (6)0.0003 (4)0.0065 (4)0.0083 (4)
C10.0149 (6)0.0126 (6)0.0140 (6)0.0003 (5)0.0036 (5)0.0010 (5)
C20.0159 (6)0.0174 (7)0.0186 (7)0.0023 (5)0.0016 (5)0.0025 (5)
C30.0199 (7)0.0170 (7)0.0191 (7)0.0020 (5)0.0024 (5)0.0041 (5)
C40.0253 (10)0.0140 (9)0.0248 (10)0.0000.0059 (8)0.000
C50.0208 (7)0.0182 (7)0.0140 (6)0.0004 (5)0.0031 (5)0.0027 (5)
C60.0162 (6)0.0143 (6)0.0172 (7)0.0014 (5)0.0050 (5)0.0013 (5)
C70.0210 (7)0.0170 (7)0.0201 (7)0.0019 (5)0.0065 (5)0.0014 (5)
C80.0184 (7)0.0169 (7)0.0257 (7)0.0033 (5)0.0057 (6)0.0014 (6)
C90.0184 (7)0.0153 (7)0.0215 (7)0.0033 (5)0.0035 (6)0.0036 (5)
C100.0210 (7)0.0213 (7)0.0195 (7)0.0031 (5)0.0065 (6)0.0031 (5)
C110.0174 (7)0.0193 (7)0.0227 (7)0.0006 (5)0.0084 (6)0.0023 (5)
C120.0215 (7)0.0247 (8)0.0260 (8)0.0017 (6)0.0002 (6)0.0025 (6)
Geometric parameters (Å, º) top
S1—O31.4236 (11)C5—H5A0.9900
S1—O21.4246 (11)C5—H5B0.9900
S1—O11.5685 (10)C6—C71.383 (2)
S1—C61.7548 (15)C6—C111.389 (2)
O1—C11.4600 (16)C7—C81.386 (2)
C1—C51.5228 (18)C7—H70.9500
C1—C21.5237 (18)C8—C91.386 (2)
C1—C1i1.598 (2)C8—H80.9500
C2—C31.531 (2)C9—C101.394 (2)
C2—H2A0.9900C9—C121.501 (2)
C2—H2B0.9900C10—C111.382 (2)
C3—C5i1.530 (2)C10—H100.9500
C3—C41.5389 (19)C11—H110.9500
C3—H31.0000C12—H12A0.9800
C4—C3i1.5389 (19)C12—H12B0.9800
C4—H4A0.9900C12—H12C0.9800
C5—C3i1.530 (2)
O3—S1—O2119.37 (7)C1—C5—H5A111.8
O3—S1—O1104.49 (6)C3i—C5—H5A111.8
O2—S1—O1110.64 (6)C1—C5—H5B111.8
O3—S1—C6108.44 (7)C3i—C5—H5B111.8
O2—S1—C6108.63 (7)H5A—C5—H5B109.5
O1—S1—C6104.21 (6)C7—C6—C11120.91 (14)
C1—O1—S1120.64 (8)C7—C6—S1119.30 (11)
O1—C1—C5113.89 (11)C11—C6—S1119.76 (11)
O1—C1—C2115.94 (11)C6—C7—C8119.36 (13)
C5—C1—C2109.00 (11)C6—C7—H7120.3
O1—C1—C1i108.76 (6)C8—C7—H7120.3
C5—C1—C1i104.17 (11)C9—C8—C7120.95 (13)
C2—C1—C1i103.96 (11)C9—C8—H8119.5
C1—C2—C399.75 (11)C7—C8—H8119.5
C1—C2—H2A111.8C8—C9—C10118.56 (14)
C3—C2—H2A111.8C8—C9—C12120.69 (13)
C1—C2—H2B111.8C10—C9—C12120.75 (14)
C3—C2—H2B111.8C11—C10—C9121.38 (14)
H2A—C2—H2B109.5C11—C10—H10119.3
C5i—C3—C299.64 (11)C9—C10—H10119.3
C5i—C3—C4109.69 (11)C10—C11—C6118.82 (13)
C2—C3—C4110.76 (11)C10—C11—H11120.6
C5i—C3—H3112.0C6—C11—H11120.6
C2—C3—H3112.0C9—C12—H12A109.5
C4—C3—H3112.0C9—C12—H12B109.5
C3—C4—C3i111.49 (17)H12A—C12—H12B109.5
C3—C4—H4A109.3C9—C12—H12C109.5
C3i—C4—H4A109.3H12A—C12—H12C109.5
C1—C5—C3i99.98 (11)H12B—C12—H12C109.5
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O3ii0.992.493.4714 (16)171
C10—H10···O2iii0.952.573.2551 (19)129
C12—H12C···O2iv0.982.493.4444 (19)164
Symmetry codes: (ii) x+1, y1, z+1/2; (iii) x, y+1, z+1/2; (iv) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O3i0.992.493.4714 (16)171
C10—H10···O2ii0.952.573.2551 (19)129
C12—H12C···O2iii0.982.493.4444 (19)164
Symmetry codes: (i) x+1, y1, z+1/2; (ii) x, y+1, z+1/2; (iii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We are grateful to the Research Promotion Foundation (IΠE) of Cyprus and the European Structural Funds for grant ANABAΘ/ΠAΓIO/0308/12 which allowed the purchase of the XRD instrument, NEKΠ/0308/02, the purchase of a 500 MHz NMR spectrometer as well as of the RSC journal archive, and enabled the access to Reaxys, and financially supported SI (ΠENEK/ENIΣX/0308/01). Partial financial support (SI) has also been provided by the SRP "Inter­esting Divalent Carbon Compounds" granted by UCY. The A. G. Leventis Foundation is gratefully acknowledged for a generous donation to the University of Cyprus enabling the purchase of the 300 MHz NMR spectrometer. Dr Athanassios Nicolaides and Dr Anastasios Tasiopoulos are thanked for their illuminating comments.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBorden, W. T. (1989). Chem. Rev. 89, 1095–1109.  CrossRef CAS Web of Science Google Scholar
First citationBorden, W. T. (1996). Synlett, pp. 711–719.  CrossRef Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHoffman, H. M. R. (1965). J. Chem. Soc. pp. 6753–6761.  Google Scholar
First citationIoannou, S., Krassos, H. & Nicolaides, A. V. (2013). Tetrahedron, 69, 8064–8068.  Web of Science CSD CrossRef CAS Google Scholar
First citationIoannou, S. & Moushi, E. (2012a). Acta Cryst. E68, o1719.  CSD CrossRef IUCr Journals Google Scholar
First citationIoannou, S. & Moushi, E. (2012b). Acta Cryst. E68, o2150.  CSD CrossRef IUCr Journals Google Scholar
First citationIoannou, S. & Moushi, E. (2012c). Acta Cryst. E68, o2340–o2341.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationIoannou, S. & Nicolaides, A. V. (2009). Tetrahedron Lett. 50, 6938–6940.  Web of Science CrossRef CAS Google Scholar
First citationIoannou, S., Nicolaides, A. V. & Manos, M. J. (2010). Acta Cryst. E66, o409.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVazquez, S. & Camps, P. (2005). Tetrahedron, 61, 5147–5208.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1464-o1465
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds