metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages m508-m509

Di­aqua­di­chlorido­bis­­(pyridine-κN)cobalt(II)

aDepartment of Physics, S. R. R. Engineering College (A. Jeppiaar Institution), Old Mamallapuram Road, Padur, Chennai 603 103, India, bDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 25 April 2013; accepted 10 August 2013; online 21 August 2013)

The title mol­ecule, [CoCl2(C5H5N)2(H2O)2], has -1 symmetry with the CoII ion situated on an inversion centre. The cation has a distorted octa­hedral coordination environment and is surrounded by two N and two Cl atoms in the equatorial plane, while the coordinating water O atoms occupy the axial positions. The crystal exhibits nonmerohedral twinning with two domain states, the volume fractions of which were refined to 0.883 (2) and 0.117 (3). The crystal packing is stabilized by O—H⋯Cl hydrogen-bond inter­actions, forming two-dimensional networks lying parallel to (001). The crystal packing also features ππ inter­actions between the pyridine rings, with centroid–centroid separations of 3.493 (3) and 3.545 (3) Å.

Related literature

For biological activity and potential applications of mixed-ligand cobalt complexes, see: Arslan et al. (2009[Arslan, H., Duran, N., Borekci, G., Ozer, C. K. & Akbay, C. (2009). Molecules, 14, 519-527.]) (anti­microbial activity); Delehanty et al. (2008[Delehanty, J. B., Bongard, J. E., Thach, C. D., Knight, D. A., Hickeya, T. E. & Chang, E. L. (2008). Bioorg. Med. Chem. 16, 830-837.]) (anti­viral activity); Sayed et al. (1992[Sayed, G. H., Radwan, A., Mohamed, S. M., Shiba, S. A. & Kalil, M. (1992). Chin. J. Chem. 10, 475-480.]) (anti­tumor activity); Teicher et al. (1990[Teicher, B. A., Abrams, M. J., Rosbe, K. W. & Herman, T. S. (1990). Cancer Res. 50, 6971-6975.]) (anti­tumor and cytotoxic activities); Milaeva et al. (2013[Milaeva, E. R., Shpakovsky, D. B., Gracheva, Y. A., Orlova, S. I., Maduar, V. V., Tarasevich, B. N., Meleshonkova, N. N., Dubova, L. G. & Shevtsova, E. F. (2013). Dalton Trans. 42, 6817-6828.]) (biochemical properties of CoII). For related structures, see: Li et al. (2009[Li, N., Zou, H.-L., Song, X.-Y., Liu, Y.-C. & Chen, Z.-F. (2009). Acta Cryst. E65, m1666.]); Zhu & Zhou (2008[Zhu, W.-F. & Zhou, X.-F. (2008). Acta Cryst. E64, m1478.]). For graph-set motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C5H5N)2(H2O)2]

  • Mr = 324.06

  • Triclinic, [P \overline 1]

  • a = 6.2028 (2) Å

  • b = 6.5971 (1) Å

  • c = 8.5963 (2) Å

  • α = 109.734 (2)°

  • β = 102.621 (3)°

  • γ = 97.031 (2)°

  • V = 315.65 (1) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.77 mm−1

  • T = 293 K

  • 0.25 × 0.2 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.576, Tmax = 0.618

  • 2211 measured reflections

  • 2211 independent reflections

  • 1926 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.149

  • S = 1.16

  • 2211 reflections

  • 88 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.99 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1i 0.82 (3) 2.45 (3) 3.266 (3) 176 (5)
O1—H1B⋯Cl1ii 0.81 (4) 2.41 (4) 3.156 (3) 153 (4)
Symmetry codes: (i) -x, -y+1, -z; (ii) x+1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and TwinRotMat (Bolte, 2004[Bolte, M. (2004). J. Appl. Cryst. 37, 162-165.]).

Supporting information


Comment top

Mixed ligand cobalt complexes have found potential applications in the field of medicine because of its antitumor activity (Teicher et al., 1990; Sayed et al., 1992), antiviral activity (Delehanty et al., 2008), antimicrobial activity (Arslan et al., 2009) and radiosensitization and cytotoxic activities (Teicher et al., 1990).

Cobalt is essential and integral component of vitamin B12, therefore it is found in many tissues. Cobalt complexes are useful in nutritional supplementation.

Electron transfer as well as ligand substitution reactions of cobalt(II) complexes are useful in understanding of biochemistry of cobalt(II) (Milaeva et al., 2013). In order to study the electron transfer phenomena, the structure determination of the title compound, C10H14Cl2Co1N2O2, has been carried out.

The title molecule is shown in Fig. 1. It possesses symmetry 1 because its central atom Co(II) is situated at the crystallographic inversion centre. The Co(II) ion has a distorted octahedral coordination environment. It is surrounded by two N atoms and two Cl atoms in the equatorial plane, while the water oxygens occupy the axial positions.

The bond lengths are comparable with those observed in the related structure of tetraaquabis(pyridine-kN)cobalt(II) bis[4-amino-N- (6-chloropyridazin-3-yl)-benzenesulfonamidate] (Li et al., 2009); tetraaquabis[5-(4-pyridyl)tetrazolido-kN5]cobalt(II) dihydrate (Zhu & Zhou, 2008). The crystal packing is stabilized by O1-H1A···Cl1 and O1-H1B···Cl1 hydrogen bonds with the graph-set motif R24(8) (Etter et al., 1990) with H1a and H1b and its equivalents generated by (iii): 1-x, 1-y, -z, and by two graph-set motifs R22(8) with the atoms H1a and H1ai or H1b and H1biv involved where (i): -x, 1-y, -z and (iv): 1-x, -y, -z (Table 1, Fig. 2).

There are also two π-electron ring···π-electron ring interactions between the pyridine rings N1//C1-C5 and the symmetry equivalents related by the operations (v): -x, -y, 1-z and (vi): -x, 1-y, 1-z. The respective distances between the centroids are 3.493 (3) and 3.545 (3)Å.

Related literature top

For biological activity and potential applications of mixed-ligand cobalt complexes, see: Arslan et al. (2009) (antimicrobial activity); Delehanty et al. (2008) (antiviral activity); Sayed et al. (1992) (antitumor activity); Teicher et al. (1990) (antitumor and cytotoxic activities); Milaeva et al. (2013) (biochemical properties of CoII). For related structures, see: Li et al. (2009); Zhu & Zhou (2008). For the graph-set motifs, see: Etter et al. (1990).

Experimental top

Diaquadichloridobis(pyridine-N)Cobalt(II) complex was prepared by dissolving cobalt(II) chloride hexahydrate (CoCl2.6H2O, 1 g, 0.28 M) in boiling ethanol (C2H5OH, 15 ml). An excess of pyridine (C5H5N, 2.5 ml, 10 M) dissolved in ethanol (2.0 ml), was added slowly to this mixture in order to precipitate the title complex. The crude pink coloured precipitate was washed with cold ethanol and then air-dried. Then this precipitate was dissolved in 10-15 ml of hot ethanol, cooled down and allowed to crystallize. After cooling pink coloured crystals (0.84 g) developed within 12 hours. X-ray quality crystals were obtained by repeated recrystallization from hot ethanol. The typical size of the obtained block-like crystals was 0.8 × 0.6 × 0.5 mm. (The measured sample has been cut from a larger crystal.)

Refinement top

After the solution of the phase problem by SHELXS-97 (Sheldrick, 2008), the refinement on HKLF4 (SHELXL-97, Sheldrick, 2008) converged to the R-factor equal to 0.067 for Fo>4σ(Fo). The difference electron density map showed several peaks of the order of magintude of 1eÅ-3. A check by TwinRotMat (Bolte, 2004; PLATON (Spek, 2009)) showed that the crystal had a two-fold non-merohedral twinning with the twin matrix [h2 k2 l2] = [h1 k1 l1][-1 0 0.731 /0 -1 0.964/0 0 1]. The twin law generated from |Fo| - |Fc| table was used to generate HKLF5 format file (Bolte, 2004) which is suitable for a twin refinement by SHELXL-97 (Sheldrick, 2008). The refinement converged to the R-factor of 0.0474 for Fo>4σ(Fo). All the spurious difference peaks have vanished. The refined domain fractions converged to the values 0.883 (2) and 0.117 (3). As the second component of the twin was weak it was not observed during the cell indexing.

All the hydrogens were discernible in the difference electron density map. Nevertheless all the aryl hydrogens were fully constrained. The values of the used constraints were following: CarylH = 0.93 Å. UisoH=1.2UeqCaryl. The positional parameters of the water hydrogens were restrained with O-H = 0.82 (1)Å, while Uiso(Hwater-oxygen)=1.5Ueq(Owater_oxygen).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009) and TwinRotMat (Bolte (2004).

Figures top
[Figure 1] Fig. 1. View of the title molecule with the atom labelling scheme. The displacement ellipsoids are drawn at the 30% probability level while the H atoms are shown as small spheres of arbitrary radii. The atoms labelled by "a" are related by the symmetry operation -x, -y, -z.
[Figure 2] Fig. 2. The hydrogen bond motifs in the title structure. Black: C; blue: N; light blue: Co; green: Cl, red: O; grey (small): H. Symmetry codes: (i): -x, 1 - y, -z, (iii): 1 - x, 1 - y, -z and (iv): 1 - x, -y, -z.
Diaquadichloridobis(pyridine-κN)cobalt(II) top
Crystal data top
[CoCl2(C5H5N)2(H2O)2]Z = 1
Mr = 324.06F(000) = 165
Triclinic, P1Dx = 1.705 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2028 (2) ÅCell parameters from 2211 reflections
b = 6.5971 (1) Åθ = 2.6–26.7°
c = 8.5963 (2) ŵ = 1.77 mm1
α = 109.734 (2)°T = 293 K
β = 102.621 (3)°Block, pink
γ = 97.031 (2)°0.25 × 0.2 × 0.18 mm
V = 315.65 (1) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2211 independent reflections
Radiation source: Fine-focus sealed tube, Enhance (Mo) X-ray Source1926 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω scansθmax = 26.7°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 77
Tmin = 0.576, Tmax = 0.618k = 88
2211 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: difference Fourier map
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0878P)2 + 0.6139P]
where P = (Fo2 + 2Fc2)/3
2211 reflections(Δ/σ)max < 0.001
88 parametersΔρmax = 0.71 e Å3
3 restraintsΔρmin = 0.99 e Å3
22 constraints
Crystal data top
[CoCl2(C5H5N)2(H2O)2]γ = 97.031 (2)°
Mr = 324.06V = 315.65 (1) Å3
Triclinic, P1Z = 1
a = 6.2028 (2) ÅMo Kα radiation
b = 6.5971 (1) ŵ = 1.77 mm1
c = 8.5963 (2) ÅT = 293 K
α = 109.734 (2)°0.25 × 0.2 × 0.18 mm
β = 102.621 (3)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2211 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1926 reflections with I > 2σ(I)
Tmin = 0.576, Tmax = 0.618Rint = 0.000
2211 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0473 restraints
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.71 e Å3
2211 reflectionsΔρmin = 0.99 e Å3
88 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2308 (7)0.2281 (6)0.3845 (5)0.0301 (9)
H10.35930.22700.34530.036*
C20.2576 (7)0.3179 (7)0.5588 (5)0.0374 (10)
H20.40120.37920.63520.045*
C30.0695 (8)0.3160 (7)0.6187 (5)0.0380 (10)
H30.08340.37490.73610.046*
C40.1391 (7)0.2252 (7)0.5014 (5)0.0339 (9)
H40.26900.22000.53860.041*
C50.1549 (7)0.1418 (7)0.3281 (5)0.0297 (8)
H50.29750.08320.24990.036*
N10.0267 (5)0.1418 (5)0.2680 (4)0.0247 (7)
O10.2699 (4)0.2637 (4)0.0415 (4)0.0299 (7)
H1A0.264 (8)0.388 (4)0.045 (6)0.045*
H1B0.365 (6)0.210 (6)0.000 (6)0.045*
Cl10.27270 (14)0.23327 (14)0.06014 (12)0.0295 (3)
Co10.00000.00000.00000.0209 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.028 (2)0.028 (2)0.029 (2)0.0014 (16)0.0024 (16)0.0087 (17)
C20.040 (2)0.029 (2)0.031 (2)0.0004 (18)0.0014 (19)0.0059 (18)
C30.063 (3)0.026 (2)0.025 (2)0.013 (2)0.014 (2)0.0074 (18)
C40.046 (3)0.030 (2)0.034 (2)0.0138 (18)0.0216 (19)0.0147 (19)
C50.029 (2)0.027 (2)0.030 (2)0.0039 (16)0.0112 (16)0.0053 (17)
N10.0250 (16)0.0209 (15)0.0256 (16)0.0024 (12)0.0082 (13)0.0057 (13)
O10.0244 (15)0.0231 (14)0.0428 (17)0.0016 (11)0.0134 (13)0.0117 (14)
Cl10.0237 (5)0.0240 (5)0.0383 (6)0.0052 (4)0.0082 (4)0.0089 (4)
Co10.0170 (3)0.0183 (4)0.0228 (4)0.0001 (2)0.0053 (3)0.0035 (3)
Geometric parameters (Å, º) top
C1—N11.347 (5)C5—H50.9300
C1—C21.376 (5)N1—Co12.133 (3)
C1—H10.9300O1—Co12.136 (2)
C2—C31.375 (6)O1—H1A0.817 (10)
C2—H20.9300O1—H1B0.812 (10)
C3—C41.372 (6)Cl1—Co12.5078 (9)
C3—H30.9300Co1—N1i2.133 (3)
C4—C51.379 (6)Co1—O1i2.136 (2)
C4—H40.9300Co1—Cl1i2.5078 (9)
C5—N11.338 (5)
N1—C1—C2122.9 (4)Co1—O1—H1A129 (3)
N1—C1—H1118.6Co1—O1—H1B108 (3)
C2—C1—H1118.6H1A—O1—H1B115 (3)
C3—C2—C1119.2 (4)N1—Co1—N1i180.0
C3—C2—H2120.4N1—Co1—O1i92.24 (11)
C1—C2—H2120.4N1i—Co1—O1i87.76 (11)
C4—C3—C2118.5 (4)N1—Co1—O187.76 (11)
C4—C3—H3120.8N1i—Co1—O192.24 (11)
C2—C3—H3120.8O1i—Co1—O1180.0
C3—C4—C5119.5 (4)N1—Co1—Cl1i89.65 (8)
C3—C4—H4120.2N1i—Co1—Cl1i90.35 (8)
C5—C4—H4120.2O1i—Co1—Cl1i88.46 (7)
N1—C5—C4122.6 (4)O1—Co1—Cl1i91.54 (7)
N1—C5—H5118.7N1—Co1—Cl190.35 (8)
C4—C5—H5118.7N1i—Co1—Cl189.65 (8)
C5—N1—C1117.3 (3)O1i—Co1—Cl191.54 (7)
C5—N1—Co1122.1 (3)O1—Co1—Cl188.46 (7)
C1—N1—Co1120.5 (3)Cl1i—Co1—Cl1180.0
N1—C1—C2—C31.5 (6)C5—N1—Co1—O1i37.2 (3)
C1—C2—C3—C40.4 (6)C1—N1—Co1—O1i140.2 (3)
C2—C3—C4—C50.9 (6)C5—N1—Co1—O1142.8 (3)
C3—C4—C5—N11.2 (6)C1—N1—Co1—O139.8 (3)
C4—C5—N1—C10.1 (6)C5—N1—Co1—Cl1i125.6 (3)
C4—C5—N1—Co1177.4 (3)C1—N1—Co1—Cl1i51.8 (3)
C2—C1—N1—C51.3 (6)C5—N1—Co1—Cl154.4 (3)
C2—C1—N1—Co1178.8 (3)C1—N1—Co1—Cl1128.2 (3)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl1ii0.82 (3)2.45 (3)3.266 (3)176 (5)
O1—H1B···Cl1iii0.81 (4)2.41 (4)3.156 (3)153 (4)
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl1i0.82 (3)2.45 (3)3.266 (3)176 (5)
O1—H1B···Cl1ii0.81 (4)2.41 (4)3.156 (3)153 (4)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

ASP and PSK are thankful to the Department of Chemistry, Pondicherry University, for the single-crystal XRD facility. KA is thankful to CSIR, New Delhi (Lr: No. 01 (2570)/12/EMR-II/3.4.2012), for financial support of a major research project.

References

First citationArslan, H., Duran, N., Borekci, G., Ozer, C. K. & Akbay, C. (2009). Molecules, 14, 519–527.  Web of Science CrossRef PubMed Google Scholar
First citationBolte, M. (2004). J. Appl. Cryst. 37, 162–165.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDelehanty, J. B., Bongard, J. E., Thach, C. D., Knight, D. A., Hickeya, T. E. & Chang, E. L. (2008). Bioorg. Med. Chem. 16, 830–837.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, N., Zou, H.-L., Song, X.-Y., Liu, Y.-C. & Chen, Z.-F. (2009). Acta Cryst. E65, m1666.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMilaeva, E. R., Shpakovsky, D. B., Gracheva, Y. A., Orlova, S. I., Maduar, V. V., Tarasevich, B. N., Meleshonkova, N. N., Dubova, L. G. & Shevtsova, E. F. (2013). Dalton Trans. 42, 6817–6828.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSayed, G. H., Radwan, A., Mohamed, S. M., Shiba, S. A. & Kalil, M. (1992). Chin. J. Chem. 10, 475–480.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeicher, B. A., Abrams, M. J., Rosbe, K. W. & Herman, T. S. (1990). Cancer Res. 50, 6971–6975.  CAS PubMed Web of Science Google Scholar
First citationZhu, W.-F. & Zhou, X.-F. (2008). Acta Cryst. E64, m1478.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages m508-m509
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds