organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

anti-Ethyl aceto­hydroximate

aInstitute of Chemistry, University of Silesia, 14 Bankowa Street, 40-007 Katowice, Poland, and bInstitute of Physics, University of Silesia, 4 Uniwersytecka Street, 40-007 Katowice, Poland
*Correspondence e-mail: bhachula@o2.pl

(Received 2 August 2013; accepted 8 August 2013; online 21 August 2013)

In the crystal structure of the title compound, C4H9NO2, the O—H⋯N hydrogen bonds link the mol­ecules into supra­molecular chains extending along the b-axis direction. The conformation of the NOH group in the nearly planar (r.m.s. deviation = 0.0546 Å) ethyl aceto­hydroximate mol­ecule is trans to N=C.

Related literature

For related structures, see: Kjaer et al. (1977[Kjaer, A., Larsen, I. K. & Sivertsen, P. (1977). Acta Chem. Scand. Ser. B, 31, 415-423.]); Larsen (1971[Larsen, I. K. (1971). Acta Chem. Scand. 25, 2409-2420.]). For studies of the IR spectra of hydrogen bonding in oxime derivatives, see: Flakus et al. (2012[Flakus, H., Hachuła, B. & Garbacz, A. (2012). J. Phys. Chem. A116, 11553-11567.]). For typical bond distances, see: Allen et al. (1987[Allen, F. A., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C4H9NO2

  • Mr = 103.12

  • Monoclinic, C 2/c

  • a = 19.9481 (9) Å

  • b = 4.4138 (1) Å

  • c = 13.3277 (5) Å

  • β = 109.027 (4)°

  • V = 1109.35 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.52 × 0.18 × 0.14 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire3 detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]) Tmin = 0.505, Tmax = 1.000

  • 6699 measured reflections

  • 970 independent reflections

  • 868 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.098

  • S = 1.08

  • 970 reflections

  • 69 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.871 (19) 1.954 (19) 2.8196 (14) 172.4 (16)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Anti-ethyl acetohydroximate [systematic name: ethyl N-hydroxyacetimidate], (I), was investigated in a continuation of our studies of the IR spectra of hydrogen bonding in oxime derivatives (Flakus et al., 2012). In order to study interactions occurring via hydrogen bonds and molecular packing in this compound, we have now determined the structure of (I) using diffraction data collected at 100 K. Until now, the structures of syn-methyl acetohydroximate and syn- and anti-ethyl benzohydroximate were determined (Kjaer et al., 1977; Larsen et al., 1971). The crystal structure of syn-methyl acetohydroximate is composed of layers of molecules, which form cyclic, hydrogen-bonded trimers, whereas the crystals of syn- and anti-ethyl benzohydroximate are composed of dimers formed by pairs of O—H···N hydrogen- bonded molecules.

The molecule of (I) is nearly planar (r.m.s. deviations 0.0546 Å for all non-H atoms). The lengths of the bonds C=N (1.2771 (17) Å) and N—O (1.4286 (13) Å) in (I) are comparable to the mean values found in other oximes (C=N 1.281 Å; N—O 1.394 Å) (Allen et al., 1987). The conformation of the NOH group in the planar ethyl acetohydroximate molecule is trans to N=C. In the crystal, O—H···N are observed forming infinite chains along the b axis (Fig. 2) with a graph-set motif of C(3) (Etter et al., 1990; Bernstein et al., 1995).

Related literature top

For related structures, see: Kjaer et al. (1977); Larsen (1971). For studies of the IR spectra of hydrogen bonding in oxime derivatives, see: Flakus et al. (2012). For typical bond distances, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental top

Ethyl acetohydroximate was purchased from Aldrich-Sigma. Crystals of title compound, suitable for X-ray diffraction, were selected directly from purchased sample.

Refinement top

The H atoms were introduced in geometrically idealized positions with C—H distances of 0.99 Å and Uiso(H) values set at 1.2Ueq(C) for methylene group or 0.98 Å and with Uiso(H) values set at 1.5Ueq(C) for methyl groups. The H atom which takes part in hydrogen bonding was located in a difference Fourier map and was refined with Uiso(H) value set at 1.5Ueq(O).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with the atom-numbering scheme, showing 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the C(3) chains. The red lines indicate the hydrogen-bonding interactions. For the sake of clarity, all H atoms bonded to C atoms were omitted.
Ethyl N-hydroxyethanecarboximidate top
Crystal data top
C4H9NO2F(000) = 448
Mr = 103.12Dx = 1.235 Mg m3
Monoclinic, C2/cMelting point = 296–298 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 19.9481 (9) ÅCell parameters from 6376 reflections
b = 4.4138 (1) Åθ = 3.1–34.4°
c = 13.3277 (5) ŵ = 0.10 mm1
β = 109.027 (4)°T = 100 K
V = 1109.35 (7) Å3Needle, colourless
Z = 80.52 × 0.18 × 0.14 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire3 detector
970 independent reflections
Radiation source: fine-focus sealed tube868 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 16.0328 pixels mm-1θmax = 25.1°, θmin = 3.2°
ω–scanh = 2223
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 25
Tmin = 0.505, Tmax = 1.000l = 1515
6699 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.5949P]
where P = (Fo2 + 2Fc2)/3
970 reflections(Δ/σ)max < 0.001
69 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C4H9NO2V = 1109.35 (7) Å3
Mr = 103.12Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.9481 (9) ŵ = 0.10 mm1
b = 4.4138 (1) ÅT = 100 K
c = 13.3277 (5) Å0.52 × 0.18 × 0.14 mm
β = 109.027 (4)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire3 detector
970 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
868 reflections with I > 2σ(I)
Tmin = 0.505, Tmax = 1.000Rint = 0.025
6699 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.22 e Å3
970 reflectionsΔρmin = 0.22 e Å3
69 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31644 (5)0.6668 (2)0.82875 (7)0.0201 (3)
O20.39491 (4)0.1706 (2)0.69431 (7)0.0185 (3)
N10.31725 (5)0.4501 (2)0.74954 (8)0.0165 (3)
C10.38102 (7)0.3704 (3)0.76216 (10)0.0158 (3)
C20.44623 (7)0.4799 (3)0.84598 (10)0.0215 (3)
H2A0.45680.68710.82940.032*
H2B0.48620.34720.84860.032*
H2C0.43850.47740.91490.032*
C30.33586 (7)0.0728 (3)0.60358 (10)0.0187 (3)
H3A0.31030.25030.56360.022*
H3B0.30220.04970.62710.022*
C40.36699 (8)0.1145 (3)0.53500 (11)0.0235 (3)
H4A0.39870.01180.51000.035*
H4B0.32870.19290.47390.035*
H4C0.39380.28430.57650.035*
H10.2735 (10)0.740 (4)0.8065 (13)0.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0168 (5)0.0243 (5)0.0190 (5)0.0038 (4)0.0054 (4)0.0041 (4)
O20.0153 (5)0.0230 (5)0.0163 (5)0.0012 (3)0.0041 (4)0.0017 (4)
N10.0170 (6)0.0172 (6)0.0154 (6)0.0001 (4)0.0052 (4)0.0006 (4)
C10.0167 (7)0.0174 (6)0.0140 (6)0.0000 (5)0.0062 (5)0.0034 (5)
C20.0152 (7)0.0290 (7)0.0193 (7)0.0011 (5)0.0042 (5)0.0014 (6)
C30.0175 (7)0.0201 (7)0.0164 (7)0.0019 (5)0.0026 (5)0.0002 (5)
C40.0282 (7)0.0241 (7)0.0188 (7)0.0025 (6)0.0086 (6)0.0006 (5)
Geometric parameters (Å, º) top
O1—N11.4286 (13)C2—H2C0.9800
O1—H10.871 (19)C3—C41.5082 (17)
O2—C11.3547 (15)C3—H3A0.9900
O2—C31.4517 (15)C3—H3B0.9900
N1—C11.2771 (17)C4—H4A0.9800
C1—C21.4922 (17)C4—H4B0.9800
C2—H2A0.9800C4—H4C0.9800
C2—H2B0.9800
N1—O1—H1104.1 (11)O2—C3—C4106.57 (10)
C1—O2—C3117.55 (9)O2—C3—H3A110.4
C1—N1—O1109.76 (10)C4—C3—H3A110.4
N1—C1—O2120.21 (12)O2—C3—H3B110.4
N1—C1—C2126.66 (12)C4—C3—H3B110.4
O2—C1—C2113.11 (10)H3A—C3—H3B108.6
C1—C2—H2A109.5C3—C4—H4A109.5
C1—C2—H2B109.5C3—C4—H4B109.5
H2A—C2—H2B109.5H4A—C4—H4B109.5
C1—C2—H2C109.5C3—C4—H4C109.5
H2A—C2—H2C109.5H4A—C4—H4C109.5
H2B—C2—H2C109.5H4B—C4—H4C109.5
O1—N1—C1—O2178.49 (9)C3—O2—C1—C2174.04 (10)
O1—N1—C1—C20.24 (17)C1—O2—C3—C4173.10 (10)
C3—O2—C1—N14.85 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.871 (19)1.954 (19)2.8196 (14)172.4 (16)
Symmetry code: (i) x+1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.871 (19)1.954 (19)2.8196 (14)172.4 (16)
Symmetry code: (i) x+1/2, y+1/2, z+3/2.
 

References

First citationAllen, F. A., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlakus, H., Hachuła, B. & Garbacz, A. (2012). J. Phys. Chem. A116, 11553–11567.  Web of Science CrossRef Google Scholar
First citationKjaer, A., Larsen, I. K. & Sivertsen, P. (1977). Acta Chem. Scand. Ser. B, 31, 415–423.  Google Scholar
First citationLarsen, I. K. (1971). Acta Chem. Scand. 25, 2409–2420.  CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds