organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Iso­propyl-2-(6-meth­­oxy-1,3-benzo­thia­zol-2-yl)-5,5-di­methyl-1,3-thia­zolidin-4-one

aInstitut für Organische Chemie und Makromolekulare Chemie, Universität Jena, Humboldtstrasse 10, 07743 Jena, Germany, and bInstitut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstrasse 8, 07743 Jena, Germany
*Correspondence e-mail: c6bera@rz.uni-jena.de

(Received 3 July 2013; accepted 15 July 2013; online 7 August 2013)

The title compound, C16H20N2O2S2, crystallizes with two enanti­omers (A and B) in the asymmetric unit. The most noticeable difference between these two mol­ecules is the relative orientation of the benzo­thia­zole rings, with S—C—C—S torsion angles of −19.4 (2) (mol­ecule A) and 100.6 (1)° (mol­ecule B). The amide structure of the thia­zolidinone rings leads to inter­molecular hydrogen-bonded dimers of the R and S enanti­omers.

Related literature

For chemi- and bioluminescence of firefly luciferin and related compounds, see: Jung et al. (1975[Jung, J., Chin, C.-A. & Song, P.-S. (1975). J. Am. Chem. Soc. 97, 3949-3954.]); Naumov et al. (2009[Naumov, P., Ozawa, Y., Ohkubo, K. & Fukuzumi, S. (2009). J. Am. Chem. Soc. 131, 11590-11605.]); White et al. (1979[White, E. H., Steinmetz, M. G., Miano, J. D., Wildes, P. D. & Morland, R. (1979). J. Am. Chem. Soc. 101, 3199-3208.]); Branchini et al. (2002[Branchini, B. R., Murtiashaw, M. H., Magyar, R. A., Portier, N. C., Ruggiero, M. C. & Stroh, J. G. (2002). J. Am. Chem. Soc. 124, 2112-2113.]). For structure modifications of firefly luciferin, see: Meroni et al. (2009[Meroni, G., Rajabi, M. & Santaniello, E. (2009). ARKIVOC, i, 265-288.]); McCutcheon et al. (2012[McCutcheon, D. C., Paley, M. A., Steinhardt, R. C. & Prescher, J. A. (2012). J. Am. Chem. Soc. 134, 7604-7607.]); Branchini et al. (2012[Branchini, B. R., Woodroofe, C. C., Meisenheimer, P. L., Klaubert, D. H., Kovic, Y., Rosenberg, J. C., Behney, C. E. & Southworth, T. L. (2012). Biochemistry, 51, 9807-9813.]); Würfel (2012[Würfel, H. (2012). PhD thesis. Friedrich-Schiller-University Jena, Germany.]). Luciferin and related structures are widely used in clinical and biochemical applications, see: Schäffer (1987[Schäffer, J. M. (1987). US Patent 4665022.]); Kricka (1988[Kricka, L. J. (1988). Anal. Biochem. 175, 14-21.]); Josel et al. (1994[Josel, H.-P., Herrmann, R., Klein, C. & Heindl, D. (1994). German Patent DE 4210759.]); Shinde et al. (2006[Shinde, R., Perkins, J. & Contag, C. H. (2006). Biochemistry, 45, 11103-11112.]). All solvents were purified and dried according to Armarego & Chai (2009[Armarego, W. L. & Chai, C. L. (2009). Purification of Laboratory Chemicals, 6th ed. Amsterdam: Elsevier.]).

[Scheme 1]

Experimental

Crystal data
  • C16H20N2O2S2

  • Mr = 336.46

  • Triclinic, [P \overline 1]

  • a = 11.3755 (3) Å

  • b = 11.9028 (3) Å

  • c = 12.5261 (3) Å

  • α = 86.122 (1)°

  • β = 85.949 (1)°

  • γ = 89.206 (1)°

  • V = 1687.86 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 133 K

  • 0.06 × 0.05 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 10948 measured reflections

  • 7580 independent reflections

  • 6827 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.088

  • S = 1.08

  • 7580 reflections

  • 557 parameters

  • All H-atom parameters refined

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H1NA⋯O2B 0.81 (3) 2.15 (3) 2.9429 (19) 168 (2)
N2B—H1NB⋯O2A 0.77 (2) 2.04 (2) 2.802 (2) 173 (2)

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Luciferin, especially the class which is produced by the firefly Photinus pyralis, is of particular interest because of its bioluminescence and chemoluminescence properties (Naumov et al., 2009). Dimethyloxyluciferin, one prominent derivative which is known for its ability to emit visible light in the red region (Branchini et al., 2002), was further investigated in our group focusing on the modification on the 4-position of the thiazoline ring (Würfel, 2012). An extension of the chromophore should give rise to new dimethylluciferin derivatives with altered absorption and emission properties. The nucleophilic attack of isopropylmagnesium bromide with dimethyloxyluciferin should lead to a tertiary alcohol at the 4-position of the thiazoline ring. Subsequent dehydration reaction should form a 2-propylene substructure, thus representing a carbon extended luciferin derivative.

However, the dimethyloxyluciferin derivative did not react in this expected manner. The strong carbon nucleophile exclusively attacked the 2-position of the thiazoline ring leading, after aqueous work-up, to a racemic mixture of R,S-thiazolidines. C8 became an sp3 carbon (C8A—C1A = 1.524 (2) Å and C8B—C1B = 1.520 (2) Å), which results in the loss of the conjugation with the benzothiazole parent moiety. The thiazolidine rings are almost coplanar, with a dihedral angle of 10.32 (4)°, due to a dimer formation of the (R)- and (S)- enantiomers in the asymmetric unit. The dimer structure results from two hydrogen bonds between the amide moieties of the thiazolidine rings [N(A)—H···O(B) = 2.942 (2) Å and N(B)—H···O(A) = 2.802 (2) Å] from the two symmetry-independent molecules A and B. The most noticeable difference between these two molecules is the relative orientation of the benzothiazole moiety due to rotation around the C1—C8 bond. The resulting torsion angles S1—C1—C8—S2 are -19.4 (2)° (molecule A) and 100.6 (1)° (molecule B).

Related literature top

For chemi- and bioluminescence of firefly luciferin and related compounds, see: Jung et al. (1975); Naumov et al. (2009); White et al. (1979); Branchini et al. (2002). For structure modifications of firefly luciferin, see: Meroni et al. (2009); McCutcheon et al. (2012); Branchini et al. (2012); Würfel (2012). Luciferin and related structures are widely used in clinical and biochemical applications, see: Schäffer (1987); Kricka (1988); Josel et al. (1994); Shinde et al. (2006). All solvents were purified and dried according to Armarego & Chai (2009).

Experimental top

All chemicals were synthesized according to given literature or purchased from commercial sources. All solvents were purified and dried according to Armarego & Chai (2009). 215 mg (8.85 mmol) of magnesium turnings in 20 ml of dry diethylether and a catalytic amount of iodine are placed in a 100 ml two-necked round-bottomed flask. 0.9 ml (9.60 mmol) 2-bromopropane was added. After a slight exothermic reaction, the mixture was refluxed for 1 h then cooled to room temperature. To that mixture 1.73 g (5.90 mmol) of 2-(6-methoxybenzothiazol-2-yl)-5,5-dimethylthiazolin-4-one in 20 ml of dry THF was added. The mixture was refluxed for 2 h, cooled to room temperature and hydrolysed with 10 g of ice and 10 ml of saturated NH4Cl solution, then extracted with ethyl acetate (3 × 20 ml). The extract was dried over MgSO4, filtered and distilled off. The remaining solid was purified by crystallization from n-heptane/ethyl acetate, yield: 70%, 1.43 g (4.25 mmol). 2-(6-Methoxybenzothiazol-2-yl)-5,5-dimethylthiazolin-4-one was synthesized from 2-cyano-6-methoxybenzothiazole and ethyl 2-mercapto-2-methylpropanoate according to Würfel (2012).

Light-yellow single crystals were obtained by dissolving the title compound at reflux temperature in n-heptane/ethyl acetate and, after cooling to room temperature, left alone in a closed vessel for several days. Elemental analysis, calculated for C16H20N2O2S2: C 57.11, H 5.99, N 8.33, S 19.06%; found: C 57.25, H 6.06, N 8.46, S 19.14.

Refinement top

All H atoms were located from difference Fourier maps and freely refined.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with symmetry-independent molecules A and B; anisotropic displacement ellipsoids are shown at the 40% probability level.
[Figure 2] Fig. 2. Crystal packing, viewed along a axis, showing hydrogen bonding between molecules A and B drawn as dotted lines.
[Figure 3] Fig. 3. The formation of the title compound.
2-Isopropyl-2-(6-methoxy-1,3-benzothiazol-2-yl)-5,5-dimethyl-1,3-thiazolidin-4-one top
Crystal data top
C16H20N2O2S2V = 1687.86 (7) Å3
Mr = 336.46Z = 4
Triclinic, P1F(000) = 712
a = 11.3755 (3) ÅDx = 1.324 Mg m3
b = 11.9028 (3) ÅMo Kα radiation, λ = 0.71073 Å
c = 12.5261 (3) ŵ = 0.32 mm1
α = 86.122 (1)°T = 133 K
β = 85.949 (1)°Prism, colourless
γ = 89.206 (1)°0.06 × 0.05 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
6827 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 27.5°, θmin = 2.8°
ϕ and ω scansh = 1414
10948 measured reflectionsk = 1515
7580 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.088All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0132P)2 + 1.7538P]
where P = (Fo2 + 2Fc2)/3
7580 reflections(Δ/σ)max = 0.001
557 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C16H20N2O2S2γ = 89.206 (1)°
Mr = 336.46V = 1687.86 (7) Å3
Triclinic, P1Z = 4
a = 11.3755 (3) ÅMo Kα radiation
b = 11.9028 (3) ŵ = 0.32 mm1
c = 12.5261 (3) ÅT = 133 K
α = 86.122 (1)°0.06 × 0.05 × 0.05 mm
β = 85.949 (1)°
Data collection top
Nonius KappaCCD
diffractometer
6827 reflections with I > 2σ(I)
10948 measured reflectionsRint = 0.019
7580 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.088All H-atom parameters refined
S = 1.08Δρmax = 0.37 e Å3
7580 reflectionsΔρmin = 0.28 e Å3
557 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.28415 (4)0.06581 (4)0.60425 (3)0.02114 (10)
S2A0.45070 (4)0.03006 (3)0.78944 (3)0.02050 (10)
O1A0.05418 (13)0.14410 (12)0.34536 (12)0.0325 (3)
O2A0.61551 (12)0.30544 (11)0.70129 (13)0.0343 (3)
N1A0.16890 (13)0.21511 (12)0.71336 (12)0.0214 (3)
N2A0.43175 (13)0.24918 (12)0.76326 (12)0.0195 (3)
H1NA0.406 (2)0.313 (2)0.762 (2)0.040 (7)*
C1A0.26141 (16)0.15101 (14)0.71262 (13)0.0189 (3)
C2A0.15831 (15)0.12492 (14)0.55230 (14)0.0203 (3)
C3A0.10820 (17)0.10210 (15)0.45770 (15)0.0241 (4)
H3A0.1418 (18)0.0513 (17)0.4144 (16)0.020 (5)*
C4A0.00488 (17)0.15792 (15)0.43471 (15)0.0257 (4)
C5A0.04879 (18)0.23308 (17)0.50568 (17)0.0301 (4)
H5A0.123 (2)0.269 (2)0.489 (2)0.043 (7)*
C6A0.00094 (18)0.25527 (16)0.59920 (17)0.0281 (4)
H6A0.038 (2)0.306 (2)0.649 (2)0.041 (7)*
C7A0.10746 (16)0.20125 (15)0.62280 (14)0.0212 (3)
C8A0.35339 (15)0.15453 (14)0.79510 (13)0.0188 (3)
C9A0.54381 (16)0.23130 (15)0.73098 (15)0.0227 (4)
C10A0.58045 (16)0.10721 (14)0.73250 (15)0.0216 (3)
C11A0.0003 (2)0.07124 (18)0.27038 (17)0.0338 (5)
H11C0.010 (2)0.006 (2)0.3025 (19)0.035 (6)*
H11B0.055 (2)0.0699 (19)0.2129 (19)0.036 (6)*
H11A0.076 (2)0.101 (2)0.2387 (19)0.034 (6)*
C12A0.68389 (19)0.08635 (19)0.8030 (2)0.0349 (5)
H12C0.750 (2)0.131 (2)0.773 (2)0.040 (7)*
H12B0.660 (2)0.106 (2)0.877 (2)0.042 (7)*
H12A0.704 (2)0.006 (2)0.804 (2)0.042 (7)*
C13A0.6148 (2)0.07723 (17)0.61714 (17)0.0301 (4)
H13C0.684 (2)0.125 (2)0.5885 (19)0.040 (7)*
H13A0.551 (2)0.094 (2)0.5703 (19)0.035 (6)*
H13B0.633 (2)0.002 (2)0.6156 (19)0.037 (6)*
C14A0.29315 (17)0.16514 (15)0.90837 (14)0.0223 (4)
H14A0.2439 (19)0.2328 (18)0.9028 (17)0.026 (5)*
C15A0.3822 (2)0.18177 (19)0.99156 (16)0.0297 (4)
H15C0.433 (2)0.117 (2)0.9995 (18)0.033 (6)*
H15B0.431 (2)0.249 (2)0.9696 (19)0.039 (7)*
H15A0.342 (2)0.194 (2)1.062 (2)0.038 (6)*
C16A0.2143 (2)0.06453 (18)0.94200 (16)0.0307 (4)
H16C0.177 (2)0.0724 (19)1.0127 (19)0.032 (6)*
H16B0.149 (2)0.059 (2)0.893 (2)0.050 (7)*
H16A0.260 (2)0.005 (2)0.944 (2)0.043 (7)*
S1B0.68977 (4)0.53085 (4)0.91211 (3)0.02025 (10)
S2B0.57063 (4)0.75544 (3)0.70861 (4)0.02149 (10)
O1B0.99279 (11)0.56823 (11)1.20270 (10)0.0247 (3)
O2B0.37416 (11)0.49130 (10)0.75042 (10)0.0225 (3)
N1B0.82852 (13)0.67362 (12)0.80061 (12)0.0206 (3)
N2B0.56709 (13)0.53534 (12)0.71793 (11)0.0173 (3)
H1NB0.5860 (18)0.4740 (19)0.7118 (16)0.019 (5)*
C1B0.73372 (15)0.61588 (14)0.79671 (13)0.0180 (3)
C2B0.81058 (15)0.57803 (14)0.97259 (14)0.0195 (3)
C3B0.84486 (16)0.54766 (15)1.07565 (14)0.0206 (3)
H3B0.7977 (18)0.4988 (18)1.1222 (17)0.023 (5)*
C4B0.94756 (15)0.59370 (15)1.10563 (14)0.0209 (3)
C5B1.01291 (16)0.66994 (15)1.03522 (15)0.0239 (4)
H5B1.083 (2)0.7007 (18)1.0588 (17)0.028 (6)*
C6B0.97773 (16)0.69941 (16)0.93396 (15)0.0243 (4)
H6B1.0225 (18)0.7450 (17)0.8859 (16)0.020 (5)*
C7B0.87480 (15)0.65293 (14)0.90076 (14)0.0191 (3)
C8B0.65620 (15)0.62225 (13)0.70244 (13)0.0173 (3)
C9B0.42712 (16)0.68758 (14)0.73455 (15)0.0226 (4)
C10B0.45328 (15)0.56124 (14)0.73509 (13)0.0183 (3)
C11B0.92381 (18)0.49480 (19)1.27642 (16)0.0289 (4)
H11F0.965 (2)0.4887 (19)1.3430 (19)0.034 (6)*
H11E0.920 (2)0.420 (2)1.2484 (19)0.034 (6)*
H11D0.843 (2)0.528 (2)1.2912 (19)0.039 (6)*
C12B0.3464 (2)0.72068 (19)0.6450 (2)0.0376 (5)
H12F0.272 (2)0.682 (2)0.661 (2)0.047 (7)*
H12E0.329 (2)0.801 (2)0.644 (2)0.044 (7)*
H12D0.384 (2)0.701 (2)0.573 (2)0.046 (7)*
C13B0.3702 (2)0.71541 (18)0.8440 (2)0.0364 (5)
H13F0.295 (2)0.681 (2)0.8564 (19)0.039 (7)*
H13E0.422 (2)0.687 (2)0.903 (2)0.046 (7)*
H13D0.359 (2)0.795 (2)0.844 (2)0.050 (7)*
C14B0.73008 (16)0.61496 (15)0.59462 (14)0.0205 (3)
H14B0.7845 (18)0.6783 (17)0.5920 (16)0.021 (5)*
C15B0.65467 (19)0.62882 (18)0.49827 (16)0.0279 (4)
H15F0.593 (2)0.569 (2)0.5022 (18)0.035 (6)*
H15E0.615 (2)0.702 (2)0.4936 (19)0.035 (6)*
H15D0.704 (2)0.624 (2)0.434 (2)0.038 (6)*
C16B0.79781 (18)0.50310 (17)0.59283 (16)0.0261 (4)
H16F0.746 (2)0.4405 (19)0.5836 (17)0.029 (6)*
H16E0.837 (2)0.4845 (19)0.6607 (19)0.033 (6)*
H16D0.859 (2)0.508 (2)0.534 (2)0.038 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0240 (2)0.0204 (2)0.0200 (2)0.00335 (16)0.00505 (16)0.00566 (16)
S2A0.0250 (2)0.01400 (19)0.0225 (2)0.00315 (16)0.00349 (16)0.00055 (15)
O1A0.0353 (8)0.0318 (7)0.0329 (8)0.0037 (6)0.0180 (6)0.0034 (6)
O2A0.0282 (7)0.0191 (7)0.0545 (10)0.0009 (5)0.0045 (7)0.0028 (6)
N1A0.0248 (8)0.0202 (7)0.0195 (7)0.0025 (6)0.0038 (6)0.0021 (6)
N2A0.0229 (7)0.0121 (7)0.0237 (8)0.0027 (6)0.0033 (6)0.0015 (6)
C1A0.0262 (9)0.0146 (7)0.0161 (8)0.0006 (6)0.0022 (6)0.0005 (6)
C2A0.0220 (8)0.0180 (8)0.0210 (8)0.0013 (6)0.0031 (7)0.0006 (6)
C3A0.0290 (9)0.0201 (8)0.0238 (9)0.0032 (7)0.0055 (7)0.0031 (7)
C4A0.0293 (10)0.0221 (9)0.0266 (9)0.0058 (7)0.0104 (8)0.0007 (7)
C5A0.0262 (10)0.0258 (9)0.0396 (11)0.0020 (8)0.0124 (8)0.0016 (8)
C6A0.0274 (10)0.0247 (9)0.0334 (10)0.0049 (7)0.0081 (8)0.0061 (8)
C7A0.0224 (8)0.0197 (8)0.0218 (8)0.0005 (7)0.0045 (7)0.0008 (7)
C8A0.0239 (8)0.0143 (7)0.0186 (8)0.0020 (6)0.0039 (7)0.0023 (6)
C9A0.0262 (9)0.0173 (8)0.0251 (9)0.0013 (7)0.0042 (7)0.0018 (7)
C10A0.0219 (8)0.0168 (8)0.0260 (9)0.0028 (6)0.0020 (7)0.0009 (7)
C11A0.0453 (13)0.0294 (11)0.0286 (10)0.0082 (9)0.0140 (9)0.0025 (8)
C12A0.0274 (10)0.0323 (11)0.0456 (13)0.0035 (9)0.0117 (9)0.0026 (10)
C13A0.0362 (11)0.0226 (9)0.0306 (10)0.0021 (8)0.0054 (9)0.0031 (8)
C14A0.0285 (9)0.0222 (9)0.0168 (8)0.0050 (7)0.0031 (7)0.0040 (7)
C15A0.0369 (11)0.0333 (11)0.0205 (9)0.0062 (9)0.0077 (8)0.0082 (8)
C16A0.0379 (11)0.0327 (11)0.0208 (9)0.0032 (9)0.0011 (8)0.0000 (8)
S1B0.0208 (2)0.0223 (2)0.0177 (2)0.00328 (16)0.00279 (16)0.00074 (16)
S2B0.0231 (2)0.01373 (19)0.0278 (2)0.00026 (16)0.00344 (17)0.00067 (16)
O1B0.0224 (6)0.0331 (7)0.0195 (6)0.0026 (5)0.0057 (5)0.0036 (5)
O2B0.0198 (6)0.0185 (6)0.0294 (7)0.0011 (5)0.0019 (5)0.0028 (5)
N1B0.0206 (7)0.0194 (7)0.0222 (7)0.0011 (6)0.0041 (6)0.0018 (6)
N2B0.0210 (7)0.0107 (7)0.0202 (7)0.0003 (5)0.0014 (6)0.0015 (5)
C1B0.0199 (8)0.0170 (8)0.0169 (8)0.0014 (6)0.0003 (6)0.0013 (6)
C2B0.0202 (8)0.0187 (8)0.0200 (8)0.0018 (6)0.0013 (6)0.0046 (6)
C3B0.0214 (8)0.0229 (8)0.0177 (8)0.0020 (7)0.0009 (7)0.0032 (7)
C4B0.0213 (8)0.0234 (8)0.0187 (8)0.0063 (7)0.0029 (7)0.0058 (7)
C5B0.0222 (9)0.0232 (9)0.0276 (9)0.0007 (7)0.0065 (7)0.0047 (7)
C6B0.0227 (9)0.0233 (9)0.0267 (9)0.0037 (7)0.0029 (7)0.0008 (7)
C7B0.0199 (8)0.0183 (8)0.0194 (8)0.0020 (6)0.0024 (6)0.0036 (6)
C8B0.0192 (8)0.0147 (7)0.0182 (8)0.0011 (6)0.0031 (6)0.0006 (6)
C9B0.0214 (8)0.0159 (8)0.0308 (10)0.0014 (6)0.0044 (7)0.0010 (7)
C10B0.0218 (8)0.0167 (8)0.0168 (8)0.0004 (6)0.0036 (6)0.0027 (6)
C11B0.0233 (9)0.0436 (12)0.0194 (9)0.0020 (8)0.0027 (7)0.0003 (8)
C12B0.0299 (11)0.0242 (10)0.0591 (15)0.0004 (8)0.0195 (10)0.0114 (10)
C13B0.0382 (12)0.0220 (10)0.0478 (14)0.0031 (9)0.0157 (10)0.0122 (9)
C14B0.0215 (8)0.0215 (8)0.0187 (8)0.0050 (7)0.0010 (7)0.0009 (6)
C15B0.0321 (10)0.0329 (11)0.0189 (9)0.0026 (8)0.0043 (8)0.0002 (8)
C16B0.0259 (9)0.0276 (10)0.0245 (9)0.0017 (8)0.0028 (8)0.0049 (8)
Geometric parameters (Å, º) top
S1A—C2A1.7347 (18)S1B—C2B1.7331 (18)
S1A—C1A1.7513 (17)S1B—C1B1.7544 (17)
S2A—C10A1.8250 (18)S2B—C9B1.8301 (18)
S2A—C8A1.8393 (17)S2B—C8B1.8521 (17)
O1A—C4A1.366 (2)O1B—C4B1.367 (2)
O1A—C11A1.423 (3)O1B—C11B1.428 (2)
O2A—C9A1.231 (2)O2B—C10B1.231 (2)
N1A—C1A1.291 (2)N1B—C1B1.292 (2)
N1A—C7A1.394 (2)N1B—C7B1.400 (2)
N2A—C9A1.329 (2)N2B—C10B1.333 (2)
N2A—C8A1.463 (2)N2B—C8B1.452 (2)
N2A—H1NA0.81 (3)N2B—H1NB0.77 (2)
C1A—C8A1.524 (2)C1B—C8B1.520 (2)
C2A—C3A1.395 (2)C2B—C3B1.398 (2)
C2A—C7A1.401 (2)C2B—C7B1.398 (2)
C3A—C4A1.381 (3)C3B—C4B1.383 (2)
C3A—H3A0.90 (2)C3B—H3B0.94 (2)
C4A—C5A1.407 (3)C4B—C5B1.404 (3)
C5A—C6A1.379 (3)C5B—C6B1.378 (3)
C5A—H5A0.97 (3)C5B—H5B0.95 (2)
C6A—C7A1.404 (3)C6B—C7B1.403 (2)
C6A—H6A0.98 (3)C6B—H6B0.91 (2)
C8A—C14A1.544 (2)C8B—C14B1.546 (2)
C9A—C10A1.528 (2)C9B—C12B1.527 (3)
C10A—C12A1.528 (3)C9B—C10B1.529 (2)
C10A—C13A1.534 (3)C9B—C13B1.529 (3)
C11A—H11C0.98 (2)C11B—H11F0.99 (2)
C11A—H11B0.98 (2)C11B—H11E0.99 (2)
C11A—H11A0.99 (2)C11B—H11D1.00 (3)
C12A—H12C0.96 (3)C12B—H12F0.97 (3)
C12A—H12B0.99 (3)C12B—H12E0.97 (3)
C12A—H12A0.98 (3)C12B—H12D1.01 (3)
C13A—H13C1.01 (2)C13B—H13F0.96 (3)
C13A—H13A0.98 (2)C13B—H13E1.01 (3)
C13A—H13B0.96 (2)C13B—H13D0.95 (3)
C14A—C16A1.525 (3)C14B—C15B1.528 (3)
C14A—C15A1.528 (3)C14B—C16B1.530 (3)
C14A—H14A0.98 (2)C14B—H14B0.98 (2)
C15A—H15C0.96 (2)C15B—H15F1.00 (2)
C15A—H15B1.00 (3)C15B—H15E0.97 (2)
C15A—H15A0.98 (3)C15B—H15D0.95 (3)
C16A—H16C0.96 (2)C16B—H16F0.97 (2)
C16A—H16B1.00 (3)C16B—H16E1.00 (2)
C16A—H16A0.97 (3)C16B—H16D0.98 (2)
C2A—S1A—C1A88.64 (8)C2B—S1B—C1B88.74 (8)
C10A—S2A—C8A95.33 (8)C9B—S2B—C8B95.21 (8)
C4A—O1A—C11A116.31 (16)C4B—O1B—C11B116.02 (14)
C1A—N1A—C7A110.12 (15)C1B—N1B—C7B109.91 (15)
C9A—N2A—C8A120.58 (14)C10B—N2B—C8B121.29 (14)
C9A—N2A—H1NA120.0 (18)C10B—N2B—H1NB119.9 (16)
C8A—N2A—H1NA119.4 (18)C8B—N2B—H1NB118.7 (16)
N1A—C1A—C8A122.99 (15)N1B—C1B—C8B124.46 (15)
N1A—C1A—S1A116.55 (13)N1B—C1B—S1B116.50 (13)
C8A—C1A—S1A120.26 (12)C8B—C1B—S1B118.95 (12)
C3A—C2A—C7A122.32 (17)C3B—C2B—C7B122.71 (16)
C3A—C2A—S1A128.22 (14)C3B—C2B—S1B127.77 (14)
C7A—C2A—S1A109.43 (13)C7B—C2B—S1B109.50 (13)
C4A—C3A—C2A117.58 (18)C4B—C3B—C2B117.57 (17)
C4A—C3A—H3A121.8 (13)C4B—C3B—H3B122.5 (13)
C2A—C3A—H3A120.6 (13)C2B—C3B—H3B119.9 (13)
O1A—C4A—C3A124.15 (18)O1B—C4B—C3B123.43 (16)
O1A—C4A—C5A114.95 (17)O1B—C4B—C5B115.85 (16)
C3A—C4A—C5A120.89 (17)C3B—C4B—C5B120.72 (16)
C6A—C5A—C4A121.33 (18)C6B—C5B—C4B121.03 (17)
C6A—C5A—H5A119.7 (15)C6B—C5B—H5B120.5 (13)
C4A—C5A—H5A119.0 (15)C4B—C5B—H5B118.5 (13)
C5A—C6A—C7A118.62 (18)C5B—C6B—C7B119.55 (17)
C5A—C6A—H6A120.5 (15)C5B—C6B—H6B121.6 (13)
C7A—C6A—H6A120.9 (15)C7B—C6B—H6B118.7 (13)
N1A—C7A—C2A115.21 (15)C2B—C7B—N1B115.35 (15)
N1A—C7A—C6A125.55 (17)C2B—C7B—C6B118.41 (16)
C2A—C7A—C6A119.23 (16)N1B—C7B—C6B126.25 (16)
N2A—C8A—C1A108.24 (13)N2B—C8B—C1B109.97 (13)
N2A—C8A—C14A111.57 (14)N2B—C8B—C14B111.78 (13)
C1A—C8A—C14A110.48 (14)C1B—C8B—C14B111.54 (14)
N2A—C8A—S2A104.11 (11)N2B—C8B—S2B103.99 (11)
C1A—C8A—S2A110.32 (11)C1B—C8B—S2B106.87 (11)
C14A—C8A—S2A111.89 (12)C14B—C8B—S2B112.33 (11)
O2A—C9A—N2A125.08 (17)C12B—C9B—C10B109.06 (15)
O2A—C9A—C10A120.46 (17)C12B—C9B—C13B111.26 (19)
N2A—C9A—C10A114.46 (15)C10B—C9B—C13B109.43 (15)
C12A—C10A—C9A109.71 (16)C12B—C9B—S2B110.87 (14)
C12A—C10A—C13A110.66 (17)C10B—C9B—S2B105.22 (12)
C9A—C10A—C13A108.76 (15)C13B—C9B—S2B110.80 (14)
C12A—C10A—S2A110.76 (14)O2B—C10B—N2B124.19 (16)
C9A—C10A—S2A105.09 (12)O2B—C10B—C9B121.55 (16)
C13A—C10A—S2A111.68 (13)N2B—C10B—C9B114.26 (14)
O1A—C11A—H11C111.9 (14)O1B—C11B—H11F106.0 (13)
O1A—C11A—H11B105.3 (14)O1B—C11B—H11E110.1 (14)
H11C—C11A—H11B109.3 (19)H11F—C11B—H11E109.2 (19)
O1A—C11A—H11A111.7 (14)O1B—C11B—H11D110.5 (14)
H11C—C11A—H11A110.0 (19)H11F—C11B—H11D109.6 (19)
H11B—C11A—H11A108.4 (19)H11E—C11B—H11D111.3 (19)
C10A—C12A—H12C109.0 (15)C9B—C12B—H12F108.6 (16)
C10A—C12A—H12B109.2 (15)C9B—C12B—H12E109.7 (15)
H12C—C12A—H12B111 (2)H12F—C12B—H12E107 (2)
C10A—C12A—H12A108.0 (15)C9B—C12B—H12D110.6 (15)
H12C—C12A—H12A111 (2)H12F—C12B—H12D111 (2)
H12B—C12A—H12A109 (2)H12E—C12B—H12D110 (2)
C10A—C13A—H13C108.3 (14)C9B—C13B—H13F110.3 (15)
C10A—C13A—H13A111.6 (14)C9B—C13B—H13E109.8 (15)
H13C—C13A—H13A107.6 (19)H13F—C13B—H13E109 (2)
C10A—C13A—H13B110.1 (14)C9B—C13B—H13D108.6 (16)
H13C—C13A—H13B112 (2)H13F—C13B—H13D108 (2)
H13A—C13A—H13B107.3 (19)H13E—C13B—H13D111 (2)
C16A—C14A—C15A111.16 (16)C15B—C14B—C16B109.80 (15)
C16A—C14A—C8A111.16 (15)C15B—C14B—C8B112.39 (15)
C15A—C14A—C8A112.13 (16)C16B—C14B—C8B110.38 (14)
C16A—C14A—H14A108.6 (13)C15B—C14B—H14B109.0 (12)
C15A—C14A—H14A108.0 (13)C16B—C14B—H14B110.8 (12)
C8A—C14A—H14A105.5 (13)C8B—C14B—H14B104.4 (12)
C14A—C15A—H15C110.8 (14)C14B—C15B—H15F110.9 (13)
C14A—C15A—H15B110.2 (14)C14B—C15B—H15E112.0 (14)
H15C—C15A—H15B109 (2)H15F—C15B—H15E108.2 (19)
C14A—C15A—H15A111.0 (14)C14B—C15B—H15D109.5 (15)
H15C—C15A—H15A108.0 (19)H15F—C15B—H15D109.4 (19)
H15B—C15A—H15A107.7 (19)H15E—C15B—H15D107 (2)
C14A—C16A—H16C110.1 (13)C14B—C16B—H16F111.8 (13)
C14A—C16A—H16B111.6 (15)C14B—C16B—H16E112.2 (13)
H16C—C16A—H16B107 (2)H16F—C16B—H16E106.6 (18)
C14A—C16A—H16A110.7 (15)C14B—C16B—H16D109.0 (14)
H16C—C16A—H16A108 (2)H16F—C16B—H16D109.1 (19)
H16B—C16A—H16A110 (2)H16E—C16B—H16D108.0 (19)
S1A—C1A—C8A—S2A19.39 (17)S1B—C1B—C8B—S2B100.58 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H1NA···O2B0.81 (3)2.15 (3)2.9429 (19)168 (2)
N2B—H1NB···O2A0.77 (2)2.04 (2)2.802 (2)173 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H1NA···O2B0.81 (3)2.15 (3)2.9429 (19)168 (2)
N2B—H1NB···O2A0.77 (2)2.04 (2)2.802 (2)173 (2)
 

Acknowledgements

The authors thank Roche Diagnostics GmbH, Penzberg, for financial support.

References

First citationArmarego, W. L. & Chai, C. L. (2009). Purification of Laboratory Chemicals, 6th ed. Amsterdam: Elsevier.  Google Scholar
First citationBranchini, B. R., Murtiashaw, M. H., Magyar, R. A., Portier, N. C., Ruggiero, M. C. & Stroh, J. G. (2002). J. Am. Chem. Soc. 124, 2112–2113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBranchini, B. R., Woodroofe, C. C., Meisenheimer, P. L., Klaubert, D. H., Kovic, Y., Rosenberg, J. C., Behney, C. E. & Southworth, T. L. (2012). Biochemistry, 51, 9807–9813.  Web of Science PubMed Google Scholar
First citationJosel, H.-P., Herrmann, R., Klein, C. & Heindl, D. (1994). German Patent DE 4210759.  Google Scholar
First citationJung, J., Chin, C.-A. & Song, P.-S. (1975). J. Am. Chem. Soc. 97, 3949–3954.  CrossRef Web of Science Google Scholar
First citationKricka, L. J. (1988). Anal. Biochem. 175, 14–21.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMcCutcheon, D. C., Paley, M. A., Steinhardt, R. C. & Prescher, J. A. (2012). J. Am. Chem. Soc. 134, 7604–7607.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMeroni, G., Rajabi, M. & Santaniello, E. (2009). ARKIVOC, i, 265–288.  CrossRef Google Scholar
First citationNaumov, P., Ozawa, Y., Ohkubo, K. & Fukuzumi, S. (2009). J. Am. Chem. Soc. 131, 11590–11605.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSchäffer, J. M. (1987). US Patent 4665022.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShinde, R., Perkins, J. & Contag, C. H. (2006). Biochemistry, 45, 11103–11112.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWhite, E. H., Steinmetz, M. G., Miano, J. D., Wildes, P. D. & Morland, R. (1979). J. Am. Chem. Soc. 101, 3199–3208.  Google Scholar
First citationWürfel, H. (2012). PhD thesis. Friedrich-Schiller-University Jena, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds