organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-Bromo­methyl-3-(o-tol­yl)acrylo­nitrile

aDepartment of Physics, Velammal Institute of Technology, Panchetty, Chennai 601 204, India, bDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, cDepartment of Organic Chemistry, University of Madras, Guindy campus, Chennai 600 025, India, dDepartment of Physics & Nano Technology, SRM University, SRM Nagar, Kattankulathur, Kancheepuram Dist, Chennai 603 203 Tamil Nadu, India, and eDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India
*Correspondence e-mail: phdguna@gmail.com, crystallography2010@gmail.com

(Received 3 July 2013; accepted 28 July 2013; online 3 August 2013)

The title compound C11H10BrN, has an E conformation at the C=C bond of the acrylo­nitrile unit. The vinyl group makes a dihedral angle of 44.53 (12)° with the benzene ring. In the crystal, weak C—H⋯π inter­actions involving the benzene ring are observed.

Related literature

For the biological activity of cyano­acrylates, see: Zhang et al. (2009[Zhang, D., Zhang, X. & Guo, L. (2009). Acta Cryst. E65, o90.]); Obniska et al. (2005[Obniska, J., Jurczyk, S., Zejc, A., Kaminski, K., Tatarczynska, E. & Stachowicz, K. (2005). Pharmacol. Rep. 57, 170-175.]); For related structures, see: Ye et al. (2009[Ye, Y., Shen, W.-L. & Wei, X.-W. (2009). Acta Cryst. E65, o2636.]); Suresh et al. (2012[Suresh, G., Sabari, V., Srinivasan, J., Mannickam, B. & Aravindhan, S. (2012). Acta Cryst. E68, o570.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10BrN

  • Mr = 236.11

  • Monoclinic, P 21 /n

  • a = 7.5473 (8) Å

  • b = 11.7362 (10) Å

  • c = 11.5228 (11) Å

  • β = 96.436 (3)°

  • V = 1014.22 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.00 mm−1

  • T = 295 K

  • 0.20 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.435, Tmax = 0.535

  • 8718 measured reflections

  • 1960 independent reflections

  • 1261 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.085

  • S = 1.00

  • 1960 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cg1i 0.93 2.97 3.654 (7) 131
C11—H11BCg1ii 0.96 2.86 3.699 (1) 146
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Cyanoacrylates and its derivatives have been widely used as agrochemicals (Zhang et al., 2009) and are an important intermediate in drug synthesis (Obniska et al., 2005).

The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structure (Ye et al., 2009; Suresh et al., 2012). The vinyl group makes a dihedral angle of 44.53 (12) ° with the benzene ring. The acrylonitrile (C7–C8) and cyano (C9–N1) groups deviate from the mean plane of the benzene (C1–C6) ring.

The crystal packing is controlled by weak C—H···π [C7—H7···Cg1(1 - x, -y, 1 - z) distance of 3.654 (7) Å, C11—H11B···Cg1(2 - x, -y, 1 - z) distance of 3.699 (1) Å, (Cg1 is the centroid of the ring defined by the atoms C1—C6)] interactions.

Related literature top

For the biological activity of cyanoacrylates, see: Zhang et al. (2009); Obniska et al. (2005); For related structures, see: Ye et al. (2009); Suresh et al. (2012)

Experimental top

To a stirred solution of 2-[hydroxy(o-tolyl)methyl]acrylonitrile (1 equivalent) in dichloromethane (DCM) was added a 48% hydrobromic acid (2 equivalent) solution and then a concentrated sulfuric acid solution (catalytic amount) at 273 K. After stirring overnight at room temperature, the mixture was diluted with DCM and water. The aqueous phase was extracted twice with DCM. The combined organic phase was washed twice with water an then dried with sodiumsulfate. Removal of the solvent led to the crude product which was purified through a pad of silica gel (100–200 mesh) using ethylacetate and hexanes (1:9) as solvents. The pure title compound was obtained as a colorless solid (yield 90%; m.p. 383-387 K).

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2 and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing diagram showing C-H···π interactions as dashed lines.
(E)-2-Bromomethyl-3-(o-tolyl)acrylonitrile top
Crystal data top
C11H10BrNF(000) = 472
Mr = 236.11Dx = 1.546 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1980 reflections
a = 7.5473 (8) Åθ = 2.5–25.8°
b = 11.7362 (10) ŵ = 4.00 mm1
c = 11.5228 (11) ÅT = 295 K
β = 96.436 (3)°Block, colourless
V = 1014.22 (17) Å30.20 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1960 independent reflections
Radiation source: fine-focus sealed tube1261 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 0 pixels mm-1θmax = 25.9°, θmin = 2.5°
ω and ϕ scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1413
Tmin = 0.435, Tmax = 0.535l = 1414
8718 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.036P)2 + 0.5483P]
where P = (Fo2 + 2Fc2)/3
1960 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C11H10BrNV = 1014.22 (17) Å3
Mr = 236.11Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5473 (8) ŵ = 4.00 mm1
b = 11.7362 (10) ÅT = 295 K
c = 11.5228 (11) Å0.20 × 0.20 × 0.15 mm
β = 96.436 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1960 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1261 reflections with I > 2σ(I)
Tmin = 0.435, Tmax = 0.535Rint = 0.034
8718 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.00Δρmax = 0.46 e Å3
1960 reflectionsΔρmin = 0.26 e Å3
119 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7824 (4)0.0112 (3)0.5604 (3)0.0451 (8)
C20.8374 (5)0.0182 (4)0.6742 (3)0.0587 (10)
H20.88860.03720.72520.070*
C30.8186 (5)0.1269 (4)0.7146 (3)0.0702 (12)
H30.85630.14430.79220.084*
C40.7448 (5)0.2096 (4)0.6414 (3)0.0634 (11)
H40.73070.28310.66910.076*
C50.6911 (5)0.1840 (3)0.5260 (3)0.0508 (9)
H50.64170.24060.47590.061*
C60.7101 (4)0.0752 (3)0.4843 (3)0.0398 (8)
C70.6525 (4)0.0464 (3)0.3617 (3)0.0411 (7)
H70.59360.02270.34800.049*
C80.6760 (4)0.1091 (3)0.2682 (2)0.0410 (8)
C90.7740 (5)0.2128 (3)0.2782 (3)0.0496 (9)
C100.6063 (5)0.0732 (3)0.1480 (3)0.0530 (9)
H10A0.53120.13310.11120.064*
H10B0.53360.00550.15210.064*
C110.8037 (5)0.1309 (3)0.5196 (3)0.0582 (9)
H11A0.85500.17670.58380.087*
H11B0.88070.13160.45870.087*
H11C0.68920.16110.49030.087*
N10.8572 (5)0.2944 (3)0.2831 (3)0.0750 (10)
Br10.79897 (5)0.04122 (4)0.05323 (3)0.07015 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0373 (19)0.053 (2)0.0457 (18)0.0111 (16)0.0080 (14)0.0050 (16)
C20.057 (2)0.076 (3)0.0429 (19)0.011 (2)0.0049 (17)0.0097 (18)
C30.071 (3)0.101 (4)0.039 (2)0.023 (3)0.0111 (19)0.011 (2)
C40.069 (3)0.069 (3)0.057 (2)0.013 (2)0.026 (2)0.022 (2)
C50.053 (2)0.050 (2)0.052 (2)0.0022 (17)0.0165 (16)0.0044 (16)
C60.0321 (17)0.049 (2)0.0398 (16)0.0060 (14)0.0106 (14)0.0021 (14)
C70.0353 (17)0.043 (2)0.0452 (17)0.0012 (15)0.0058 (14)0.0036 (15)
C80.0381 (18)0.043 (2)0.0412 (17)0.0057 (16)0.0041 (14)0.0000 (15)
C90.062 (2)0.048 (2)0.0392 (18)0.005 (2)0.0082 (16)0.0103 (16)
C100.051 (2)0.062 (2)0.0444 (18)0.0072 (17)0.0035 (15)0.0007 (15)
C110.055 (2)0.053 (2)0.065 (2)0.0032 (18)0.0013 (18)0.0105 (18)
N10.099 (3)0.059 (2)0.068 (2)0.011 (2)0.0173 (18)0.0085 (17)
Br10.0798 (3)0.0886 (4)0.0435 (2)0.0105 (2)0.01345 (18)0.00341 (19)
Geometric parameters (Å, º) top
C1—C21.374 (4)C7—C81.334 (4)
C1—C61.409 (4)C7—H70.9300
C1—C111.495 (5)C8—C91.422 (5)
C2—C31.371 (6)C8—C101.486 (4)
C2—H20.9300C9—N11.143 (4)
C3—C41.364 (6)C10—Br11.950 (3)
C3—H30.9300C10—H10A0.9700
C4—C51.379 (5)C10—H10B0.9700
C4—H40.9300C11—H11A0.9600
C5—C61.378 (4)C11—H11B0.9600
C5—H50.9300C11—H11C0.9600
C6—C71.470 (4)
C2—C1—C6117.9 (3)C8—C7—H7116.6
C2—C1—C11120.2 (3)C6—C7—H7116.6
C6—C1—C11121.8 (3)C7—C8—C9121.4 (3)
C3—C2—C1121.7 (4)C7—C8—C10122.1 (3)
C3—C2—H2119.2C9—C8—C10116.4 (3)
C1—C2—H2119.2N1—C9—C8177.2 (4)
C4—C3—C2120.2 (3)C8—C10—Br1111.6 (2)
C4—C3—H3119.9C8—C10—H10A109.3
C2—C3—H3119.9Br1—C10—H10A109.3
C3—C4—C5119.8 (4)C8—C10—H10B109.3
C3—C4—H4120.1Br1—C10—H10B109.3
C5—C4—H4120.1H10A—C10—H10B108.0
C6—C5—C4120.5 (3)C1—C11—H11A109.5
C6—C5—H5119.8C1—C11—H11B109.5
C4—C5—H5119.8H11A—C11—H11B109.5
C5—C6—C1119.9 (3)C1—C11—H11C109.5
C5—C6—C7121.1 (3)H11A—C11—H11C109.5
C1—C6—C7119.0 (3)H11B—C11—H11C109.5
C8—C7—C6126.7 (3)
C6—C1—C2—C31.8 (5)C2—C1—C6—C7179.2 (3)
C11—C1—C2—C3179.6 (3)C11—C1—C6—C70.6 (4)
C1—C2—C3—C40.4 (5)C5—C6—C7—C841.9 (5)
C2—C3—C4—C50.9 (5)C1—C6—C7—C8139.4 (3)
C3—C4—C5—C60.5 (5)C6—C7—C8—C93.9 (5)
C4—C5—C6—C11.0 (5)C6—C7—C8—C10177.8 (3)
C4—C5—C6—C7179.6 (3)C7—C8—C10—Br1114.5 (3)
C2—C1—C6—C52.1 (4)C9—C8—C10—Br163.9 (3)
C11—C1—C6—C5179.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring
D—H···AD—HH···AD···AD—H···A
C7—H7···Cg1i0.932.973.654 (7)131
C11—H11B···Cg1ii0.962.863.699 (1)146
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring
D—H···AD—HH···AD···AD—H···A
C7—H7···Cg1i0.932.973.654 (7)131
C11—H11B···Cg1ii0.962.863.699 (1)146
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1.
 

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationObniska, J., Jurczyk, S., Zejc, A., Kaminski, K., Tatarczynska, E. & Stachowicz, K. (2005). Pharmacol. Rep. 57, 170–175.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh, G., Sabari, V., Srinivasan, J., Mannickam, B. & Aravindhan, S. (2012). Acta Cryst. E68, o570.  CSD CrossRef IUCr Journals Google Scholar
First citationYe, Y., Shen, W.-L. & Wei, X.-W. (2009). Acta Cryst. E65, o2636.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, D., Zhang, X. & Guo, L. (2009). Acta Cryst. E65, o90.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds