organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-(1,1-Di­cyclo­hexyl-3-phenyl­all­yl)-5,5-di­methyl-1,3,2-dioxaborinane

aDepartment of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, and bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales
*Correspondence e-mail: gelhiti@ksu.edu.sa, kariukib@cardiff.ac.uk

(Received 29 July 2013; accepted 3 August 2013; online 10 August 2013)

The crystal structure of the title compound, C26H39BO2, which contains no strong hydrogen bond donors, displays only long C—H⋯O contacts between inversion-related pairs of mol­ecules. The structure contains layers rich in oxygen and boron parallel to the ac plane. The dioxaborinane ring adopts an envelope conformation with the C atom attached to the two methyl groups as the flap .

Related literature

For the synthesis and applications of allyl­boronic esters, see: Lombardo et al. (2002[Lombardo, M., Morganti, S., Tozzi, M. & Trombini, C. (2002). Eur. J. Org. Chem. pp. 2823-2830.]); Carosi & Hall (2007[Carosi, L. & Hall, D. G. (2007). Angew. Chem. Int. Ed. 46, 5913-5915.]); Althaus et al. (2010[Althaus, M., Mahmood, A., Suárez, J. R., Thomas, S. P. & Aggarwal, V. K. (2010). J. Am. Chem. Soc. 132, 4025-4028.]); Fandrick et al. (2010[Fandrick, K. R., Fandrick, D. R., Gao, J. J., Reeves, J. T., Tan, Z., Li, W., Song, J. J., Lu, B., Yee, N. K. & Senanayake, C. H. (2010). Org. Lett. 12, 3748-3751.]); Clary et al. (2011[Clary, J. W., Rettenmaier, T. J., Snelling, R., Bryks, W., Banwell, J., Wipke, W. T. & Singaram, B. (2011). J. Org. Chem. 76, 9602-9610.]); Hesse et al. (2012[Hesse, M. J., Butts, C. P., Willis, C. L. & Aggarwal, V. K. (2012). Angew. Chem. Int. Ed. 51, 12444-12448.]); Incerti-Pradillos et al. (2013[Incerti-Pradillos, C. A., Kabeshov, M. A. & Malkov, A. V. (2013). Angew. Chem. Int. Ed. 52, 5338-5341.]). For the X-ray structure of a boronic ester, see: Sopková-de Oliveira Santos et al. (2003[Sopková-de Oliveira Santos, J., Lancelot, J.-C., Bouillon, A. & Rault, S. (2003). Acta Cryst. C59, o111-o113.]).

[Scheme 1]

Experimental

Crystal data
  • C26H39BO2

  • Mr = 394.38

  • Triclinic, [P \overline 1]

  • a = 9.4967 (3) Å

  • b = 11.2837 (2) Å

  • c = 12.0297 (4) Å

  • α = 109.897 (2)°

  • β = 96.388 (2)°

  • γ = 102.048 (2)°

  • V = 1161.90 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 150 K

  • 0.38 × 0.30 × 0.28 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.975, Tmax = 0.981

  • 8277 measured reflections

  • 5287 independent reflections

  • 4303 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.128

  • S = 1.03

  • 5287 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22B⋯O2i 0.99 2.69 3.5773 (18) 150
Symmetry code: (i) -x+1, -y, -z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994)[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP99 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Supporting information


Comment top

The title compound I, a useful synthetic intermediate, was synthesized by the reaction of (E)-dicyclohexylstyrylborane with the anion of dichloromethyl methyl ether followed by esterification with 2,2-dimethyl-1,3-propanediol. Allylboronic esters have been synthesized from the reaction of lithiated carbamates with vinylboranes [Althaus et al. (2010)], and from the reaction of primary allyl halides with pinacolborane and magnesium [Incerti-Pradillos et al. (2013), Clary et al. (2011)]. Allylboronic esters are important synthetic intermediates, which have been shown to react with aldehydes to give homoallylic alcohols [Lombardo et al. (2002)], with the control of the newly-generated stereogenic centre possible through use of a chiral catalyst [Carosi et al. (2007)]. Allylboronic esters take part in a zinc alkoxide catalysed reaction with ketones to give the corresponding homoallylic alcohol products [Fandrick et al. (2010)], and also take part in a proto-deboronation reaction which has been used to synthesize the pheromone of the Californian red scale beetle [Hesse et al. (2012)]. For the X-ray structure of a boronic ester, see: Sopková-de Oliveira Santos et al. (2003).

In the molecule (Figure 1), the two cyclohexyl groups assume a chair conformation and an envelope conformation is observed for the dioxaborinane ring. The phenylallyl group is not planar as the plane through the double bond makes an angle of 20.84 ° with the phenyl group. There are no strong hydrogen bond donors in the structure. Long contacts of C—H···O type occur between pairs of molecules to form loosely bound dimers (Figure 2). The dimers are stacked along the a-axis to form a structure with layers rich in oxygen and boron parallel to the ac plane (Figure 3).

Related literature top

For the synthesis and applications of allylboronic esters, see: Lombardo et al. (2002); Carosi & Hall (2007); Althaus et al. (2010); Fandrick et al. (2010); Clary et al. (2011); Hesse et al. (2012); Incerti-Pradillos et al. (2013). For the X-ray structure of a boronic ester, see: Sopková-de Oliveira Santos et al. (2003).

Refinement top

H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 times Ueq for the atom they are bonded to except for the methyl groups where 1.5 times Ueq was used with free rotation about the C—C bond. Of the low angle reflections not included in the refinement only (0 0 1) and (0 1 0) were omitted due to low intensities consistent with being obscured by the beamstop. The rest were eliminated automatically during data processing possibly as overloads.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP99 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Figures top
[Figure 1] Fig. 1. A molecule showing atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A pair of molecules showing C—H···O interactions as dotted lines.
[Figure 3] Fig. 3. Molecular packing in the crystal structure showing oxygen and boron rich layers.
(E)-2-(1,1-Dicyclohexyl-3-phenylallyl)-5,5-dimethyl-1,3,2-dioxaborinane top
Crystal data top
C26H39BO2Z = 2
Mr = 394.38F(000) = 432
Triclinic, P1Dx = 1.127 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4967 (3) ÅCell parameters from 4303 reflections
b = 11.2837 (2) Åθ = 2.2–27.5°
c = 12.0297 (4) ŵ = 0.07 mm1
α = 109.897 (2)°T = 150 K
β = 96.388 (2)°Block, colourless
γ = 102.048 (2)°0.38 × 0.30 × 0.28 mm
V = 1161.90 (6) Å3
Data collection top
Nonius KappaCCD
diffractometer
5287 independent reflections
Radiation source: fine-focus sealed tube4303 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
CCD slices, ω and phi scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1212
Tmin = 0.975, Tmax = 0.981k = 1414
8277 measured reflectionsl = 1512
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.4651P]
where P = (Fo2 + 2Fc2)/3
5287 reflections(Δ/σ)max = 0.004
264 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C26H39BO2γ = 102.048 (2)°
Mr = 394.38V = 1161.90 (6) Å3
Triclinic, P1Z = 2
a = 9.4967 (3) ÅMo Kα radiation
b = 11.2837 (2) ŵ = 0.07 mm1
c = 12.0297 (4) ÅT = 150 K
α = 109.897 (2)°0.38 × 0.30 × 0.28 mm
β = 96.388 (2)°
Data collection top
Nonius KappaCCD
diffractometer
5287 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
4303 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.981Rint = 0.027
8277 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.03Δρmax = 0.32 e Å3
5287 reflectionsΔρmin = 0.20 e Å3
264 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.24096 (15)0.23892 (13)0.62817 (11)0.0235 (3)
C20.22913 (18)0.35166 (15)0.71836 (13)0.0348 (3)
H20.28280.43490.72320.042*
C30.14007 (19)0.34351 (17)0.80085 (14)0.0411 (4)
H30.13190.42110.86070.049*
C40.06330 (17)0.22337 (17)0.79648 (14)0.0382 (4)
H40.00290.21790.85340.046*
C50.07497 (17)0.11101 (16)0.70869 (14)0.0348 (3)
H50.02280.02800.70550.042*
C60.16250 (16)0.11876 (13)0.62506 (13)0.0281 (3)
H60.16890.04070.56480.034*
C70.33581 (15)0.25145 (13)0.54118 (12)0.0255 (3)
H70.40980.33120.56440.031*
C80.32693 (14)0.16134 (12)0.43362 (11)0.0221 (3)
H80.25300.08180.41170.027*
C90.42193 (14)0.17080 (12)0.34118 (11)0.0205 (3)
C100.58492 (14)0.24810 (12)0.40612 (11)0.0218 (3)
H100.58130.32930.47250.026*
C110.65750 (15)0.16852 (13)0.46484 (12)0.0260 (3)
H11A0.59780.14660.52100.031*
H11B0.65890.08560.40140.031*
C120.81407 (16)0.24166 (14)0.53369 (13)0.0330 (3)
H12A0.81210.31950.60310.040*
H12B0.85760.18440.56550.040*
C130.90896 (17)0.28434 (15)0.45299 (15)0.0380 (4)
H13A0.92000.20640.38830.046*
H13B1.00790.33640.50100.046*
C140.83863 (17)0.36592 (15)0.39717 (15)0.0361 (4)
H14A0.89960.39080.34300.043*
H14B0.83490.44710.46180.043*
C150.68323 (15)0.29066 (13)0.32573 (13)0.0283 (3)
H15A0.68750.21250.25770.034*
H15B0.64000.34660.29180.034*
C160.35441 (15)0.23557 (12)0.25946 (12)0.0229 (3)
H160.41520.23310.19630.027*
C170.19670 (16)0.16006 (14)0.19300 (13)0.0309 (3)
H17A0.19280.06710.15000.037*
H17B0.13150.16450.25220.037*
C180.14178 (19)0.21631 (17)0.10238 (15)0.0404 (4)
H18A0.20110.20420.03870.048*
H18B0.03840.16830.06350.048*
C190.1523 (2)0.36161 (18)0.16395 (16)0.0436 (4)
H19A0.12550.39700.10210.052*
H19B0.08140.37260.21870.052*
C200.30661 (19)0.43826 (15)0.23583 (14)0.0364 (4)
H20A0.30730.53010.28040.044*
H20B0.37540.43790.17970.044*
C210.35828 (17)0.37906 (13)0.32525 (13)0.0287 (3)
H21A0.45970.42900.36890.034*
H21B0.29400.38550.38520.034*
C220.51831 (16)0.10974 (13)0.09454 (13)0.0290 (3)
H22A0.61310.11460.13380.035*
H22B0.52590.11580.01150.035*
C230.39668 (15)0.22485 (12)0.08888 (12)0.0256 (3)
C240.37886 (18)0.20513 (13)0.21769 (12)0.0301 (3)
H24A0.29150.27200.21580.036*
H24B0.46590.21830.26070.036*
C250.25412 (17)0.23168 (15)0.01216 (14)0.0363 (4)
H25A0.17680.30600.00920.055*
H25B0.26880.24270.06970.055*
H25C0.22500.15070.04770.055*
C260.44291 (19)0.35104 (14)0.03502 (14)0.0373 (4)
H26A0.53750.34380.08220.056*
H26B0.45240.36560.04860.056*
H26C0.36850.42460.03690.056*
B10.42494 (16)0.02685 (14)0.25703 (13)0.0210 (3)
O10.36243 (11)0.07729 (8)0.28350 (8)0.0261 (2)
O20.49222 (11)0.01427 (9)0.16035 (8)0.0273 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0250 (7)0.0294 (6)0.0191 (6)0.0096 (5)0.0060 (5)0.0110 (5)
C20.0404 (9)0.0318 (7)0.0276 (7)0.0065 (6)0.0118 (6)0.0056 (6)
C30.0444 (9)0.0484 (9)0.0257 (8)0.0151 (8)0.0147 (7)0.0040 (7)
C40.0306 (8)0.0644 (10)0.0285 (8)0.0168 (7)0.0142 (6)0.0232 (7)
C50.0303 (8)0.0443 (8)0.0394 (8)0.0094 (6)0.0119 (6)0.0263 (7)
C60.0299 (7)0.0298 (7)0.0296 (7)0.0115 (6)0.0099 (6)0.0138 (6)
C70.0291 (7)0.0248 (6)0.0240 (7)0.0063 (5)0.0094 (5)0.0102 (5)
C80.0238 (7)0.0240 (6)0.0219 (6)0.0079 (5)0.0073 (5)0.0108 (5)
C90.0243 (6)0.0216 (6)0.0188 (6)0.0083 (5)0.0072 (5)0.0092 (5)
C100.0229 (6)0.0225 (6)0.0210 (6)0.0072 (5)0.0066 (5)0.0081 (5)
C110.0286 (7)0.0282 (6)0.0230 (7)0.0092 (5)0.0049 (5)0.0106 (5)
C120.0309 (8)0.0338 (7)0.0318 (8)0.0121 (6)0.0013 (6)0.0085 (6)
C130.0264 (8)0.0372 (8)0.0450 (9)0.0078 (6)0.0061 (7)0.0093 (7)
C140.0276 (8)0.0352 (8)0.0442 (9)0.0035 (6)0.0120 (7)0.0145 (7)
C150.0285 (7)0.0301 (7)0.0295 (7)0.0067 (6)0.0111 (6)0.0140 (6)
C160.0265 (7)0.0262 (6)0.0219 (6)0.0114 (5)0.0088 (5)0.0123 (5)
C170.0295 (8)0.0356 (7)0.0295 (7)0.0114 (6)0.0042 (6)0.0136 (6)
C180.0355 (9)0.0569 (10)0.0353 (8)0.0190 (8)0.0016 (7)0.0228 (7)
C190.0482 (10)0.0627 (11)0.0443 (9)0.0370 (9)0.0182 (8)0.0340 (8)
C200.0511 (10)0.0379 (8)0.0391 (8)0.0276 (7)0.0211 (7)0.0244 (7)
C210.0378 (8)0.0276 (7)0.0282 (7)0.0158 (6)0.0107 (6)0.0142 (5)
C220.0338 (8)0.0268 (7)0.0280 (7)0.0129 (6)0.0142 (6)0.0067 (5)
C230.0303 (7)0.0246 (6)0.0224 (7)0.0103 (5)0.0080 (5)0.0068 (5)
C240.0475 (9)0.0219 (6)0.0245 (7)0.0128 (6)0.0112 (6)0.0096 (5)
C250.0369 (9)0.0403 (8)0.0265 (7)0.0126 (7)0.0036 (6)0.0054 (6)
C260.0498 (10)0.0284 (7)0.0339 (8)0.0173 (7)0.0133 (7)0.0064 (6)
B10.0235 (7)0.0238 (7)0.0179 (7)0.0080 (5)0.0047 (5)0.0094 (5)
O10.0400 (6)0.0207 (4)0.0199 (5)0.0090 (4)0.0112 (4)0.0082 (4)
O20.0363 (6)0.0229 (4)0.0255 (5)0.0100 (4)0.0153 (4)0.0083 (4)
Geometric parameters (Å, º) top
C1—C61.3902 (19)C16—C171.531 (2)
C1—C21.3983 (18)C16—C211.5316 (17)
C1—C71.4777 (17)C16—H161.0000
C2—C31.388 (2)C17—C181.532 (2)
C2—H20.9500C17—H17A0.9900
C3—C41.379 (2)C17—H17B0.9900
C3—H30.9500C18—C191.528 (2)
C4—C51.381 (2)C18—H18A0.9900
C4—H40.9500C18—H18B0.9900
C5—C61.3879 (19)C19—C201.524 (3)
C5—H50.9500C19—H19A0.9900
C6—H60.9500C19—H19B0.9900
C7—C81.3264 (18)C20—C211.5338 (19)
C7—H70.9500C20—H20A0.9900
C8—C91.5251 (16)C20—H20B0.9900
C8—H80.9500C21—H21A0.9900
C9—C161.5672 (17)C21—H21B0.9900
C9—C101.5717 (18)C22—O21.4424 (15)
C9—B11.6034 (18)C22—C231.5238 (19)
C10—C111.5369 (18)C22—H22A0.9900
C10—C151.5386 (17)C22—H22B0.9900
C10—H101.0000C23—C241.5227 (18)
C11—C121.525 (2)C23—C251.523 (2)
C11—H11A0.9900C23—C261.5285 (18)
C11—H11B0.9900C24—O11.4408 (15)
C12—C131.523 (2)C24—H24A0.9900
C12—H12A0.9900C24—H24B0.9900
C12—H12B0.9900C25—H25A0.9800
C13—C141.524 (2)C25—H25B0.9800
C13—H13A0.9900C25—H25C0.9800
C13—H13B0.9900C26—H26A0.9800
C14—C151.528 (2)C26—H26B0.9800
C14—H14A0.9900C26—H26C0.9800
C14—H14B0.9900B1—O11.3565 (17)
C15—H15A0.9900B1—O21.3682 (16)
C15—H15B0.9900
C6—C1—C2117.89 (12)C17—C16—H16106.8
C6—C1—C7122.74 (12)C21—C16—H16106.8
C2—C1—C7119.37 (12)C9—C16—H16106.8
C3—C2—C1120.89 (14)C18—C17—C16111.14 (12)
C3—C2—H2119.6C18—C17—H17A109.4
C1—C2—H2119.6C16—C17—H17A109.4
C4—C3—C2120.37 (14)C18—C17—H17B109.4
C4—C3—H3119.8C16—C17—H17B109.4
C2—C3—H3119.8H17A—C17—H17B108.0
C3—C4—C5119.46 (13)C19—C18—C17111.29 (13)
C3—C4—H4120.3C19—C18—H18A109.4
C5—C4—H4120.3C17—C18—H18A109.4
C4—C5—C6120.36 (14)C19—C18—H18B109.4
C4—C5—H5119.8C17—C18—H18B109.4
C6—C5—H5119.8H18A—C18—H18B108.0
C5—C6—C1121.03 (13)C20—C19—C18111.51 (12)
C5—C6—H6119.5C20—C19—H19A109.3
C1—C6—H6119.5C18—C19—H19A109.3
C8—C7—C1125.85 (12)C20—C19—H19B109.3
C8—C7—H7117.1C18—C19—H19B109.3
C1—C7—H7117.1H19A—C19—H19B108.0
C7—C8—C9127.42 (12)C19—C20—C21111.18 (13)
C7—C8—H8116.3C19—C20—H20A109.4
C9—C8—H8116.3C21—C20—H20A109.4
C8—C9—C16109.58 (10)C19—C20—H20B109.4
C8—C9—C10110.43 (10)C21—C20—H20B109.4
C16—C9—C10111.93 (10)H20A—C20—H20B108.0
C8—C9—B1109.36 (10)C16—C21—C20110.77 (12)
C16—C9—B1108.39 (10)C16—C21—H21A109.5
C10—C9—B1107.06 (10)C20—C21—H21A109.5
C11—C10—C15109.13 (11)C16—C21—H21B109.5
C11—C10—C9110.54 (10)C20—C21—H21B109.5
C15—C10—C9115.16 (11)H21A—C21—H21B108.1
C11—C10—H10107.2O2—C22—C23112.27 (10)
C15—C10—H10107.2O2—C22—H22A109.2
C9—C10—H10107.2C23—C22—H22A109.2
C12—C11—C10112.66 (11)O2—C22—H22B109.2
C12—C11—H11A109.1C23—C22—H22B109.2
C10—C11—H11A109.1H22A—C22—H22B107.9
C12—C11—H11B109.1C24—C23—C25111.00 (12)
C10—C11—H11B109.1C24—C23—C22107.48 (11)
H11A—C11—H11B107.8C25—C23—C22110.22 (12)
C13—C12—C11111.29 (12)C24—C23—C26108.90 (12)
C13—C12—H12A109.4C25—C23—C26110.06 (12)
C11—C12—H12A109.4C22—C23—C26109.12 (11)
C13—C12—H12B109.4O1—C24—C23112.89 (11)
C11—C12—H12B109.4O1—C24—H24A109.0
H12A—C12—H12B108.0C23—C24—H24A109.0
C12—C13—C14110.08 (12)O1—C24—H24B109.0
C12—C13—H13A109.6C23—C24—H24B109.0
C14—C13—H13A109.6H24A—C24—H24B107.8
C12—C13—H13B109.6C23—C25—H25A109.5
C14—C13—H13B109.6C23—C25—H25B109.5
H13A—C13—H13B108.2H25A—C25—H25B109.5
C13—C14—C15111.34 (12)C23—C25—H25C109.5
C13—C14—H14A109.4H25A—C25—H25C109.5
C15—C14—H14A109.4H25B—C25—H25C109.5
C13—C14—H14B109.4C23—C26—H26A109.5
C15—C14—H14B109.4C23—C26—H26B109.5
H14A—C14—H14B108.0H26A—C26—H26B109.5
C14—C15—C10111.18 (12)C23—C26—H26C109.5
C14—C15—H15A109.4H26A—C26—H26C109.5
C10—C15—H15A109.4H26B—C26—H26C109.5
C14—C15—H15B109.4O1—B1—O2122.35 (11)
C10—C15—H15B109.4O1—B1—C9119.72 (11)
H15A—C15—H15B108.0O2—B1—C9117.93 (11)
C17—C16—C21108.63 (11)B1—O1—C24120.49 (10)
C17—C16—C9112.83 (11)B1—O2—C22119.36 (10)
C21—C16—C9114.57 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22B···O2i0.992.693.5773 (18)150
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22B···O2i0.992.693.5773 (18)149.5
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors would like to extend their appreciation to the Deanship of Scientific Research at King Saud University for its funding for this research through the research group project RGP-VPP-239.

References

First citationAlthaus, M., Mahmood, A., Suárez, J. R., Thomas, S. P. & Aggarwal, V. K. (2010). J. Am. Chem. Soc. 132, 4025–4028.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationCarosi, L. & Hall, D. G. (2007). Angew. Chem. Int. Ed. 46, 5913–5915.  Web of Science CrossRef CAS Google Scholar
First citationClary, J. W., Rettenmaier, T. J., Snelling, R., Bryks, W., Banwell, J., Wipke, W. T. & Singaram, B. (2011). J. Org. Chem. 76, 9602–9610.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFandrick, K. R., Fandrick, D. R., Gao, J. J., Reeves, J. T., Tan, Z., Li, W., Song, J. J., Lu, B., Yee, N. K. & Senanayake, C. H. (2010). Org. Lett. 12, 3748–3751.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHesse, M. J., Butts, C. P., Willis, C. L. & Aggarwal, V. K. (2012). Angew. Chem. Int. Ed. 51, 12444–12448.  Web of Science CrossRef CAS Google Scholar
First citationIncerti-Pradillos, C. A., Kabeshov, M. A. & Malkov, A. V. (2013). Angew. Chem. Int. Ed. 52, 5338–5341.  CAS Google Scholar
First citationLombardo, M., Morganti, S., Tozzi, M. & Trombini, C. (2002). Eur. J. Org. Chem. pp. 2823–2830.  CrossRef Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSopková-de Oliveira Santos, J., Lancelot, J.-C., Bouillon, A. & Rault, S. (2003). Acta Cryst. C59, o111–o113.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds