organic compounds
(E)-2-(1,1-Dicyclohexyl-3-phenylallyl)-5,5-dimethyl-1,3,2-dioxaborinane
aDepartment of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, and bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales
*Correspondence e-mail: gelhiti@ksu.edu.sa, kariukib@cardiff.ac.uk
The 26H39BO2, which contains no strong hydrogen bond donors, displays only long C—H⋯O contacts between inversion-related pairs of molecules. The structure contains layers rich in oxygen and boron parallel to the ac plane. The dioxaborinane ring adopts an with the C atom attached to the two methyl groups as the flap .
of the title compound, CRelated literature
For the synthesis and applications of allylboronic et al. (2002); Carosi & Hall (2007); Althaus et al. (2010); Fandrick et al. (2010); Clary et al. (2011); Hesse et al. (2012); Incerti-Pradillos et al. (2013). For the X-ray structure of a boronic ester, see: Sopková-de Oliveira Santos et al. (2003).
see: LombardoExperimental
Crystal data
|
Data collection: COLLECT (Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP99 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).
Supporting information
10.1107/S1600536813021739/go2094sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813021739/go2094Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813021739/go2094Isup3.cml
H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 times Ueq for the atom they are bonded to except for the methyl groups where 1.5 times Ueq was used with
about the C—C bond. Of the low angle reflections not included in the only (0 0 1) and (0 1 0) were omitted due to low intensities consistent with being obscured by the beamstop. The rest were eliminated automatically during data processing possibly as overloads.Data collection: COLLECT (Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP99 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).C26H39BO2 | Z = 2 |
Mr = 394.38 | F(000) = 432 |
Triclinic, P1 | Dx = 1.127 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.4967 (3) Å | Cell parameters from 4303 reflections |
b = 11.2837 (2) Å | θ = 2.2–27.5° |
c = 12.0297 (4) Å | µ = 0.07 mm−1 |
α = 109.897 (2)° | T = 150 K |
β = 96.388 (2)° | Block, colourless |
γ = 102.048 (2)° | 0.38 × 0.30 × 0.28 mm |
V = 1161.90 (6) Å3 |
Nonius KappaCCD diffractometer | 5287 independent reflections |
Radiation source: fine-focus sealed tube | 4303 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
CCD slices, ω and phi scans | θmax = 27.5°, θmin = 2.1° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −12→12 |
Tmin = 0.975, Tmax = 0.981 | k = −14→14 |
8277 measured reflections | l = −15→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.128 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0488P)2 + 0.4651P] where P = (Fo2 + 2Fc2)/3 |
5287 reflections | (Δ/σ)max = 0.004 |
264 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C26H39BO2 | γ = 102.048 (2)° |
Mr = 394.38 | V = 1161.90 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.4967 (3) Å | Mo Kα radiation |
b = 11.2837 (2) Å | µ = 0.07 mm−1 |
c = 12.0297 (4) Å | T = 150 K |
α = 109.897 (2)° | 0.38 × 0.30 × 0.28 mm |
β = 96.388 (2)° |
Nonius KappaCCD diffractometer | 5287 independent reflections |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | 4303 reflections with I > 2σ(I) |
Tmin = 0.975, Tmax = 0.981 | Rint = 0.027 |
8277 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.128 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.32 e Å−3 |
5287 reflections | Δρmin = −0.20 e Å−3 |
264 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.24096 (15) | 0.23892 (13) | 0.62817 (11) | 0.0235 (3) | |
C2 | 0.22913 (18) | 0.35166 (15) | 0.71836 (13) | 0.0348 (3) | |
H2 | 0.2828 | 0.4349 | 0.7232 | 0.042* | |
C3 | 0.14007 (19) | 0.34351 (17) | 0.80085 (14) | 0.0411 (4) | |
H3 | 0.1319 | 0.4211 | 0.8607 | 0.049* | |
C4 | 0.06330 (17) | 0.22337 (17) | 0.79648 (14) | 0.0382 (4) | |
H4 | 0.0029 | 0.2179 | 0.8534 | 0.046* | |
C5 | 0.07497 (17) | 0.11101 (16) | 0.70869 (14) | 0.0348 (3) | |
H5 | 0.0228 | 0.0280 | 0.7055 | 0.042* | |
C6 | 0.16250 (16) | 0.11876 (13) | 0.62506 (13) | 0.0281 (3) | |
H6 | 0.1689 | 0.0407 | 0.5648 | 0.034* | |
C7 | 0.33581 (15) | 0.25145 (13) | 0.54118 (12) | 0.0255 (3) | |
H7 | 0.4098 | 0.3312 | 0.5644 | 0.031* | |
C8 | 0.32693 (14) | 0.16134 (12) | 0.43362 (11) | 0.0221 (3) | |
H8 | 0.2530 | 0.0818 | 0.4117 | 0.027* | |
C9 | 0.42193 (14) | 0.17080 (12) | 0.34118 (11) | 0.0205 (3) | |
C10 | 0.58492 (14) | 0.24810 (12) | 0.40612 (11) | 0.0218 (3) | |
H10 | 0.5813 | 0.3293 | 0.4725 | 0.026* | |
C11 | 0.65750 (15) | 0.16852 (13) | 0.46484 (12) | 0.0260 (3) | |
H11A | 0.5978 | 0.1466 | 0.5210 | 0.031* | |
H11B | 0.6589 | 0.0856 | 0.4014 | 0.031* | |
C12 | 0.81407 (16) | 0.24166 (14) | 0.53369 (13) | 0.0330 (3) | |
H12A | 0.8121 | 0.3195 | 0.6031 | 0.040* | |
H12B | 0.8576 | 0.1844 | 0.5655 | 0.040* | |
C13 | 0.90896 (17) | 0.28434 (15) | 0.45299 (15) | 0.0380 (4) | |
H13A | 0.9200 | 0.2064 | 0.3883 | 0.046* | |
H13B | 1.0079 | 0.3364 | 0.5010 | 0.046* | |
C14 | 0.83863 (17) | 0.36592 (15) | 0.39717 (15) | 0.0361 (4) | |
H14A | 0.8996 | 0.3908 | 0.3430 | 0.043* | |
H14B | 0.8349 | 0.4471 | 0.4618 | 0.043* | |
C15 | 0.68323 (15) | 0.29066 (13) | 0.32573 (13) | 0.0283 (3) | |
H15A | 0.6875 | 0.2125 | 0.2577 | 0.034* | |
H15B | 0.6400 | 0.3466 | 0.2918 | 0.034* | |
C16 | 0.35441 (15) | 0.23557 (12) | 0.25946 (12) | 0.0229 (3) | |
H16 | 0.4152 | 0.2331 | 0.1963 | 0.027* | |
C17 | 0.19670 (16) | 0.16006 (14) | 0.19300 (13) | 0.0309 (3) | |
H17A | 0.1928 | 0.0671 | 0.1500 | 0.037* | |
H17B | 0.1315 | 0.1645 | 0.2522 | 0.037* | |
C18 | 0.14178 (19) | 0.21631 (17) | 0.10238 (15) | 0.0404 (4) | |
H18A | 0.2011 | 0.2042 | 0.0387 | 0.048* | |
H18B | 0.0384 | 0.1683 | 0.0635 | 0.048* | |
C19 | 0.1523 (2) | 0.36161 (18) | 0.16395 (16) | 0.0436 (4) | |
H19A | 0.1255 | 0.3970 | 0.1021 | 0.052* | |
H19B | 0.0814 | 0.3726 | 0.2187 | 0.052* | |
C20 | 0.30661 (19) | 0.43826 (15) | 0.23583 (14) | 0.0364 (4) | |
H20A | 0.3073 | 0.5301 | 0.2804 | 0.044* | |
H20B | 0.3754 | 0.4379 | 0.1797 | 0.044* | |
C21 | 0.35828 (17) | 0.37906 (13) | 0.32525 (13) | 0.0287 (3) | |
H21A | 0.4597 | 0.4290 | 0.3689 | 0.034* | |
H21B | 0.2940 | 0.3855 | 0.3852 | 0.034* | |
C22 | 0.51831 (16) | −0.10974 (13) | 0.09454 (13) | 0.0290 (3) | |
H22A | 0.6131 | −0.1146 | 0.1338 | 0.035* | |
H22B | 0.5259 | −0.1158 | 0.0115 | 0.035* | |
C23 | 0.39668 (15) | −0.22485 (12) | 0.08888 (12) | 0.0256 (3) | |
C24 | 0.37886 (18) | −0.20513 (13) | 0.21769 (12) | 0.0301 (3) | |
H24A | 0.2915 | −0.2720 | 0.2158 | 0.036* | |
H24B | 0.4659 | −0.2183 | 0.2607 | 0.036* | |
C25 | 0.25412 (17) | −0.23168 (15) | 0.01216 (14) | 0.0363 (4) | |
H25A | 0.1768 | −0.3060 | 0.0092 | 0.055* | |
H25B | 0.2688 | −0.2427 | −0.0697 | 0.055* | |
H25C | 0.2250 | −0.1507 | 0.0477 | 0.055* | |
C26 | 0.44291 (19) | −0.35104 (14) | 0.03502 (14) | 0.0373 (4) | |
H26A | 0.5375 | −0.3438 | 0.0822 | 0.056* | |
H26B | 0.4524 | −0.3656 | −0.0486 | 0.056* | |
H26C | 0.3685 | −0.4246 | 0.0369 | 0.056* | |
B1 | 0.42494 (16) | 0.02685 (14) | 0.25703 (13) | 0.0210 (3) | |
O1 | 0.36243 (11) | −0.07729 (8) | 0.28350 (8) | 0.0261 (2) | |
O2 | 0.49222 (11) | 0.01427 (9) | 0.16035 (8) | 0.0273 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0250 (7) | 0.0294 (6) | 0.0191 (6) | 0.0096 (5) | 0.0060 (5) | 0.0110 (5) |
C2 | 0.0404 (9) | 0.0318 (7) | 0.0276 (7) | 0.0065 (6) | 0.0118 (6) | 0.0056 (6) |
C3 | 0.0444 (9) | 0.0484 (9) | 0.0257 (8) | 0.0151 (8) | 0.0147 (7) | 0.0040 (7) |
C4 | 0.0306 (8) | 0.0644 (10) | 0.0285 (8) | 0.0168 (7) | 0.0142 (6) | 0.0232 (7) |
C5 | 0.0303 (8) | 0.0443 (8) | 0.0394 (8) | 0.0094 (6) | 0.0119 (6) | 0.0263 (7) |
C6 | 0.0299 (7) | 0.0298 (7) | 0.0296 (7) | 0.0115 (6) | 0.0099 (6) | 0.0138 (6) |
C7 | 0.0291 (7) | 0.0248 (6) | 0.0240 (7) | 0.0063 (5) | 0.0094 (5) | 0.0102 (5) |
C8 | 0.0238 (7) | 0.0240 (6) | 0.0219 (6) | 0.0079 (5) | 0.0073 (5) | 0.0108 (5) |
C9 | 0.0243 (6) | 0.0216 (6) | 0.0188 (6) | 0.0083 (5) | 0.0072 (5) | 0.0092 (5) |
C10 | 0.0229 (6) | 0.0225 (6) | 0.0210 (6) | 0.0072 (5) | 0.0066 (5) | 0.0081 (5) |
C11 | 0.0286 (7) | 0.0282 (6) | 0.0230 (7) | 0.0092 (5) | 0.0049 (5) | 0.0106 (5) |
C12 | 0.0309 (8) | 0.0338 (7) | 0.0318 (8) | 0.0121 (6) | 0.0013 (6) | 0.0085 (6) |
C13 | 0.0264 (8) | 0.0372 (8) | 0.0450 (9) | 0.0078 (6) | 0.0061 (7) | 0.0093 (7) |
C14 | 0.0276 (8) | 0.0352 (8) | 0.0442 (9) | 0.0035 (6) | 0.0120 (7) | 0.0145 (7) |
C15 | 0.0285 (7) | 0.0301 (7) | 0.0295 (7) | 0.0067 (6) | 0.0111 (6) | 0.0140 (6) |
C16 | 0.0265 (7) | 0.0262 (6) | 0.0219 (6) | 0.0114 (5) | 0.0088 (5) | 0.0123 (5) |
C17 | 0.0295 (8) | 0.0356 (7) | 0.0295 (7) | 0.0114 (6) | 0.0042 (6) | 0.0136 (6) |
C18 | 0.0355 (9) | 0.0569 (10) | 0.0353 (8) | 0.0190 (8) | 0.0016 (7) | 0.0228 (7) |
C19 | 0.0482 (10) | 0.0627 (11) | 0.0443 (9) | 0.0370 (9) | 0.0182 (8) | 0.0340 (8) |
C20 | 0.0511 (10) | 0.0379 (8) | 0.0391 (8) | 0.0276 (7) | 0.0211 (7) | 0.0244 (7) |
C21 | 0.0378 (8) | 0.0276 (7) | 0.0282 (7) | 0.0158 (6) | 0.0107 (6) | 0.0142 (5) |
C22 | 0.0338 (8) | 0.0268 (7) | 0.0280 (7) | 0.0129 (6) | 0.0142 (6) | 0.0067 (5) |
C23 | 0.0303 (7) | 0.0246 (6) | 0.0224 (7) | 0.0103 (5) | 0.0080 (5) | 0.0068 (5) |
C24 | 0.0475 (9) | 0.0219 (6) | 0.0245 (7) | 0.0128 (6) | 0.0112 (6) | 0.0096 (5) |
C25 | 0.0369 (9) | 0.0403 (8) | 0.0265 (7) | 0.0126 (7) | 0.0036 (6) | 0.0054 (6) |
C26 | 0.0498 (10) | 0.0284 (7) | 0.0339 (8) | 0.0173 (7) | 0.0133 (7) | 0.0064 (6) |
B1 | 0.0235 (7) | 0.0238 (7) | 0.0179 (7) | 0.0080 (5) | 0.0047 (5) | 0.0094 (5) |
O1 | 0.0400 (6) | 0.0207 (4) | 0.0199 (5) | 0.0090 (4) | 0.0112 (4) | 0.0082 (4) |
O2 | 0.0363 (6) | 0.0229 (4) | 0.0255 (5) | 0.0100 (4) | 0.0153 (4) | 0.0083 (4) |
C1—C6 | 1.3902 (19) | C16—C17 | 1.531 (2) |
C1—C2 | 1.3983 (18) | C16—C21 | 1.5316 (17) |
C1—C7 | 1.4777 (17) | C16—H16 | 1.0000 |
C2—C3 | 1.388 (2) | C17—C18 | 1.532 (2) |
C2—H2 | 0.9500 | C17—H17A | 0.9900 |
C3—C4 | 1.379 (2) | C17—H17B | 0.9900 |
C3—H3 | 0.9500 | C18—C19 | 1.528 (2) |
C4—C5 | 1.381 (2) | C18—H18A | 0.9900 |
C4—H4 | 0.9500 | C18—H18B | 0.9900 |
C5—C6 | 1.3879 (19) | C19—C20 | 1.524 (3) |
C5—H5 | 0.9500 | C19—H19A | 0.9900 |
C6—H6 | 0.9500 | C19—H19B | 0.9900 |
C7—C8 | 1.3264 (18) | C20—C21 | 1.5338 (19) |
C7—H7 | 0.9500 | C20—H20A | 0.9900 |
C8—C9 | 1.5251 (16) | C20—H20B | 0.9900 |
C8—H8 | 0.9500 | C21—H21A | 0.9900 |
C9—C16 | 1.5672 (17) | C21—H21B | 0.9900 |
C9—C10 | 1.5717 (18) | C22—O2 | 1.4424 (15) |
C9—B1 | 1.6034 (18) | C22—C23 | 1.5238 (19) |
C10—C11 | 1.5369 (18) | C22—H22A | 0.9900 |
C10—C15 | 1.5386 (17) | C22—H22B | 0.9900 |
C10—H10 | 1.0000 | C23—C24 | 1.5227 (18) |
C11—C12 | 1.525 (2) | C23—C25 | 1.523 (2) |
C11—H11A | 0.9900 | C23—C26 | 1.5285 (18) |
C11—H11B | 0.9900 | C24—O1 | 1.4408 (15) |
C12—C13 | 1.523 (2) | C24—H24A | 0.9900 |
C12—H12A | 0.9900 | C24—H24B | 0.9900 |
C12—H12B | 0.9900 | C25—H25A | 0.9800 |
C13—C14 | 1.524 (2) | C25—H25B | 0.9800 |
C13—H13A | 0.9900 | C25—H25C | 0.9800 |
C13—H13B | 0.9900 | C26—H26A | 0.9800 |
C14—C15 | 1.528 (2) | C26—H26B | 0.9800 |
C14—H14A | 0.9900 | C26—H26C | 0.9800 |
C14—H14B | 0.9900 | B1—O1 | 1.3565 (17) |
C15—H15A | 0.9900 | B1—O2 | 1.3682 (16) |
C15—H15B | 0.9900 | ||
C6—C1—C2 | 117.89 (12) | C17—C16—H16 | 106.8 |
C6—C1—C7 | 122.74 (12) | C21—C16—H16 | 106.8 |
C2—C1—C7 | 119.37 (12) | C9—C16—H16 | 106.8 |
C3—C2—C1 | 120.89 (14) | C18—C17—C16 | 111.14 (12) |
C3—C2—H2 | 119.6 | C18—C17—H17A | 109.4 |
C1—C2—H2 | 119.6 | C16—C17—H17A | 109.4 |
C4—C3—C2 | 120.37 (14) | C18—C17—H17B | 109.4 |
C4—C3—H3 | 119.8 | C16—C17—H17B | 109.4 |
C2—C3—H3 | 119.8 | H17A—C17—H17B | 108.0 |
C3—C4—C5 | 119.46 (13) | C19—C18—C17 | 111.29 (13) |
C3—C4—H4 | 120.3 | C19—C18—H18A | 109.4 |
C5—C4—H4 | 120.3 | C17—C18—H18A | 109.4 |
C4—C5—C6 | 120.36 (14) | C19—C18—H18B | 109.4 |
C4—C5—H5 | 119.8 | C17—C18—H18B | 109.4 |
C6—C5—H5 | 119.8 | H18A—C18—H18B | 108.0 |
C5—C6—C1 | 121.03 (13) | C20—C19—C18 | 111.51 (12) |
C5—C6—H6 | 119.5 | C20—C19—H19A | 109.3 |
C1—C6—H6 | 119.5 | C18—C19—H19A | 109.3 |
C8—C7—C1 | 125.85 (12) | C20—C19—H19B | 109.3 |
C8—C7—H7 | 117.1 | C18—C19—H19B | 109.3 |
C1—C7—H7 | 117.1 | H19A—C19—H19B | 108.0 |
C7—C8—C9 | 127.42 (12) | C19—C20—C21 | 111.18 (13) |
C7—C8—H8 | 116.3 | C19—C20—H20A | 109.4 |
C9—C8—H8 | 116.3 | C21—C20—H20A | 109.4 |
C8—C9—C16 | 109.58 (10) | C19—C20—H20B | 109.4 |
C8—C9—C10 | 110.43 (10) | C21—C20—H20B | 109.4 |
C16—C9—C10 | 111.93 (10) | H20A—C20—H20B | 108.0 |
C8—C9—B1 | 109.36 (10) | C16—C21—C20 | 110.77 (12) |
C16—C9—B1 | 108.39 (10) | C16—C21—H21A | 109.5 |
C10—C9—B1 | 107.06 (10) | C20—C21—H21A | 109.5 |
C11—C10—C15 | 109.13 (11) | C16—C21—H21B | 109.5 |
C11—C10—C9 | 110.54 (10) | C20—C21—H21B | 109.5 |
C15—C10—C9 | 115.16 (11) | H21A—C21—H21B | 108.1 |
C11—C10—H10 | 107.2 | O2—C22—C23 | 112.27 (10) |
C15—C10—H10 | 107.2 | O2—C22—H22A | 109.2 |
C9—C10—H10 | 107.2 | C23—C22—H22A | 109.2 |
C12—C11—C10 | 112.66 (11) | O2—C22—H22B | 109.2 |
C12—C11—H11A | 109.1 | C23—C22—H22B | 109.2 |
C10—C11—H11A | 109.1 | H22A—C22—H22B | 107.9 |
C12—C11—H11B | 109.1 | C24—C23—C25 | 111.00 (12) |
C10—C11—H11B | 109.1 | C24—C23—C22 | 107.48 (11) |
H11A—C11—H11B | 107.8 | C25—C23—C22 | 110.22 (12) |
C13—C12—C11 | 111.29 (12) | C24—C23—C26 | 108.90 (12) |
C13—C12—H12A | 109.4 | C25—C23—C26 | 110.06 (12) |
C11—C12—H12A | 109.4 | C22—C23—C26 | 109.12 (11) |
C13—C12—H12B | 109.4 | O1—C24—C23 | 112.89 (11) |
C11—C12—H12B | 109.4 | O1—C24—H24A | 109.0 |
H12A—C12—H12B | 108.0 | C23—C24—H24A | 109.0 |
C12—C13—C14 | 110.08 (12) | O1—C24—H24B | 109.0 |
C12—C13—H13A | 109.6 | C23—C24—H24B | 109.0 |
C14—C13—H13A | 109.6 | H24A—C24—H24B | 107.8 |
C12—C13—H13B | 109.6 | C23—C25—H25A | 109.5 |
C14—C13—H13B | 109.6 | C23—C25—H25B | 109.5 |
H13A—C13—H13B | 108.2 | H25A—C25—H25B | 109.5 |
C13—C14—C15 | 111.34 (12) | C23—C25—H25C | 109.5 |
C13—C14—H14A | 109.4 | H25A—C25—H25C | 109.5 |
C15—C14—H14A | 109.4 | H25B—C25—H25C | 109.5 |
C13—C14—H14B | 109.4 | C23—C26—H26A | 109.5 |
C15—C14—H14B | 109.4 | C23—C26—H26B | 109.5 |
H14A—C14—H14B | 108.0 | H26A—C26—H26B | 109.5 |
C14—C15—C10 | 111.18 (12) | C23—C26—H26C | 109.5 |
C14—C15—H15A | 109.4 | H26A—C26—H26C | 109.5 |
C10—C15—H15A | 109.4 | H26B—C26—H26C | 109.5 |
C14—C15—H15B | 109.4 | O1—B1—O2 | 122.35 (11) |
C10—C15—H15B | 109.4 | O1—B1—C9 | 119.72 (11) |
H15A—C15—H15B | 108.0 | O2—B1—C9 | 117.93 (11) |
C17—C16—C21 | 108.63 (11) | B1—O1—C24 | 120.49 (10) |
C17—C16—C9 | 112.83 (11) | B1—O2—C22 | 119.36 (10) |
C21—C16—C9 | 114.57 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
C22—H22B···O2i | 0.99 | 2.69 | 3.5773 (18) | 150 |
Symmetry code: (i) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C22—H22B···O2i | 0.99 | 2.69 | 3.5773 (18) | 149.5 |
Symmetry code: (i) −x+1, −y, −z. |
Acknowledgements
The authors would like to extend their appreciation to the Deanship of Scientific Research at King Saud University for its funding for this research through the research group project RGP-VPP-239.
References
Althaus, M., Mahmood, A., Suárez, J. R., Thomas, S. P. & Aggarwal, V. K. (2010). J. Am. Chem. Soc. 132, 4025–4028. Web of Science CrossRef CAS PubMed Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA. Google Scholar
Carosi, L. & Hall, D. G. (2007). Angew. Chem. Int. Ed. 46, 5913–5915. Web of Science CrossRef CAS Google Scholar
Clary, J. W., Rettenmaier, T. J., Snelling, R., Bryks, W., Banwell, J., Wipke, W. T. & Singaram, B. (2011). J. Org. Chem. 76, 9602–9610. Web of Science CSD CrossRef CAS PubMed Google Scholar
Fandrick, K. R., Fandrick, D. R., Gao, J. J., Reeves, J. T., Tan, Z., Li, W., Song, J. J., Lu, B., Yee, N. K. & Senanayake, C. H. (2010). Org. Lett. 12, 3748–3751. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hesse, M. J., Butts, C. P., Willis, C. L. & Aggarwal, V. K. (2012). Angew. Chem. Int. Ed. 51, 12444–12448. Web of Science CrossRef CAS Google Scholar
Incerti-Pradillos, C. A., Kabeshov, M. A. & Malkov, A. V. (2013). Angew. Chem. Int. Ed. 52, 5338–5341. CAS Google Scholar
Lombardo, M., Morganti, S., Tozzi, M. & Trombini, C. (2002). Eur. J. Org. Chem. pp. 2823–2830. CrossRef Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sopková-de Oliveira Santos, J., Lancelot, J.-C., Bouillon, A. & Rault, S. (2003). Acta Cryst. C59, o111–o113. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound I, a useful synthetic intermediate, was synthesized by the reaction of (E)-dicyclohexylstyrylborane with the anion of dichloromethyl methyl ether followed by esterification with 2,2-dimethyl-1,3-propanediol. Allylboronic esters have been synthesized from the reaction of lithiated carbamates with vinylboranes [Althaus et al. (2010)], and from the reaction of primary allyl halides with pinacolborane and magnesium [Incerti-Pradillos et al. (2013), Clary et al. (2011)]. Allylboronic esters are important synthetic intermediates, which have been shown to react with aldehydes to give homoallylic alcohols [Lombardo et al. (2002)], with the control of the newly-generated stereogenic centre possible through use of a chiral catalyst [Carosi et al. (2007)]. Allylboronic esters take part in a zinc alkoxide catalysed reaction with ketones to give the corresponding homoallylic alcohol products [Fandrick et al. (2010)], and also take part in a proto-deboronation reaction which has been used to synthesize the pheromone of the Californian red scale beetle [Hesse et al. (2012)]. For the X-ray structure of a boronic ester, see: Sopková-de Oliveira Santos et al. (2003).
In the molecule (Figure 1), the two cyclohexyl groups assume a chair conformation and an envelope conformation is observed for the dioxaborinane ring. The phenylallyl group is not planar as the plane through the double bond makes an angle of 20.84 ° with the phenyl group. There are no strong hydrogen bond donors in the structure. Long contacts of C—H···O type occur between pairs of molecules to form loosely bound dimers (Figure 2). The dimers are stacked along the a-axis to form a structure with layers rich in oxygen and boron parallel to the ac plane (Figure 3).