organic compounds
Dimethyl 6-iodo-2-methyl-1,2-dihydroquinoline-2,4-dicarboxylate
aDepartment of Chemistry, Çankırı Karatekin University, TR-18100 Çankırı, Turkey, bUniversität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr
In the title compound, C14H14INO4, the dihydropyridine ring adopts a twist conformation. In the crystal, pairs of N—H⋯O and C—H⋯O hydrogen bonds link the molecules into inversion R22(10) and R22(18) dimers, forming infinite double chains running along the c axis.
Related literature
For the conversion of 1,2-dihydroquinoline derivatives to the syntheses of quinolines, see: Dauphinee & Forrest (1978). For the conversion of 1,2-dihydroquinoline derivatives to the syntheses of 1,2,3,4-tetrahydroquinolines, see: Katritzky et al. (1996). For literature methods for the preparation of 1,2-dihydroquinolines, see: Dauphinee & Forrest (1978); Durgadas et al. (2010); Gültekin & Frey (2012); Makino et al. (2003); Yadav et al. (2007); Waldmann et al. (2008). For related structures, see: Gültekin et al. (2010, 2011a,b, 2012a,b). For ring puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536813023544/gw2137sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813023544/gw2137Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813023544/gw2137Isup3.cml
The title compound was synthesized by the literature method (Gültekin & Frey, 2012; Waldmann et al., 2008). p-iodo aniline (100 mg, 1 eq) was dissolved in acetonitrile (1.5 ml), and then Bi(OTf)3 (5 mol%, 0.05 eq) and methyl pyruvate (2.2 eq) were added to the mixture. The mixture was heated by microwave irradiation for 7 h until the starting material was completely consumed as monitored by TLC. The resultant residue was directly purified by flash
on silica (EtOAc:Cylohexane 1:2). Recrystallization over pentane and ethyl acetate (70:30) gave a yellow crystalline solid (yield: 34%), Rf 0.56 (2:1 Cyclohexane/EtOAc) m.p.: 393 K.Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed line. | |
Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity. |
C14H14INO4 | Z = 2 |
Mr = 387.16 | F(000) = 380 |
Triclinic, P1 | Dx = 1.776 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7994 (14) Å | Cell parameters from 6892 reflections |
b = 10.2797 (8) Å | θ = 2.3–36.5° |
c = 10.8056 (8) Å | µ = 2.22 mm−1 |
α = 116.862 (3)° | T = 100 K |
β = 103.956 (4)° | Block, yellow |
γ = 96.780 (4)° | 0.76 × 0.65 × 0.48 mm |
V = 723.80 (16) Å3 |
Bruker Kappa APEXII DUO diffractometer | 7044 independent reflections |
Radiation source: fine-focus sealed tube | 6902 reflections with I > 2σ(I) |
Triumph monochromator | Rint = 0.032 |
ϕ and ω scans | θmax = 36.5°, θmin = 2.3° |
Absorption correction: numerical (Blessing, 1995) | h = −13→13 |
Tmin = 0.283, Tmax = 0.415 | k = −17→17 |
43287 measured reflections | l = −18→18 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.073 | w = 1/[σ2(Fo2) + (0.0263P)2 + 0.7072P] where P = (Fo2 + 2Fc2)/3 |
S = 1.24 | (Δ/σ)max < 0.001 |
7044 reflections | Δρmax = 1.88 e Å−3 |
190 parameters | Δρmin = −1.54 e Å−3 |
1 restraint | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0715 (18) |
C14H14INO4 | γ = 96.780 (4)° |
Mr = 387.16 | V = 723.80 (16) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.7994 (14) Å | Mo Kα radiation |
b = 10.2797 (8) Å | µ = 2.22 mm−1 |
c = 10.8056 (8) Å | T = 100 K |
α = 116.862 (3)° | 0.76 × 0.65 × 0.48 mm |
β = 103.956 (4)° |
Bruker Kappa APEXII DUO diffractometer | 7044 independent reflections |
Absorption correction: numerical (Blessing, 1995) | 6902 reflections with I > 2σ(I) |
Tmin = 0.283, Tmax = 0.415 | Rint = 0.032 |
43287 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 1 restraint |
wR(F2) = 0.073 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.24 | Δρmax = 1.88 e Å−3 |
7044 reflections | Δρmin = −1.54 e Å−3 |
190 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.017285 (15) | 0.670510 (12) | 0.215800 (11) | 0.02370 (4) | |
O1 | 0.28824 (19) | 0.31504 (13) | 0.37768 (13) | 0.0217 (2) | |
O2 | 0.34912 (17) | 0.25624 (12) | 0.55598 (13) | 0.01879 (18) | |
O3 | 0.69165 (15) | 0.92071 (11) | 0.93569 (13) | 0.01678 (17) | |
O4 | 0.78140 (13) | 0.71616 (12) | 0.92154 (12) | 0.01509 (16) | |
N1 | 0.32777 (15) | 0.77436 (13) | 0.85280 (12) | 0.01270 (17) | |
H1 | 0.335 (4) | 0.858 (2) | 0.920 (2) | 0.020 (6)* | |
C1 | 0.46679 (16) | 0.70426 (14) | 0.88944 (13) | 0.01127 (17) | |
C2 | 0.42693 (16) | 0.54604 (14) | 0.76450 (14) | 0.01201 (18) | |
H2 | 0.472 (3) | 0.475 (3) | 0.787 (3) | 0.013 (5)* | |
C3 | 0.33684 (16) | 0.50661 (14) | 0.62481 (14) | 0.01130 (17) | |
C4 | 0.26466 (16) | 0.61703 (14) | 0.59074 (14) | 0.01143 (17) | |
C5 | 0.19306 (18) | 0.59520 (15) | 0.44880 (15) | 0.01460 (19) | |
H5 | 0.1942 | 0.5060 | 0.3664 | 0.018* | |
C6 | 0.12035 (19) | 0.70379 (16) | 0.42832 (15) | 0.0157 (2) | |
C7 | 0.11561 (19) | 0.83472 (16) | 0.54662 (16) | 0.0165 (2) | |
H7 | 0.0636 | 0.9073 | 0.5310 | 0.020* | |
C8 | 0.18759 (18) | 0.85846 (15) | 0.68790 (15) | 0.0149 (2) | |
H8 | 0.1851 | 0.9481 | 0.7693 | 0.018* | |
C9 | 0.26382 (16) | 0.75191 (14) | 0.71195 (14) | 0.01145 (17) | |
C10 | 0.47035 (19) | 0.70673 (18) | 1.03339 (15) | 0.0169 (2) | |
H10A | 0.4966 | 0.8115 | 1.1121 | 0.025* | |
H10B | 0.5656 | 0.6607 | 1.0599 | 0.025* | |
H10C | 0.3511 | 0.6496 | 1.0199 | 0.025* | |
C11 | 0.65818 (16) | 0.79393 (14) | 0.91643 (13) | 0.01153 (17) | |
C12 | 0.96471 (18) | 0.78904 (19) | 0.94143 (18) | 0.0191 (2) | |
H12A | 1.0454 | 0.7234 | 0.9438 | 0.029* | |
H12B | 1.0110 | 0.8854 | 1.0343 | 0.029* | |
H12C | 0.9615 | 0.8076 | 0.8597 | 0.029* | |
C13 | 0.31983 (17) | 0.35216 (14) | 0.50561 (15) | 0.01327 (19) | |
C14 | 0.3488 (3) | 0.10914 (18) | 0.4461 (2) | 0.0252 (3) | |
H14A | 0.3710 | 0.0458 | 0.4910 | 0.038* | |
H14B | 0.4454 | 0.1193 | 0.4050 | 0.038* | |
H14C | 0.2297 | 0.0621 | 0.3674 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.02815 (6) | 0.02630 (6) | 0.01695 (5) | 0.00288 (4) | 0.00133 (4) | 0.01504 (4) |
O1 | 0.0310 (6) | 0.0176 (4) | 0.0144 (4) | 0.0086 (4) | 0.0071 (4) | 0.0059 (4) |
O2 | 0.0239 (5) | 0.0128 (4) | 0.0208 (5) | 0.0062 (3) | 0.0069 (4) | 0.0093 (4) |
O3 | 0.0174 (4) | 0.0108 (4) | 0.0201 (4) | 0.0024 (3) | 0.0085 (3) | 0.0053 (3) |
O4 | 0.0096 (3) | 0.0185 (4) | 0.0204 (4) | 0.0040 (3) | 0.0045 (3) | 0.0124 (4) |
N1 | 0.0118 (4) | 0.0151 (4) | 0.0112 (4) | 0.0057 (3) | 0.0040 (3) | 0.0060 (3) |
C1 | 0.0095 (4) | 0.0137 (4) | 0.0106 (4) | 0.0023 (3) | 0.0028 (3) | 0.0065 (4) |
C2 | 0.0111 (4) | 0.0128 (4) | 0.0128 (4) | 0.0024 (3) | 0.0030 (3) | 0.0076 (4) |
C3 | 0.0104 (4) | 0.0116 (4) | 0.0119 (4) | 0.0021 (3) | 0.0031 (3) | 0.0063 (4) |
C4 | 0.0106 (4) | 0.0121 (4) | 0.0117 (4) | 0.0024 (3) | 0.0028 (3) | 0.0066 (4) |
C5 | 0.0158 (5) | 0.0150 (5) | 0.0125 (5) | 0.0025 (4) | 0.0028 (4) | 0.0078 (4) |
C6 | 0.0162 (5) | 0.0177 (5) | 0.0149 (5) | 0.0033 (4) | 0.0025 (4) | 0.0109 (4) |
C7 | 0.0163 (5) | 0.0184 (5) | 0.0186 (5) | 0.0068 (4) | 0.0048 (4) | 0.0123 (5) |
C8 | 0.0149 (5) | 0.0159 (5) | 0.0163 (5) | 0.0071 (4) | 0.0056 (4) | 0.0090 (4) |
C9 | 0.0097 (4) | 0.0134 (4) | 0.0119 (4) | 0.0033 (3) | 0.0036 (3) | 0.0068 (4) |
C10 | 0.0163 (5) | 0.0237 (6) | 0.0134 (5) | 0.0042 (4) | 0.0055 (4) | 0.0114 (5) |
C11 | 0.0108 (4) | 0.0129 (4) | 0.0098 (4) | 0.0025 (3) | 0.0035 (3) | 0.0049 (4) |
C12 | 0.0099 (4) | 0.0269 (6) | 0.0230 (6) | 0.0032 (4) | 0.0048 (4) | 0.0149 (5) |
C13 | 0.0123 (4) | 0.0122 (4) | 0.0143 (5) | 0.0025 (3) | 0.0039 (4) | 0.0062 (4) |
C14 | 0.0297 (7) | 0.0140 (5) | 0.0318 (8) | 0.0092 (5) | 0.0120 (6) | 0.0095 (5) |
I1—C6 | 2.0908 (14) | C4—C9 | 1.4154 (17) |
N1—C1 | 1.4447 (17) | C5—C6 | 1.3888 (19) |
N1—C9 | 1.3812 (17) | C5—H5 | 0.9500 |
N1—H1 | 0.821 (17) | C6—C7 | 1.388 (2) |
O1—C13 | 1.2059 (17) | C7—C8 | 1.387 (2) |
O2—C13 | 1.3412 (17) | C7—H7 | 0.9500 |
O2—C14 | 1.439 (2) | C8—C9 | 1.3989 (18) |
O3—C11 | 1.2075 (16) | C8—H8 | 0.9500 |
O4—C11 | 1.3273 (16) | C10—H10A | 0.9800 |
O4—C12 | 1.4508 (17) | C10—H10B | 0.9800 |
C1—C2 | 1.5028 (18) | C10—H10C | 0.9800 |
C1—C10 | 1.5376 (18) | C12—H12A | 0.9800 |
C1—C11 | 1.5444 (17) | C12—H12B | 0.9800 |
C2—C3 | 1.3435 (18) | C12—H12C | 0.9800 |
C2—H2 | 0.94 (2) | C14—H14A | 0.9800 |
C3—C4 | 1.4728 (17) | C14—H14B | 0.9800 |
C3—C13 | 1.4890 (18) | C14—H14C | 0.9800 |
C4—C5 | 1.4002 (18) | ||
C13—O2—C14 | 114.26 (13) | C7—C8—H8 | 119.6 |
C11—O4—C12 | 115.43 (11) | C9—C8—H8 | 119.6 |
C1—N1—H1 | 115 (2) | N1—C9—C4 | 120.20 (11) |
C9—N1—C1 | 120.03 (10) | N1—C9—C8 | 119.93 (11) |
C9—N1—H1 | 116 (2) | C8—C9—C4 | 119.75 (11) |
N1—C1—C2 | 109.26 (10) | C1—C10—H10A | 109.5 |
N1—C1—C10 | 108.89 (10) | C1—C10—H10B | 109.5 |
N1—C1—C11 | 110.73 (10) | C1—C10—H10C | 109.5 |
C2—C1—C10 | 111.83 (11) | H10A—C10—H10B | 109.5 |
C2—C1—C11 | 108.91 (10) | H10A—C10—H10C | 109.5 |
C10—C1—C11 | 107.20 (10) | H10B—C10—H10C | 109.5 |
C1—C2—H2 | 117.7 (15) | O3—C11—O4 | 124.68 (12) |
C3—C2—C1 | 121.91 (11) | O3—C11—C1 | 123.96 (11) |
C3—C2—H2 | 120.4 (15) | O4—C11—C1 | 111.31 (11) |
C2—C3—C4 | 120.28 (11) | O4—C12—H12A | 109.5 |
C2—C3—C13 | 118.60 (11) | O4—C12—H12B | 109.5 |
C4—C3—C13 | 121.05 (11) | O4—C12—H12C | 109.5 |
C5—C4—C3 | 124.75 (11) | H12A—C12—H12B | 109.5 |
C5—C4—C9 | 118.89 (11) | H12A—C12—H12C | 109.5 |
C9—C4—C3 | 116.33 (11) | H12B—C12—H12C | 109.5 |
C4—C5—H5 | 119.9 | O1—C13—O2 | 122.31 (13) |
C6—C5—C4 | 120.11 (12) | O1—C13—C3 | 125.09 (12) |
C6—C5—H5 | 119.9 | O2—C13—C3 | 112.57 (11) |
C5—C6—I1 | 119.55 (10) | O2—C14—H14A | 109.5 |
C7—C6—I1 | 119.26 (10) | O2—C14—H14B | 109.5 |
C7—C6—C5 | 121.19 (12) | O2—C14—H14C | 109.5 |
C6—C7—H7 | 120.3 | H14A—C14—H14B | 109.5 |
C8—C7—C6 | 119.31 (12) | H14A—C14—H14C | 109.5 |
C8—C7—H7 | 120.3 | H14B—C14—H14C | 109.5 |
C7—C8—C9 | 120.73 (12) | ||
C14—O2—C13—O1 | 3.0 (2) | C2—C3—C4—C9 | −11.93 (17) |
C14—O2—C13—C3 | −175.15 (12) | C13—C3—C4—C5 | −6.82 (18) |
C12—O4—C11—O3 | −4.60 (19) | C13—C3—C4—C9 | 171.05 (11) |
C12—O4—C11—C1 | 177.95 (11) | C2—C3—C13—O1 | −159.19 (14) |
C9—N1—C1—C2 | −40.61 (15) | C2—C3—C13—O2 | 18.92 (16) |
C9—N1—C1—C10 | −163.02 (11) | C4—C3—C13—O1 | 17.9 (2) |
C9—N1—C1—C11 | 79.35 (14) | C4—C3—C13—O2 | −164.00 (11) |
C1—N1—C9—C4 | 28.53 (17) | C3—C4—C5—C6 | 176.90 (12) |
C1—N1—C9—C8 | −155.41 (12) | C9—C4—C5—C6 | −0.92 (19) |
N1—C1—C2—C3 | 28.17 (16) | C3—C4—C9—N1 | −0.21 (17) |
C10—C1—C2—C3 | 148.81 (12) | C3—C4—C9—C8 | −176.28 (11) |
C11—C1—C2—C3 | −92.90 (14) | C5—C4—C9—N1 | 177.79 (11) |
N1—C1—C11—O3 | 14.82 (17) | C5—C4—C9—C8 | 1.72 (18) |
N1—C1—C11—O4 | −167.70 (10) | C4—C5—C6—I1 | 179.18 (9) |
C2—C1—C11—O3 | 134.99 (13) | C4—C5—C6—C7 | −0.5 (2) |
C2—C1—C11—O4 | −47.53 (14) | I1—C6—C7—C8 | −178.59 (10) |
C10—C1—C11—O3 | −103.84 (15) | C5—C6—C7—C8 | 1.1 (2) |
C10—C1—C11—O4 | 73.64 (13) | C6—C7—C8—C9 | −0.2 (2) |
C1—C2—C3—C4 | −3.42 (18) | C7—C8—C9—N1 | −177.23 (12) |
C1—C2—C3—C13 | 173.68 (11) | C7—C8—C9—C4 | −1.15 (19) |
C2—C3—C4—C5 | 170.20 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.82 (2) | 2.17 (2) | 2.9795 (19) | 169 (2) |
C5—H5···O1 | 0.95 | 2.22 | 2.866 (2) | 125 |
C12—H12C···O1ii | 0.98 | 2.46 | 3.132 (2) | 126 |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.82 (2) | 2.17 (2) | 2.9795 (19) | 169 (2) |
C5—H5···O1 | 0.95 | 2.22 | 2.866 (2) | 125 |
C12—H12C···O1ii | 0.98 | 2.46 | 3.132 (2) | 126 |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
The title compound was synthesized at RWTH Aachen University, Germany. The authors thank Professor Magnus Rueping of RWTH Aachen University for helpful discussions.
References
Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dauphinee, G. A. & Forrest, T. P. (1978). Can. J. Chem. 56, 632–634. CrossRef CAS Web of Science Google Scholar
Durgadas, S., Chatare, V. K., Mukkanti, K. & Pal, S. (2010). Lett. Org. Chem. 7, 306–310. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gültekin, Z., Bolte, M. & Hökelek, T. (2012a). Acta Cryst. E68, o606. CSD CrossRef IUCr Journals Google Scholar
Gültekin, Z., Bolte, M. & Hökelek, T. (2012b). Acta Cryst. E68, o710–o711. CSD CrossRef IUCr Journals Google Scholar
Gültekin, Z. & Frey, W. (2012). Arkivoc, viii, 250–261. CrossRef Google Scholar
Gültekin, Z., Frey, W. & Hökelek, T. (2011b). Acta Cryst. E67, o576. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gültekin, Z., Frey, W., Tercan, B. & Hökelek, T. (2010). Acta Cryst. E66, o2891–o2892. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gültekin, Z., Frey, W., Tercan, B. & Hökelek, T. (2011a). Acta Cryst. E67, o672–o673. Web of Science CSD CrossRef IUCr Journals Google Scholar
Katritzky, A. R., Rachwal, S. & Rachwal, B. (1996). Tetrahedron, 52, 15031–15070. CrossRef CAS Web of Science Google Scholar
Makino, K., Hara, O., Takiguchi, Y., Katano, T., Asakawa, Y., Hatano, K. & Hamada, Y. (2003). Tetrahedron Lett. 44, 8925–8929. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Waldmann, H., Karunakar, G. V. & Kumar, K. (2008). Org. Lett. 10, 2159–2162. Web of Science CrossRef PubMed CAS Google Scholar
Yadav, J. S., Reddy, B. V. S., Premalatha, K. & Murty, M. S. R. (2007). J. Mol. Catal. A, 271, 161–163. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,2-Dihydroquinoline derivatives are important for the preparation of pharmaceuticals and other biologically active compounds, and they are versatile intermediates in organic chemistry. They are converted to the syntheses of quinolines (Dauphinee & Forrest, 1978) and 1,2,3,4-tetrahydroquinolines (Katritzky et al., 1996). Several methods have been described for the syntheses of 1,2-dihydroquinolines (Durgadas et al., 2010; Makino et al., 2003; Yadav et al., 2007; Dauphinee & Forrest, 1978; Waldmann et al., 2008).
The structures of some 1,2-dihydroquinoline derivatives, C16H19NO4 (Gültekin et al., 2010), C14H15NO4 (Gültekin et al., 2011a), C17H21NO7 (Gültekin et al., 2011b), C16H17NO5 (Gültekin et al., 2012a) and C14H14BrNO4 (Gültekin et al., 2012b) have also been determined.
In the title compound (Fig. 1), the ring A (C1-C4/C9/C10/N1) is not planar, but adopting a twisted conformation with puckering parameters (Cremer & Pople, 1975) QT = 0.332 (1)Å, ϕ = 35.3 (3)° and θ = 66.0 (2)°. Ring A has a pseudo two-fold axis running through the midpoints of the N1—C1 and C3—C4 bonds.
In the crystal structure, intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric R22(10) and R22(18) dimers, respectively (Bernstein et al., 1995) (Fig. 2), to form infinite double chains running along the c-axis.