organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2:1′,2′-Di-O-iso­propyl­idenedi­furan­ose-C12 higher carbon sugar

aNew Drug Reseach & Development Center, Zhengzhou Univresity, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: zqr409@163.com

(Received 24 June 2013; accepted 5 August 2013; online 10 August 2013)

In the title compound, C18H28O8, the five-membered ring with one O atom attached to the ethyl substituent has a twisted conformation about the C—O bond. The adjacent cis-fused ring with two O atoms also has a twisted conformation about one of the C—O bonds. The dihedral angle between these rings (all atoms) is 59.05 (12)°. The five-membered ring linked to the ethynyl susbtituent is twisted about a C—C bond; the cis-fused adjacent ring is twisted about a C—O bond [dihedral angle between the rings (all atoms) = 71.78 (12)°]. Two intra­molecular O—H⋯O hydrogen bonds occur. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, generating [001] chains.

Related literature

For further synthetic details, see: Meyer & Jochims (1969[Meyer, R. & Jochims (1969). Chem. Ber. 102, 4199-4206.]). For background to higher-carbon sugars, see: Iwasa et al. (1978[Iwasa, T., Kusuka, T. & Suetomi, K. (1978). J. Antibiot. 31, 511-518.]); Harada et al. (1981[Harada, S., Mizuta, E. & Kishi, T. (1981). Tetrahedron, 37, 1317-1327.]); Liu et al. (2006[Liu, H.-M., Liu, F.-W., Song, X.-P. & Zhang, J.-Y. (2006). Tetrahedron, 17, 3230-3236.]).

[Scheme 1]

Experimental

Crystal data
  • C18H28O8

  • Mr = 372.40

  • Orthorhombic, P 21 21 2

  • a = 21.5802 (6) Å

  • b = 15.3758 (4) Å

  • c = 5.73626 (14) Å

  • V = 1903.37 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.86 mm−1

  • T = 291 K

  • 0.28 × 0.25 × 0.25 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996)[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.] Tmin = 0.796, Tmax = 0.815

  • 7406 measured reflections

  • 3407 independent reflections

  • 3079 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.099

  • S = 1.05

  • 3407 reflections

  • 262 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3′—H3′⋯O4′i 0.79 (3) 2.36 (3) 3.038 (2) 144 (2)
O3′—H3′⋯O2′ 0.79 (3) 2.22 (3) 2.685 (2) 119 (2)
O3—H3⋯O2 0.82 (4) 2.11 (3) 2.647 (2) 122 (3)
Symmetry code: (i) x, y, z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The term higher carbon sugars is customarily employed with monosaccharides containing seven or more consecutive carbon atoms in the chain. Higher carbon sugars have been attracting the increasing attention of organic chemists in the past decades due to the fact that they can be used as non-metabolized analogues of di- and oligosaccharides and are components of some antibiotics (Iwasa et al., 1978; Harada et al., 1981) and also that they are carbohydrate precursors for higher carbon amino sugars (Liu et al., 2006).

C18H28O8,the title compound (I), is a free C12 higher carbon sugar,whose structure consists of a fused system made up of two methylenedioxy ring and two tetrahydrofuran rings. Both of them, one methylenedioxy ring connects parallelly to tetrahydrofuran, give two fragments with V-shaped models. In the crystal, O—H···O hydrogen bonds (Table 1), link the molecules into [001] chains.

The crystal packing is shown in Figure 2.

Related literature top

For further synthetic details, see: Meyer & Jochims (1969). For background to higher-carbon sugars, see: Iwasa et al. (1978); Harada et al. (1981); Liu et al. (2006).

Experimental top

The title compound (I) was synthesized from 5,6;5',6'-di-alkene-C12 higher carbon sugar as described previously (Meyer & Jochims, 1969), whose starting material was D-Glucose. A solution of 5,6;5',6'-di-alkene-C12 higher carbon sugar(400 mg, 1 mmol) in aq. CH3OH(10 ml) was stirred at room temperature overnight

A suspension of 5,6;5',6'-di-alkene-C12 higher carbon sugar(400 mg, 1 mmol) and NaBH4 (0.080 g, 2.08 mmol) in anhydrous MeOH (15 ml) was stirred at room temperature for 1 h. the solvent was evaporated and water (10 ml) was added to the residue, and the mixture was extracted with EtOAc. The combined organic layers were washed with water and dried with anhydrous Na2SO4. After filtration and evaporation of the solvent, the residue

was dissolved in methanol (20 ml) and 5% Pd/C [500 mg, suspended in methanol (5 ml)] was added. The mixture was degassed, and stirred under an atmosphere of hydrogen. After 4 h, the mixture was filtered and evaporated, Purification of the residue by column chromatography gave the title compound as white solid. Colourless prisms were grown by slow evaporation from CH3OH solution at room temperature for two weeks. mp: 398 K; Rf = 0.40 (petroleum ether/EtOAc, 2:1); 1H NMR (400 MHz, CDCl3)σ: 5.98 (1H, d, J = 3.6 Hz), 5.78 (1H, s), 4.84 (1H, q, J = 6.9 Hz), 4.54 (1H, d, J = 3.6 Hz), 4.22 (1H, t), 3.74(1H, m), 2.89 (1H, s), 2.22 (1H, d, J = 3.2 Hz), 1.78 2H, m), 1.70 (3H, d), 1.68 (3H, s), 1.58 (3H, s), 1.48 (3H, s), 1.46 (3H, s), 1.03 (3H, d, J = 7.5 Hz); 13C NMR (100 MHz, CDCl3) σ: 154.51, 117.02, 114.03, 106.48, 104.54, 98.57, 94.88, 83.93, 80.18, 79.70, 70.21, 28.03, 27.97, 27.82, 27.62, 21.85, 10.33, 10.23.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H are 0.96 Å (methylene) or 0.93 Å (aromatic), 0.82 Å (hydroxyl)and Uiso(H) =1.2Ueq(C). Attempts to confirm the absolute structure by refinement of the Flack parameter in the presence of 1412 sets of Friedel equivalents led to an inconclusive value of 0.3 (2). Therefore, the absolute configuration was assigned to correspond with that of the known chiral centres in a precursor molecule, which remained unchanged during the synthesis of the title compound.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram.
6-{5-Ethyl-6-hydroxy-2,2-dimethyltetrahydro-2H-furo[2,3-d][1,3]dioxol-6a-yl}-5-ethylidene-2,2-dimethyl-tetrahydro-2H-furo[2,3-d][1,3]dioxol-6-ol top
Crystal data top
C18H28O8Dx = 1.300 Mg m3
Mr = 372.40Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P21212Cell parameters from 3059 reflections
a = 21.5802 (6) Åθ = 2.9–66.9°
b = 15.3758 (4) ŵ = 0.86 mm1
c = 5.73626 (14) ÅT = 291 K
V = 1903.37 (8) Å3Prism, colourless
Z = 40.28 × 0.25 × 0.25 mm
F(000) = 800
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
3407 independent reflections
Radiation source: fine-focus sealed tube3079 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 0 pixels mm-1θmax = 67.1°, θmin = 3.5°
ω scansh = 2425
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1817
Tmin = 0.796, Tmax = 0.815l = 46
7406 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.1435P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3407 reflectionsΔρmax = 0.18 e Å3
262 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0064 (4)
Crystal data top
C18H28O8V = 1903.37 (8) Å3
Mr = 372.40Z = 4
Orthorhombic, P21212Cu Kα radiation
a = 21.5802 (6) ŵ = 0.86 mm1
b = 15.3758 (4) ÅT = 291 K
c = 5.73626 (14) Å0.28 × 0.25 × 0.25 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
3407 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3079 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 0.815Rint = 0.026
7406 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.18 e Å3
3407 reflectionsΔρmin = 0.14 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.67974 (7)0.17289 (11)0.8701 (3)0.0581 (4)
O1'0.43970 (8)0.11163 (12)0.6552 (3)0.0671 (5)
O20.63054 (6)0.23737 (9)0.5648 (2)0.0418 (3)
O2'0.48323 (7)0.15439 (10)0.9957 (3)0.0589 (4)
O30.66664 (9)0.40182 (11)0.5529 (3)0.0587 (4)
O3'0.53146 (7)0.31495 (9)1.0267 (2)0.0484 (3)
O40.69581 (7)0.31202 (12)1.0229 (3)0.0659 (5)
O4'0.48425 (7)0.23484 (9)0.4771 (2)0.0520 (3)
C10.65181 (9)0.24742 (14)0.9636 (4)0.0496 (5)
H10.62600.23251.09840.060*
C1'0.49427 (10)0.15364 (13)0.5914 (4)0.0506 (5)
H1'0.51990.11550.49440.061*
C20.61210 (9)0.28500 (12)0.7651 (3)0.0402 (4)
C2'0.52685 (9)0.17335 (13)0.8211 (3)0.0436 (4)
H2'0.56440.13820.83920.052*
C30.63097 (9)0.38264 (13)0.7514 (3)0.0440 (4)
H3A0.59380.41920.75380.053*
C3'0.54226 (9)0.27154 (13)0.8134 (3)0.0398 (4)
C40.66772 (10)0.39550 (15)0.9764 (4)0.0522 (5)
H40.63860.40871.10250.063*
C4'0.49988 (9)0.30348 (13)0.6225 (3)0.0430 (4)
C50.71713 (12)0.4649 (2)0.9732 (5)0.0689 (7)
C5'0.47675 (10)0.38174 (15)0.5919 (4)0.0528 (5)
C60.69055 (13)0.55472 (19)0.9364 (6)0.0798 (8)
H6A0.65810.56491.04760.120*
H6B0.67410.55910.78140.120*
H6C0.72260.59730.95700.120*
C6'0.43255 (12)0.40709 (18)0.4031 (5)0.0679 (7)
H6'A0.40210.44630.46480.102*
H6'B0.41240.35600.34370.102*
H6'C0.45480.43520.27940.102*
C70.68335 (10)0.18190 (16)0.6219 (4)0.0544 (5)
C7'0.42493 (10)0.13080 (15)0.8936 (4)0.0561 (6)
C80.74382 (10)0.2237 (2)0.5493 (5)0.0704 (7)
H8A0.77760.18600.58900.106*
H8B0.74860.27820.62880.106*
H8C0.74360.23350.38400.106*
C8'0.40403 (12)0.04898 (16)1.0145 (6)0.0737 (8)
H8'A0.43640.00631.00710.111*
H8'B0.36760.02680.93900.111*
H8'C0.39480.06171.17460.111*
C90.67296 (12)0.09468 (15)0.5109 (5)0.0677 (7)
H9A0.63400.07150.56210.101*
H9B0.70570.05580.55520.101*
H9C0.67250.10100.34440.101*
C9'0.37906 (14)0.2033 (2)0.9154 (7)0.0895 (10)
H9'A0.34090.18680.84200.134*
H9'B0.39520.25450.84080.134*
H9'C0.37170.21531.07720.134*
H5'0.4875 (10)0.4262 (15)0.710 (4)0.053 (6)*
H3'0.5069 (12)0.2890 (17)1.101 (5)0.058 (7)*
H30.6667 (15)0.360 (2)0.465 (7)0.098 (11)*
H5A0.7420 (12)0.4587 (17)1.114 (5)0.062 (7)*
H5B0.7476 (13)0.4461 (19)0.861 (6)0.073 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0578 (8)0.0739 (10)0.0424 (8)0.0150 (7)0.0015 (7)0.0186 (7)
O1'0.0701 (10)0.0719 (10)0.0592 (10)0.0228 (8)0.0003 (8)0.0176 (9)
O20.0427 (6)0.0527 (7)0.0299 (6)0.0081 (5)0.0010 (5)0.0049 (6)
O2'0.0650 (9)0.0692 (9)0.0425 (8)0.0251 (7)0.0092 (7)0.0090 (7)
O30.0817 (11)0.0624 (9)0.0319 (8)0.0183 (8)0.0031 (8)0.0065 (7)
O3'0.0597 (8)0.0523 (7)0.0330 (7)0.0070 (7)0.0067 (7)0.0056 (6)
O40.0618 (9)0.0881 (11)0.0478 (9)0.0116 (8)0.0254 (8)0.0167 (9)
O4'0.0642 (8)0.0547 (8)0.0370 (7)0.0048 (6)0.0076 (7)0.0093 (6)
C10.0485 (10)0.0668 (12)0.0334 (10)0.0007 (9)0.0060 (8)0.0112 (9)
C1'0.0598 (11)0.0494 (10)0.0426 (11)0.0011 (9)0.0042 (10)0.0135 (8)
C20.0438 (9)0.0489 (10)0.0279 (8)0.0001 (8)0.0022 (8)0.0044 (7)
C2'0.0465 (10)0.0446 (10)0.0396 (10)0.0009 (8)0.0041 (8)0.0010 (8)
C30.0470 (10)0.0539 (10)0.0311 (9)0.0067 (8)0.0039 (8)0.0044 (9)
C3'0.0451 (10)0.0434 (9)0.0310 (9)0.0013 (8)0.0014 (7)0.0023 (8)
C40.0516 (11)0.0718 (13)0.0334 (10)0.0135 (10)0.0070 (9)0.0048 (10)
C4'0.0397 (9)0.0521 (11)0.0371 (9)0.0013 (8)0.0010 (8)0.0058 (8)
C50.0569 (13)0.1004 (19)0.0494 (14)0.0283 (13)0.0095 (12)0.0036 (14)
C5'0.0528 (11)0.0533 (11)0.0525 (12)0.0079 (9)0.0060 (10)0.0030 (10)
C60.0788 (16)0.0816 (18)0.079 (2)0.0332 (14)0.0106 (16)0.0152 (15)
C6'0.0632 (13)0.0748 (16)0.0657 (16)0.0218 (12)0.0114 (12)0.0000 (13)
C70.0501 (11)0.0722 (14)0.0408 (11)0.0182 (10)0.0019 (9)0.0149 (10)
C7'0.0547 (11)0.0557 (12)0.0579 (13)0.0105 (10)0.0084 (11)0.0128 (11)
C80.0471 (11)0.1052 (19)0.0590 (15)0.0145 (12)0.0032 (11)0.0242 (15)
C8'0.0734 (15)0.0600 (13)0.088 (2)0.0209 (11)0.0128 (15)0.0109 (14)
C90.0784 (15)0.0659 (14)0.0587 (15)0.0272 (12)0.0125 (13)0.0090 (12)
C9'0.0757 (17)0.0783 (18)0.114 (3)0.0070 (14)0.0291 (19)0.0034 (18)
Geometric parameters (Å, º) top
O1—C11.401 (3)C4'—C5'1.315 (3)
O1—C71.433 (3)C5—C61.510 (4)
O1'—C1'1.392 (3)C5—H5A0.98 (3)
O1'—C7'1.434 (3)C5—H5B0.96 (3)
O2—C21.420 (2)C5'—C6'1.495 (3)
O2—C71.461 (2)C5'—H5'0.99 (2)
O2'—C2'1.405 (2)C6—H6A0.9600
O2'—C7'1.435 (3)C6—H6B0.9600
O3—C31.406 (2)C6—H6C0.9600
O3—H30.82 (4)C6'—H6'A0.9600
O3'—C3'1.413 (2)C6'—H6'B0.9600
O3'—H3'0.79 (3)C6'—H6'C0.9600
O4—C11.416 (3)C7—C91.501 (4)
O4—C41.444 (3)C7—C81.513 (3)
O4'—C4'1.387 (2)C7'—C9'1.496 (4)
O4'—C1'1.427 (3)C7'—C8'1.506 (4)
C1—C21.538 (3)C8—H8A0.9600
C1—H10.9800C8—H8B0.9600
C1'—C2'1.524 (3)C8—H8C0.9600
C1'—H1'0.9800C8'—H8'A0.9600
C2—C3'1.546 (3)C8'—H8'B0.9600
C2—C31.557 (3)C8'—H8'C0.9600
C2'—C3'1.547 (3)C9—H9A0.9600
C2'—H2'0.9800C9—H9B0.9600
C3—C41.528 (3)C9—H9C0.9600
C3—H3A0.9800C9'—H9'A0.9600
C3'—C4'1.509 (3)C9'—H9'B0.9600
C4—C51.508 (3)C9'—H9'C0.9600
C4—H40.9800
C1—O1—C7108.93 (17)C6—C5—H5A114.4 (16)
C1'—O1'—C7'110.09 (16)C4—C5—H5B106.1 (18)
C2—O2—C7109.79 (14)C6—C5—H5B116.1 (19)
C2'—O2'—C7'110.41 (16)H5A—C5—H5B99 (2)
C3—O3—H3109 (2)C4'—C5'—C6'125.3 (2)
C3'—O3'—H3'109.9 (19)C4'—C5'—H5'116.9 (14)
C1—O4—C4107.33 (15)C6'—C5'—H5'117.7 (14)
C4'—O4'—C1'110.65 (15)C5—C6—H6A109.5
O1—C1—O4112.17 (17)C5—C6—H6B109.5
O1—C1—C2105.30 (17)H6A—C6—H6B109.5
O4—C1—C2106.74 (16)C5—C6—H6C109.5
O1—C1—H1110.8H6A—C6—H6C109.5
O4—C1—H1110.8H6B—C6—H6C109.5
C2—C1—H1110.8C5'—C6'—H6'A109.5
O1'—C1'—O4'113.50 (18)C5'—C6'—H6'B109.5
O1'—C1'—C2'104.77 (17)H6'A—C6'—H6'B109.5
O4'—C1'—C2'107.05 (16)C5'—C6'—H6'C109.5
O1'—C1'—H1'110.4H6'A—C6'—H6'C109.5
O4'—C1'—H1'110.4H6'B—C6'—H6'C109.5
C2'—C1'—H1'110.4O1—C7—O2103.70 (17)
O2—C2—C1104.42 (15)O1—C7—C9109.1 (2)
O2—C2—C3'110.43 (15)O2—C7—C9108.06 (19)
C1—C2—C3'111.12 (15)O1—C7—C8111.2 (2)
O2—C2—C3112.52 (15)O2—C7—C8111.28 (18)
C1—C2—C3104.71 (15)C9—C7—C8113.0 (2)
C3'—C2—C3113.14 (16)O1'—C7'—O2'104.26 (17)
O2'—C2'—C1'105.43 (16)O1'—C7'—C9'112.3 (3)
O2'—C2'—C3'111.52 (16)O2'—C7'—C9'110.9 (2)
C1'—C2'—C3'105.59 (16)O1'—C7'—C8'109.5 (2)
O2'—C2'—H2'111.3O2'—C7'—C8'106.6 (2)
C1'—C2'—H2'111.3C9'—C7'—C8'112.7 (2)
C3'—C2'—H2'111.3C7—C8—H8A109.5
O3—C3—C4111.89 (16)C7—C8—H8B109.5
O3—C3—C2112.73 (17)H8A—C8—H8B109.5
C4—C3—C2102.58 (16)C7—C8—H8C109.5
O3—C3—H3A109.8H8A—C8—H8C109.5
C4—C3—H3A109.8H8B—C8—H8C109.5
C2—C3—H3A109.8C7'—C8'—H8'A109.5
O3'—C3'—C4'112.00 (15)C7'—C8'—H8'B109.5
O3'—C3'—C2104.63 (15)H8'A—C8'—H8'B109.5
C4'—C3'—C2114.66 (15)C7'—C8'—H8'C109.5
O3'—C3'—C2'113.63 (16)H8'A—C8'—H8'C109.5
C4'—C3'—C2'102.01 (15)H8'B—C8'—H8'C109.5
C2—C3'—C2'110.20 (15)C7—C9—H9A109.5
O4—C4—C5109.52 (19)C7—C9—H9B109.5
O4—C4—C3104.99 (17)H9A—C9—H9B109.5
C5—C4—C3116.62 (19)C7—C9—H9C109.5
O4—C4—H4108.5H9A—C9—H9C109.5
C5—C4—H4108.5H9B—C9—H9C109.5
C3—C4—H4108.5C7'—C9'—H9'A109.5
C5'—C4'—O4'121.58 (19)C7'—C9'—H9'B109.5
C5'—C4'—C3'128.69 (19)H9'A—C9'—H9'B109.5
O4'—C4'—C3'109.65 (16)C7'—C9'—H9'C109.5
C4—C5—C6112.3 (2)H9'A—C9'—H9'C109.5
C4—C5—H5A108.0 (16)H9'B—C9'—H9'C109.5
C7—O1—C1—O490.8 (2)C3—C2—C3'—C2'179.19 (16)
C7—O1—C1—C224.9 (2)O2'—C2'—C3'—O3'24.3 (2)
C4—O4—C1—O1145.01 (18)C1'—C2'—C3'—O3'138.29 (16)
C4—O4—C1—C230.2 (2)O2'—C2'—C3'—C4'96.47 (18)
C7'—O1'—C1'—O4'95.8 (2)C1'—C2'—C3'—C4'17.55 (19)
C7'—O1'—C1'—C2'20.6 (2)O2'—C2'—C3'—C2141.33 (16)
C4'—O4'—C1'—O1'107.62 (19)C1'—C2'—C3'—C2104.65 (18)
C4'—O4'—C1'—C2'7.5 (2)C1—O4—C4—C5164.72 (19)
C7—O2—C2—C16.9 (2)C1—O4—C4—C338.8 (2)
C7—O2—C2—C3'126.46 (17)O3—C3—C4—O490.6 (2)
C7—O2—C2—C3106.07 (18)C2—C3—C4—O430.5 (2)
O1—C1—C2—O210.73 (19)O3—C3—C4—C530.8 (3)
O4—C1—C2—O2108.66 (18)C2—C3—C4—C5151.9 (2)
O1—C1—C2—C3'108.34 (18)C1'—O4'—C4'—C5'157.3 (2)
O4—C1—C2—C3'132.27 (17)C1'—O4'—C4'—C3'19.9 (2)
O1—C1—C2—C3129.19 (17)O3'—C3'—C4'—C5'32.0 (3)
O4—C1—C2—C39.8 (2)C2—C3'—C4'—C5'87.0 (3)
C7'—O2'—C2'—C1'4.3 (2)C2'—C3'—C4'—C5'153.9 (2)
C7'—O2'—C2'—C3'109.84 (19)O3'—C3'—C4'—O4'144.87 (16)
O1'—C1'—C2'—O2'9.9 (2)C2—C3'—C4'—O4'96.09 (19)
O4'—C1'—C2'—O2'110.96 (17)C2'—C3'—C4'—O4'23.00 (19)
O1'—C1'—C2'—C3'128.03 (17)O4—C4—C5—C6177.3 (2)
O4'—C1'—C2'—C3'7.2 (2)C3—C4—C5—C663.7 (3)
O2—C2—C3—O34.8 (2)O4'—C4'—C5'—C6'0.5 (4)
C1—C2—C3—O3107.97 (18)C3'—C4'—C5'—C6'177.0 (2)
C3'—C2—C3—O3130.87 (17)C1—O1—C7—O228.9 (2)
O2—C2—C3—C4125.35 (16)C1—O1—C7—C9143.91 (18)
C1—C2—C3—C412.5 (2)C1—O1—C7—C890.7 (2)
C3'—C2—C3—C4108.61 (18)C2—O2—C7—O121.6 (2)
O2—C2—C3'—O3'174.56 (14)C2—O2—C7—C9137.29 (18)
C1—C2—C3'—O3'59.2 (2)C2—O2—C7—C898.0 (2)
C3—C2—C3'—O3'58.30 (19)C1'—O1'—C7'—O2'23.2 (3)
O2—C2—C3'—C4'62.3 (2)C1'—O1'—C7'—C9'97.0 (2)
C1—C2—C3'—C4'177.75 (17)C1'—O1'—C7'—C8'137.0 (2)
C3—C2—C3'—C4'64.8 (2)C2'—O2'—C7'—O1'16.3 (2)
O2—C2—C3'—C2'52.04 (19)C2'—O2'—C7'—C9'104.8 (2)
C1—C2—C3'—C2'63.4 (2)C2'—O2'—C7'—C8'132.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.79 (3)2.36 (3)3.038 (2)144 (2)
O3—H3···O20.79 (3)2.22 (3)2.685 (2)119 (2)
O3—H3···O20.82 (4)2.11 (3)2.647 (2)122 (3)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3'—H3'···O4'i0.79 (3)2.36 (3)3.038 (2)144 (2)
O3'—H3'···O2'0.79 (3)2.22 (3)2.685 (2)119 (2)
O3—H3···O20.82 (4)2.11 (3)2.647 (2)122 (3)
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (grant No. 81172937).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarada, S., Mizuta, E. & Kishi, T. (1981). Tetrahedron, 37, 1317–1327.  CrossRef CAS Web of Science Google Scholar
First citationIwasa, T., Kusuka, T. & Suetomi, K. (1978). J. Antibiot. 31, 511–518.  CrossRef CAS PubMed Google Scholar
First citationLiu, H.-M., Liu, F.-W., Song, X.-P. & Zhang, J.-Y. (2006). Tetrahedron, 17, 3230–3236.  CrossRef CAS Google Scholar
First citationMeyer, R. & Jochims (1969). Chem. Ber. 102, 4199–4206.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds