organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Cyclo­propyl-1-(6′-de­­oxy-1′,2′-O-iso­propyl­­idene-α-D-gluco­furanos­yl)-1H-1,2,3-triazole

aNew Drug Reseach & Development Center, Zhengzhou Univresity, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: zqr409@163.com

(Received 16 July 2013; accepted 31 July 2013; online 7 August 2013)

In the title compound, C14H21N3O5, the tetra­hydro­furan ring adopts an envelope conformation with the C atom bearing the substituent as the flap. The penta­furan­ose ring adopts a twisted conformation about the C—C bond fusing the rings. The dihedral angle between these rings (all atoms), which are cis fused, is 72.89 (14)°. The cyclo­propane ring is disordered over two orientations in a 0.576 (5):0.424 (5) ratio; the dihedral angles subtended to the triazole ring are 53.3 (11) and 46.6 (9)°, respectively. In the crystal, the mol­ecules are linked by O—H⋯N and O—H⋯O hydrogen bonds, generating (001) sheets. A weak C—H⋯O inter­action also occurs.

Related literature

For further synthetic details, see: Pradere et al. (2008[Pradere, U., Roy, V. & McBrayer, R. T. (2008). Tetrahedron, 64, 9044-9051.]). For background to 1,2,3-triazoles, see: Alvarez et al. (1994[Alvarez, R., Velazquez, S., San-Felix, A., Aquaro, S. & De Clercq, E. (1994). J. Med. Chem. 37, 4185-4194.]); Genin et al. (2000[Genin, M. J., Allwine, D. A., Anderson, D. J. & Barbachyn, M. (2000). J. Med. Chem., 43, 953-970.]).

[Scheme 1]

Experimental

Crystal data
  • C14H21N3O5

  • Mr = 311.34

  • Orthorhombic, P 21 21 21

  • a = 8.5905 (3) Å

  • b = 8.7215 (3) Å

  • c = 20.7373 (7) Å

  • V = 1553.68 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.85 mm−1

  • T = 291 K

  • 0.22 × 0.2 × 0.18 mm

Data collection
  • Bruker MWPC diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). FRAMBO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsion, USA.]) Tmin = 0.835, Tmax = 0.862

  • 5692 measured reflections

  • 2778 independent reflections

  • 2503 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.113

  • S = 1.06

  • 2778 reflections

  • 220 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N3i 0.83 (2) 1.95 (2) 2.767 (3) 171 (3)
O5—H5⋯O3ii 0.82 (3) 2.02 (3) 2.821 (3) 164 (3)
C7—H7⋯O1iii 0.93 2.59 3.496 (3) 165
Symmetry codes: (i) x, y+1, z; (ii) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+1]; (iii) x+1, y, z.

Data collection: FRAMBO (Bruker, 2004[Bruker (2004). FRAMBO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsion, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). FRAMBO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsion, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

1,2,3-Triazoles have been shown to have various biological activities, such as anti-HIV (Alvarez et al., 1994) and antibacterial (Genin et al., 2000). C14H21N3O5, the title compound (I), is a new 1,2,3-triazole. The nucleus of the molecule consists of one methylenedioxy rings, one 1,2,3-triazole ring, one cyclopropyl ring and one tetrahydrofuran ring (Fig. 1). The tetrahydrofuran ring fuses with one methylenedioxy ring,having the cis arrangement at the ring junctions and giving a V-shaped molecule.

The crystal packing, which features O—H···N hydrogen bonds (Table 1), is shown in Figure 2.

Related literature top

For further synthetic details, see: Pradere et al. (2008). For background to 1,2,3-triazoles, see: Alvarez et al. (1994); Genin et al. (2000).

Experimental top

The title compound (I) was synthesized from 6-azido-6-deoxy-1,2-O-isopropylidene-alpha -D-glucofuranose, whose starting material was D-glucose. The copper catalyzed reaction of 6-azido-6-deoxy-1,2-O-isopropylidene-alpha -D-glucofuranose(1 mmol) and cyclopropylacetylene (1.2 mmol) in water/tetrahydrofuran (2 ml:2 ml) was stirred for 3 h at room temperature. The mixture was filtered and evaporated. and the residue extracted with EtOAc (50 ml). The organic layer was washed brine, dried over Na2SO4 for 6 h, filtered, and the solvent evaporated in vacuo. Purification of the residue by column chromatography gave the title compound as white solid.

Colourless prisms were grown by slow evaporation from acetone solution at room temperature for two weeks. mp:389–391k; Rf = 0.30 (petroleum ether/EtOAc, 1:1); 1H NMR (400 MHz, DMSO-d6)σ: 7.69(1H, s), 5.86(1H, d, J = 3.6 Hz), 5.27(1H, d, J = 4.9 Hz), 5.19(1H, d, J = 6.4 Hz), 4.47(1H, dt, J = 10.2, 5.1 Hz), 4.42(1H, d, J = 3.6 Hz), 4.23(1H, d, J = 14.0, 8.0 Hz), 4.08–3.93(2H, m), 3.75(1H, dd, J = 8.8, 2.5 Hz), 1.92(1H, dq, J = 8.4, 5.0 Hz), 1.37(3H, s), 1.24(3H, s), 0.94–0.82(2H, m), 0.79–0.63(2H, m); 13C NMR (100 MHz, DMSO-d6) σ: 153.61, 126.82, 115.95, 109.77, 89.90, 86.23, 78.05, 71.49, 58.80, 31.88, 31.39, 12.70, 11.72.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H are 0.96 Å (methylene) or 0.93 Å (aromatic), 0.82 Å (hydroxyl)and Uiso(H) =1.2Ueq(C).

Attempts to confirm the absolute structure by refinement of the Flack parameter in the presence of 1156 sets of Friedel equivalents led to an inconclusive value of 0.0 (3). Therefore, the absolute configuration was assigned to correspond with that of the known chiral centres in a precursor molecule, which remained unchanged during the synthesis of the title compound.

Computing details top

Data collection: FRAMBO (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram for (I).
4-Cyclopropyl-1-(6'-Deoxy-1',2'-O-isopropylidene-α-D-glucofuranosyl)-1H-1,2,3-triazole top
Crystal data top
C14H21N3O5Dx = 1.331 Mg m3
Mr = 311.34Melting point = 389–391 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
a = 8.5905 (3) ÅCell parameters from 2697 reflections
b = 8.7215 (3) Åθ = 4.3–67.0°
c = 20.7373 (7) ŵ = 0.85 mm1
V = 1553.68 (9) Å3T = 291 K
Z = 4PRISMATIC, colourless
F(000) = 6640.22 × 0.2 × 0.18 mm
Data collection top
Bruker MWPC
diffractometer
2778 independent reflections
Radiation source: fine-focus sealed tube2503 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 0 pixels mm-1θmax = 67.1°, θmin = 4.3°
phi and ω scansh = 106
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 610
Tmin = 0.835, Tmax = 0.862l = 2422
5692 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.1063P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2778 reflectionsΔρmax = 0.25 e Å3
220 parametersΔρmin = 0.20 e Å3
2 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0020 (3)
Crystal data top
C14H21N3O5V = 1553.68 (9) Å3
Mr = 311.34Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 8.5905 (3) ŵ = 0.85 mm1
b = 8.7215 (3) ÅT = 291 K
c = 20.7373 (7) Å0.22 × 0.2 × 0.18 mm
Data collection top
Bruker MWPC
diffractometer
2778 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2503 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 0.862Rint = 0.028
5692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.25 e Å3
2778 reflectionsΔρmin = 0.20 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0805 (2)0.9329 (2)0.39252 (9)0.0556 (5)
O20.0625 (2)1.0684 (2)0.31968 (8)0.0541 (5)
O30.2108 (2)1.32136 (18)0.44356 (9)0.0487 (4)
O40.12445 (19)0.99779 (18)0.46166 (8)0.0470 (4)
O50.5249 (2)1.1144 (2)0.44763 (9)0.0517 (4)
N10.4448 (2)0.7779 (2)0.46218 (9)0.0395 (4)
N20.3396 (2)0.6662 (2)0.45796 (11)0.0461 (5)
N30.3860 (3)0.5760 (2)0.41084 (11)0.0536 (5)
C10.0064 (3)1.0493 (3)0.42728 (12)0.0427 (5)
H10.08001.10090.45610.051*
C20.0544 (3)1.1602 (3)0.37614 (12)0.0458 (5)
H20.01191.25080.37080.055*
C30.2187 (3)1.1997 (3)0.39848 (11)0.0398 (5)
H3A0.28711.22450.36210.048*
C40.2639 (2)1.0486 (2)0.43038 (11)0.0378 (5)
H40.29220.97450.39680.045*
C50.3927 (2)1.0555 (2)0.47975 (11)0.0401 (5)
H5A0.36251.12730.51390.048*
C60.4246 (3)0.8990 (3)0.51006 (11)0.0427 (5)
H6A0.51790.90560.53630.051*
H6B0.33870.87230.53820.051*
C70.5573 (3)0.7605 (3)0.41813 (13)0.0486 (6)
H70.64290.82380.41150.058*
C80.5199 (4)0.6308 (3)0.38513 (14)0.0560 (7)
C90.6279 (7)0.5539 (8)0.3376 (4)0.0575 (13)0.576 (5)
H90.72070.61180.32470.069*0.576 (5)
C100.5544 (9)0.4602 (11)0.2880 (4)0.0937 (19)0.576 (5)
H10A0.44190.45120.28900.112*0.576 (5)
H10B0.59900.46320.24500.112*0.576 (5)
C110.6422 (10)0.3805 (10)0.3380 (4)0.076 (2)0.576 (5)
H11A0.74180.33610.32620.091*0.576 (5)
H11B0.58420.32410.37030.091*0.576 (5)
C120.0353 (3)0.9372 (3)0.32677 (12)0.0537 (6)
C130.0573 (5)0.7939 (4)0.31160 (18)0.0822 (10)
H13A0.14800.79010.33860.123*
H13B0.08860.79570.26720.123*
H13C0.00600.70510.31940.123*
C140.1795 (4)0.9543 (5)0.28580 (19)0.0976 (14)
H14A0.24610.86720.29220.146*
H14B0.15030.96060.24120.146*
H14C0.23381.04600.29800.146*
C9A0.5637 (10)0.5566 (12)0.3225 (5)0.0575 (13)0.424 (5)
H9A0.53280.61240.28350.069*0.424 (5)
C10A0.7242 (11)0.4953 (13)0.3224 (5)0.0937 (19)0.424 (5)
H10C0.77980.49170.36310.112*0.424 (5)
H10D0.78830.51360.28470.112*0.424 (5)
C11A0.5835 (14)0.3960 (15)0.3149 (7)0.076 (2)0.424 (5)
H11C0.56340.35240.27270.091*0.424 (5)
H11D0.55500.33070.35090.091*0.424 (5)
H50.591 (3)1.141 (4)0.4739 (12)0.059 (9)*
H30.266 (3)1.393 (3)0.4302 (14)0.058 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0553 (10)0.0571 (10)0.0543 (9)0.0242 (9)0.0018 (8)0.0009 (8)
O20.0620 (11)0.0563 (10)0.0439 (8)0.0223 (9)0.0041 (8)0.0044 (8)
O30.0526 (9)0.0281 (7)0.0655 (11)0.0076 (7)0.0121 (8)0.0079 (7)
O40.0394 (8)0.0445 (8)0.0573 (9)0.0097 (7)0.0010 (7)0.0133 (7)
O50.0420 (9)0.0476 (9)0.0654 (11)0.0149 (7)0.0044 (8)0.0029 (8)
N10.0358 (9)0.0308 (8)0.0521 (10)0.0021 (7)0.0022 (8)0.0047 (8)
N20.0431 (10)0.0332 (9)0.0621 (11)0.0064 (8)0.0011 (9)0.0018 (9)
N30.0657 (13)0.0322 (9)0.0628 (12)0.0073 (10)0.0019 (10)0.0037 (9)
C10.0357 (10)0.0382 (11)0.0542 (12)0.0002 (9)0.0036 (10)0.0022 (10)
C20.0435 (12)0.0362 (11)0.0579 (14)0.0003 (10)0.0021 (10)0.0052 (10)
C30.0414 (11)0.0291 (10)0.0488 (12)0.0028 (9)0.0066 (10)0.0005 (9)
C40.0369 (10)0.0283 (10)0.0483 (11)0.0003 (8)0.0021 (9)0.0038 (9)
C50.0384 (11)0.0320 (10)0.0498 (11)0.0040 (9)0.0006 (9)0.0061 (9)
C60.0415 (12)0.0397 (11)0.0470 (11)0.0034 (9)0.0059 (9)0.0011 (10)
C70.0426 (12)0.0357 (11)0.0676 (15)0.0003 (10)0.0094 (11)0.0072 (10)
C80.0673 (17)0.0349 (11)0.0658 (15)0.0006 (11)0.0148 (13)0.0022 (11)
C90.049 (4)0.0495 (16)0.074 (4)0.001 (3)0.006 (3)0.003 (2)
C100.074 (3)0.127 (5)0.080 (3)0.012 (4)0.000 (3)0.046 (4)
C110.089 (6)0.047 (2)0.091 (6)0.017 (4)0.022 (4)0.001 (4)
C120.0585 (15)0.0525 (14)0.0502 (12)0.0192 (12)0.0062 (12)0.0014 (12)
C130.091 (2)0.0624 (19)0.093 (2)0.0184 (18)0.019 (2)0.0190 (18)
C140.092 (3)0.107 (3)0.093 (2)0.047 (2)0.042 (2)0.038 (2)
C9A0.049 (4)0.0495 (16)0.074 (4)0.001 (3)0.006 (3)0.003 (2)
C10A0.074 (3)0.127 (5)0.080 (3)0.012 (4)0.000 (3)0.046 (4)
C11A0.089 (6)0.047 (2)0.091 (6)0.017 (4)0.022 (4)0.001 (4)
Geometric parameters (Å, º) top
O1—C11.399 (3)C7—C81.361 (4)
O1—C121.418 (3)C8—C91.511 (8)
O2—C21.420 (3)C8—C9A1.499 (12)
O2—C121.428 (3)C9—H90.9800
O3—C31.416 (3)C9—C101.459 (10)
O3—H30.829 (18)C9—C111.517 (11)
O4—C11.405 (3)C10—H10A0.9700
O4—C41.432 (3)C10—H10B0.9700
O5—C51.413 (3)C10—C111.458 (11)
O5—H50.821 (18)C11—H11A0.9700
N1—N21.332 (3)C11—H11B0.9700
N1—C61.460 (3)C12—C131.514 (4)
N1—C71.338 (3)C12—C141.509 (4)
N2—N31.316 (3)C13—H13A0.9600
N3—C81.355 (4)C13—H13B0.9600
C1—H10.9800C13—H13C0.9600
C1—C21.527 (3)C14—H14A0.9600
C2—H20.9800C14—H14B0.9600
C2—C31.525 (3)C14—H14C0.9600
C3—H3A0.9800C9A—H9A0.9800
C3—C41.525 (3)C9A—C10A1.479 (12)
C4—H40.9800C9A—C11A1.420 (17)
C4—C51.509 (3)C10A—H10C0.9700
C5—H5A0.9800C10A—H10D0.9700
C5—C61.528 (3)C10A—C11A1.495 (18)
C6—H6A0.9700C11A—H11C0.9700
C6—H6B0.9700C11A—H11D0.9700
C7—H70.9300
C1—O1—C12110.60 (18)C8—C9—H9116.7
C2—O2—C12109.78 (18)C8—C9—C11119.2 (6)
C3—O3—H3108 (2)C10—C9—C8116.3 (5)
C1—O4—C4109.89 (16)C10—C9—H9116.7
C5—O5—H5110 (2)C10—C9—C1158.6 (5)
N2—N1—C6119.59 (19)C11—C9—H9116.7
N2—N1—C7111.23 (19)C9—C10—H10A117.5
C7—N1—C6129.17 (19)C9—C10—H10B117.5
N3—N2—N1106.30 (19)H10A—C10—H10B114.6
N2—N3—C8109.8 (2)C11—C10—C962.7 (5)
O1—C1—O4113.18 (19)C11—C10—H10A117.5
O1—C1—H1110.7C11—C10—H10B117.5
O1—C1—C2104.92 (19)C9—C11—H11A117.9
O4—C1—H1110.7C9—C11—H11B117.9
O4—C1—C2106.35 (17)C10—C11—C958.7 (5)
C2—C1—H1110.7C10—C11—H11A117.9
O2—C2—C1103.44 (18)C10—C11—H11B117.9
O2—C2—H2112.9H11A—C11—H11B115.1
O2—C2—C3109.4 (2)O1—C12—O2106.32 (19)
C1—C2—H2112.9O1—C12—C13108.8 (3)
C3—C2—C1104.40 (18)O1—C12—C14108.6 (3)
C3—C2—H2112.9O2—C12—C13109.3 (2)
O3—C3—C2109.04 (18)O2—C12—C14110.2 (3)
O3—C3—H3A111.8C14—C12—C13113.3 (3)
O3—C3—C4111.92 (19)C12—C13—H13A109.5
C2—C3—H3A111.8C12—C13—H13B109.5
C2—C3—C499.90 (17)C12—C13—H13C109.5
C4—C3—H3A111.8H13A—C13—H13B109.5
O4—C4—C3104.53 (17)H13A—C13—H13C109.5
O4—C4—H4109.0H13B—C13—H13C109.5
O4—C4—C5108.58 (18)C12—C14—H14A109.5
C3—C4—H4109.0C12—C14—H14B109.5
C5—C4—C3116.50 (18)C12—C14—H14C109.5
C5—C4—H4109.0H14A—C14—H14B109.5
O5—C5—C4106.52 (18)H14A—C14—H14C109.5
O5—C5—H5A108.7H14B—C14—H14C109.5
O5—C5—C6111.98 (18)C8—C9A—H9A115.6
C4—C5—H5A108.7C10A—C9A—C8113.0 (7)
C4—C5—C6112.02 (17)C10A—C9A—H9A115.6
C6—C5—H5A108.7C11A—C9A—C8123.5 (10)
N1—C6—C5112.82 (18)C11A—C9A—H9A115.6
N1—C6—H6A109.0C11A—C9A—C10A62.1 (8)
N1—C6—H6B109.0C9A—C10A—H10C118.1
C5—C6—H6A109.0C9A—C10A—H10D118.1
C5—C6—H6B109.0C9A—C10A—C11A57.0 (7)
H6A—C6—H6B107.8H10C—C10A—H10D115.3
N1—C7—H7127.3C11A—C10A—H10C118.1
N1—C7—C8105.5 (2)C11A—C10A—H10D118.1
C8—C7—H7127.3C9A—C11A—C10A60.9 (7)
N3—C8—C7107.2 (2)C9A—C11A—H11C117.7
N3—C8—C9128.4 (3)C9A—C11A—H11D117.7
N3—C8—C9A113.7 (4)C10A—C11A—H11C117.7
C7—C8—C9123.5 (4)C10A—C11A—H11D117.7
C7—C8—C9A137.3 (4)H11C—C11A—H11D114.8
C9A—C8—C924.4 (3)
O1—C1—C2—O221.9 (2)C2—O2—C12—O111.0 (3)
O1—C1—C2—C3136.45 (19)C2—O2—C12—C13128.3 (3)
O2—C2—C3—O3164.93 (18)C2—O2—C12—C14106.5 (3)
O2—C2—C3—C477.6 (2)C2—C3—C4—O438.2 (2)
O3—C3—C4—O477.1 (2)C2—C3—C4—C5158.00 (19)
O3—C3—C4—C542.7 (3)C3—C4—C5—O559.1 (2)
O4—C1—C2—O298.2 (2)C3—C4—C5—C6178.16 (19)
O4—C1—C2—C316.3 (2)C4—O4—C1—O1106.0 (2)
O4—C4—C5—O5176.68 (17)C4—O4—C1—C28.7 (2)
O4—C4—C5—C660.6 (2)C4—C5—C6—N150.0 (2)
O5—C5—C6—N169.6 (2)C6—N1—N2—N3179.2 (2)
N1—N2—N3—C80.2 (3)C6—N1—C7—C8179.0 (2)
N1—C7—C8—N30.1 (3)C7—N1—N2—N30.3 (3)
N1—C7—C8—C9170.2 (4)C7—N1—C6—C565.6 (3)
N1—C7—C8—C9A163.2 (6)C7—C8—C9—C10155.2 (6)
N2—N1—C6—C5113.0 (2)C7—C8—C9—C11137.6 (6)
N2—N1—C7—C80.2 (3)C7—C8—C9A—C10A70.7 (11)
N2—N3—C8—C70.1 (3)C7—C8—C9A—C11A141.4 (9)
N2—N3—C8—C9169.7 (4)C8—C9—C10—C11109.7 (7)
N2—N3—C8—C9A167.5 (5)C8—C9—C11—C10104.7 (7)
N3—C8—C9—C1036.6 (9)C8—C9A—C10A—C11A116.9 (11)
N3—C8—C9—C1130.5 (8)C8—C9A—C11A—C10A100.3 (9)
N3—C8—C9A—C10A127.0 (8)C9—C8—C9A—C10A5.6 (10)
N3—C8—C9A—C11A56.2 (10)C9—C8—C9A—C11A76.4 (16)
C1—O1—C12—O24.1 (3)C12—O1—C1—O499.3 (2)
C1—O1—C12—C13113.5 (2)C12—O1—C1—C216.3 (3)
C1—O1—C12—C14122.7 (3)C12—O2—C2—C120.2 (3)
C1—O4—C4—C330.3 (2)C12—O2—C2—C3131.0 (2)
C1—O4—C4—C5155.31 (18)C9A—C8—C9—C1022.7 (12)
C1—C2—C3—O384.9 (2)C9A—C8—C9—C1189.8 (16)
C1—C2—C3—C432.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N3i0.83 (2)1.95 (2)2.767 (3)171 (3)
O5—H5···O3ii0.82 (3)2.02 (3)2.821 (3)164 (3)
C7—H7···O1iii0.932.593.496 (3)165
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+5/2, z+1; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N3i0.829 (18)1.945 (19)2.767 (3)171 (3)
O5—H5···O3ii0.82 (3)2.02 (3)2.821 (3)164 (3)
C7—H7···O1iii0.932.593.496 (3)165
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+5/2, z+1; (iii) x+1, y, z.
 

Acknowledgements

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (grant No. 81172937).

References

First citationAlvarez, R., Velazquez, S., San-Felix, A., Aquaro, S. & De Clercq, E. (1994). J. Med. Chem. 37, 4185–4194.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2004). FRAMBO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsion, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGenin, M. J., Allwine, D. A., Anderson, D. J. & Barbachyn, M. (2000). J. Med. Chem., 43, 953–970.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPradere, U., Roy, V. & McBrayer, R. T. (2008). Tetrahedron, 64, 9044–9051.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds