organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3,5-Dioxo-4-aza­tri­cyclo­[5.2.1.02,6]dec-8-en-4-yl)acetic acid

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and cDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 31 July 2013; accepted 4 August 2013; online 10 August 2013)

The asymmetric unit of the title compound, C11H11NO4, contains two mol­ecules, A and B, with different conformations: in mol­ecule A, the norborne and carb­oxy­lic acid groups lie to the same side of the heterocycle, whereas in a mol­ecule B, they lie on opposite sides. In the crystal, the A mol­ecules form R22(8) carb­oxy­lic acid inversion dimers, linked by pairs of O—H⋯O hydrogen bonds. The B mol­ecules link to one of the ketone O atoms of the A mol­ecule by an O—H⋯O inter­action, resulting in tetra­mers (two A and two B mol­ecules). The tetra­mers are linked by weak C—H⋯O inter­actions, generating a three-dimensional network.

Related literature

For a related structure, see: Bartkowska et al. (1997[Bartkowska, B., Bohnen, F. M., Krüger, C. & Maier, W. F. (1997). Acta Cryst. C53, 521-522.]). For further synthetic details, see: Biagini et al. (1995[Biagini, S. C. G., Bush, S. M., Gibson, V. C., Mazzariol, L., North, M., Teasdale, W. G., Williams, C. M., Zagotto, G. & Zamuner, D. (1995). Tetrahedron, 51, 7247-7262.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11NO4

  • Mr = 221.21

  • Triclinic, [P \overline 1]

  • a = 6.5060 (3) Å

  • b = 11.8417 (4) Å

  • c = 14.1794 (5) Å

  • α = 104.385 (2)°

  • β = 97.905 (2)°

  • γ = 99.549 (2)°

  • V = 1025.07 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.28 × 0.20 × 0.16 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.983

  • 15543 measured reflections

  • 3985 independent reflections

  • 3245 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.107

  • S = 1.03

  • 3985 reflections

  • 292 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.84 2.6504 (18) 170
O5—H5A⋯O3ii 0.82 1.86 2.6509 (18) 163
C11—H11⋯O8iii 0.93 2.57 3.440 (2) 156
C15—H15⋯O8iv 0.98 2.33 3.201 (2) 147
C16—H16⋯O1iv 0.98 2.48 3.1473 (19) 125
Symmetry codes: (i) -x-1, -y+1, -z+1; (ii) -x, -y+2, -z+1; (iii) -x, -y+1, -z+1; (iv) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As shown in Fig. 1, the asymmetric unit of the title compound contains two independently molecules 1 (with N1) and 2 (with N2). The norbornene units of the molecules 1 and 2 are bound endo with respect to acetic acid. The sum of the three C—N—C angles at the imide N atom is 359.61 (13)° for molecule 1 and 359.88 (15) ° for molecule 2. In molecule 1, the N1—C2 bond length [1.448 (2) Å] is longer than the N1—C3 [1.3663 (19) Å] and N1—C6 [1.4044 (19) Å] bond lengths. In molecule 2, the corresponding bond lengths are N2—C13 of 1.442 (2) Å, N2—C17 of 1.377 (2) Å and N2—C14 of 1.384 (2) Å, respectively. As expected, this indicates a delocalized π-electron system along the imide parts of the molecules, as in a similar structure (Bartkowska et al., 1997).

In the crystal, pairs of molecules generate a dimer of the R22(8) motif by O—H···O hydrogen bonds; these two molecules are linked to the other two molecules by O—H···O hydrogen bonds (Table 1, Fig. 2). In addition, C—H···O hydrogen bonds contribute to the overall crystal packing.

Related literature top

For a related structure, see: Bartkowska et al. (1997). For further synthetic details, see: Biagini et al. (1995).

Experimental top

To endo-5-norbornene-2,3-dicarboxylic anhydride (16.41 g, 100.0 mmol) dissolved in DMF (30 ml) was added glycine (7.50 g, 100.0 mmol). The reaction mixture was refluxed for 24 h, coolded to room temperature, diluted with ethyl acetate (70 ml), and washed with saturated aqueous ammonium chloride solution (5×50 ml). The organic phase was dried on anhydrous Na2SO4, filtered and evaporated in vacuo. The residue was recrystallized (5 times) from etheyl acetate giving N-5-norbornene-2,3-dicarboxyloylglycine as a white crystalline solid (yield 61%); mp: 422–424 K (Biagini et al., 1995).

Refinement top

All H atoms were geometrically placed [(O—H = 0.82 Å (hydroxyl), C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene) and C—H = 0.98 Å (methine)] and refined as riding with Uiso(H) = 1.5Ueq(O) for the hydroxyl group and 1.2Ueq(C) for the others.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the two molecules of the title compound in the asymmetric unit. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the dimer and C—H···O hydrogen bonds of the title compound along the a axis.
2-(3,5-Dioxo-4-azatricyclo[5.2.1.02,6]dec-8-en-4-yl)acetic acid top
Crystal data top
C11H11NO4Z = 4
Mr = 221.21F(000) = 464
Triclinic, P1Dx = 1.433 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5060 (3) ÅCell parameters from 318 reflections
b = 11.8417 (4) Åθ = 3.1–22.5°
c = 14.1794 (5) ŵ = 0.11 mm1
α = 104.385 (2)°T = 296 K
β = 97.905 (2)°Plate, colourless
γ = 99.549 (2)°0.28 × 0.20 × 0.16 mm
V = 1025.07 (7) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3985 independent reflections
Radiation source: fine-focus sealed tube3245 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.970, Tmax = 0.983k = 1412
15543 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.3164P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3985 reflectionsΔρmax = 0.30 e Å3
292 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.031 (3)
Crystal data top
C11H11NO4γ = 99.549 (2)°
Mr = 221.21V = 1025.07 (7) Å3
Triclinic, P1Z = 4
a = 6.5060 (3) ÅMo Kα radiation
b = 11.8417 (4) ŵ = 0.11 mm1
c = 14.1794 (5) ÅT = 296 K
α = 104.385 (2)°0.28 × 0.20 × 0.16 mm
β = 97.905 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3985 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3245 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.983Rint = 0.032
15543 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
3985 reflectionsΔρmin = 0.21 e Å3
292 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.35166 (19)0.60085 (12)0.60965 (8)0.0532 (4)
O20.34179 (18)0.59322 (10)0.45144 (8)0.0457 (4)
O30.18607 (17)0.89261 (10)0.44282 (8)0.0444 (4)
O40.2190 (2)0.64574 (12)0.52862 (10)0.0615 (5)
N10.00738 (18)0.77624 (10)0.50666 (9)0.0330 (3)
C10.2816 (2)0.64006 (14)0.54167 (11)0.0370 (5)
C20.1179 (3)0.75396 (14)0.57948 (11)0.0398 (5)
C30.0349 (2)0.84335 (12)0.44353 (10)0.0326 (4)
C40.1310 (2)0.84417 (13)0.37965 (11)0.0367 (4)
C50.2676 (2)0.75925 (14)0.40793 (11)0.0392 (5)
C60.1738 (2)0.71746 (14)0.48685 (11)0.0386 (5)
C70.2420 (3)0.66135 (15)0.30761 (13)0.0483 (6)
C80.2424 (3)0.74010 (16)0.23690 (13)0.0518 (6)
C90.0474 (3)0.78668 (16)0.26604 (12)0.0488 (6)
C100.0999 (3)0.67172 (19)0.25673 (13)0.0596 (7)
C110.0136 (3)0.59804 (16)0.28153 (14)0.0595 (6)
O50.2685 (2)1.02427 (13)0.71240 (10)0.0613 (5)
O60.4902 (2)0.91401 (12)0.65030 (10)0.0590 (5)
O70.8866 (3)0.94587 (15)0.86157 (14)0.0927 (7)
O80.2460 (2)0.69605 (13)0.78880 (11)0.0682 (5)
N20.5459 (2)0.83974 (12)0.82437 (10)0.0422 (4)
C120.4055 (3)0.95414 (13)0.71640 (12)0.0413 (5)
C130.4395 (3)0.93605 (16)0.81844 (13)0.0537 (6)
C140.7635 (3)0.85293 (17)0.84901 (14)0.0524 (6)
C150.8085 (3)0.73603 (18)0.85732 (13)0.0520 (6)
C160.5937 (3)0.65205 (14)0.83248 (11)0.0439 (5)
C170.4369 (3)0.72531 (14)0.81157 (11)0.0399 (5)
C180.5844 (3)0.60936 (17)0.92804 (13)0.0589 (7)
C190.8155 (4)0.60299 (19)0.95558 (15)0.0725 (9)
C200.8975 (3)0.73413 (19)0.96526 (15)0.0611 (7)
C210.7602 (4)0.79025 (19)1.03067 (13)0.0604 (7)
C220.5757 (4)0.7165 (2)1.00967 (13)0.0620 (7)
H10.449700.543200.584500.0800*
H2A0.188200.819800.599300.0480*
H2B0.024100.750700.637700.0480*
H40.216500.924600.392600.0440*
H50.416200.800400.432400.0470*
H70.346700.610500.304100.0580*
H8A0.219000.694800.167800.0620*
H8B0.369300.802500.253000.0620*
H90.006400.838600.228800.0590*
H100.246600.655200.236800.0720*
H110.038400.520500.282700.0710*
H5A0.260001.041200.659500.0920*
H13A0.522801.009100.865000.0650*
H13B0.303000.919900.838000.0650*
H150.900500.707300.811500.0620*
H160.585500.584700.774700.0530*
H180.479500.536600.920800.0710*
H19A0.863900.550100.903300.0870*
H19B0.846500.582601.017400.0870*
H201.050700.763600.988200.0730*
H210.798500.864101.077800.0720*
H220.459800.728301.039900.0740*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0539 (8)0.0664 (8)0.0356 (6)0.0085 (6)0.0056 (5)0.0229 (6)
O20.0508 (7)0.0526 (7)0.0333 (6)0.0019 (5)0.0073 (5)0.0175 (5)
O30.0453 (7)0.0463 (6)0.0503 (7)0.0215 (5)0.0128 (5)0.0195 (5)
O40.0726 (9)0.0697 (9)0.0627 (8)0.0401 (7)0.0168 (7)0.0368 (7)
N10.0329 (6)0.0351 (6)0.0331 (6)0.0077 (5)0.0074 (5)0.0124 (5)
C10.0351 (8)0.0458 (8)0.0362 (8)0.0120 (6)0.0090 (6)0.0189 (7)
C20.0453 (9)0.0434 (8)0.0334 (8)0.0094 (7)0.0113 (7)0.0131 (6)
C30.0350 (8)0.0269 (7)0.0339 (7)0.0048 (6)0.0035 (6)0.0077 (6)
C40.0413 (8)0.0308 (7)0.0405 (8)0.0061 (6)0.0126 (7)0.0125 (6)
C50.0313 (8)0.0454 (9)0.0413 (8)0.0097 (6)0.0073 (6)0.0112 (7)
C60.0368 (8)0.0416 (8)0.0383 (8)0.0130 (7)0.0032 (6)0.0117 (7)
C70.0581 (11)0.0466 (9)0.0472 (9)0.0235 (8)0.0203 (8)0.0116 (7)
C80.0610 (11)0.0535 (10)0.0441 (9)0.0114 (8)0.0228 (8)0.0128 (8)
C90.0600 (11)0.0591 (10)0.0361 (9)0.0240 (9)0.0126 (8)0.0199 (8)
C100.0478 (11)0.0783 (14)0.0369 (9)0.0007 (10)0.0035 (8)0.0012 (9)
C110.0791 (14)0.0413 (9)0.0468 (10)0.0051 (9)0.0195 (9)0.0011 (8)
O50.0718 (9)0.0707 (9)0.0633 (8)0.0422 (7)0.0204 (7)0.0363 (7)
O60.0687 (9)0.0656 (8)0.0545 (8)0.0322 (7)0.0190 (7)0.0223 (6)
O70.0668 (10)0.0869 (11)0.1180 (14)0.0239 (9)0.0078 (9)0.0567 (10)
O80.0395 (8)0.0742 (9)0.0841 (10)0.0003 (6)0.0055 (7)0.0205 (8)
N20.0412 (8)0.0410 (7)0.0485 (8)0.0115 (6)0.0040 (6)0.0203 (6)
C120.0409 (9)0.0343 (8)0.0495 (9)0.0085 (7)0.0041 (7)0.0151 (7)
C130.0706 (12)0.0478 (10)0.0494 (10)0.0263 (9)0.0084 (9)0.0178 (8)
C140.0411 (10)0.0630 (11)0.0569 (11)0.0010 (8)0.0048 (8)0.0324 (9)
C150.0426 (10)0.0765 (12)0.0533 (10)0.0278 (9)0.0183 (8)0.0327 (9)
C160.0615 (11)0.0407 (8)0.0338 (8)0.0192 (8)0.0130 (7)0.0106 (7)
C170.0405 (9)0.0451 (9)0.0351 (8)0.0077 (7)0.0103 (7)0.0119 (7)
C180.0848 (14)0.0483 (10)0.0469 (10)0.0084 (9)0.0091 (9)0.0244 (8)
C190.1114 (19)0.0709 (14)0.0522 (11)0.0530 (13)0.0125 (11)0.0271 (10)
C200.0496 (11)0.0810 (14)0.0597 (12)0.0251 (10)0.0006 (9)0.0307 (10)
C210.0796 (15)0.0617 (12)0.0375 (9)0.0257 (11)0.0025 (9)0.0094 (8)
C220.0779 (14)0.0836 (14)0.0408 (10)0.0317 (12)0.0274 (10)0.0281 (10)
Geometric parameters (Å, º) top
O1—C11.275 (2)C4—H40.9800
O2—C11.2391 (18)C5—H50.9800
O3—C31.2240 (18)C7—H70.9800
O4—C61.201 (2)C8—H8A0.9700
O1—H10.8200C8—H8B0.9700
O5—C121.320 (2)C9—H90.9800
O6—C121.190 (2)C10—H100.9300
O7—C141.206 (3)C11—H110.9300
O8—C171.208 (2)C12—C131.507 (2)
O5—H5A0.8200C14—C151.491 (3)
N1—C61.4044 (19)C15—C161.515 (3)
N1—C31.3663 (19)C15—C201.567 (3)
N1—C21.448 (2)C16—C181.565 (2)
N2—C141.384 (2)C16—C171.490 (3)
N2—C171.377 (2)C18—C191.520 (3)
N2—C131.442 (2)C18—C221.505 (3)
C1—C21.499 (2)C19—C201.521 (3)
C3—C41.5018 (19)C20—C211.489 (3)
C4—C91.564 (2)C21—C221.310 (4)
C4—C51.537 (2)C13—H13A0.9700
C5—C71.564 (2)C13—H13B0.9700
C5—C61.494 (2)C15—H150.9800
C7—C111.500 (3)C16—H160.9800
C7—C81.530 (3)C18—H180.9800
C8—C91.532 (3)C19—H19A0.9700
C9—C101.494 (3)C19—H19B0.9700
C10—C111.313 (3)C20—H200.9800
C2—H2B0.9700C21—H210.9300
C2—H2A0.9700C22—H220.9300
C1—O1—H1109.00C9—C10—H10126.00
C12—O5—H5A109.00C11—C10—H10126.00
C2—N1—C6121.45 (13)C10—C11—H11126.00
C2—N1—C3125.13 (13)C7—C11—H11126.00
C3—N1—C6113.03 (12)O5—C12—C13108.83 (15)
C14—N2—C17113.13 (15)O6—C12—C13126.08 (17)
C13—N2—C17122.36 (15)O5—C12—O6125.09 (16)
C13—N2—C14124.39 (15)N2—C13—C12113.30 (15)
O1—C1—O2125.28 (15)O7—C14—C15128.9 (2)
O1—C1—C2114.07 (13)N2—C14—C15107.95 (16)
O2—C1—C2120.63 (14)O7—C14—N2123.17 (19)
N1—C2—C1112.87 (12)C14—C15—C20114.56 (16)
O3—C3—N1122.95 (13)C16—C15—C20103.08 (15)
O3—C3—C4128.30 (13)C14—C15—C16105.36 (16)
N1—C3—C4108.75 (12)C15—C16—C18102.94 (14)
C5—C4—C9103.06 (13)C17—C16—C18115.33 (15)
C3—C4—C5104.78 (12)C15—C16—C17105.32 (15)
C3—C4—C9115.48 (12)O8—C17—N2122.86 (17)
C6—C5—C7115.17 (14)O8—C17—C16128.93 (17)
C4—C5—C7102.83 (12)N2—C17—C16108.20 (15)
C4—C5—C6105.18 (11)C16—C18—C1999.66 (16)
O4—C6—N1122.08 (14)C16—C18—C22106.71 (16)
N1—C6—C5107.86 (13)C19—C18—C2299.66 (17)
O4—C6—C5130.05 (14)C18—C19—C2093.79 (17)
C5—C7—C899.37 (14)C15—C20—C1999.08 (16)
C5—C7—C11106.49 (15)C15—C20—C21107.11 (17)
C8—C7—C11100.24 (15)C19—C20—C21100.74 (18)
C7—C8—C993.90 (14)C20—C21—C22107.46 (19)
C8—C9—C10100.08 (15)C18—C22—C21107.9 (2)
C4—C9—C899.71 (13)N2—C13—H13A109.00
C4—C9—C10105.91 (14)N2—C13—H13B109.00
C9—C10—C11108.17 (17)C12—C13—H13A109.00
C7—C11—C10107.79 (17)C12—C13—H13B109.00
N1—C2—H2A109.00H13A—C13—H13B108.00
C1—C2—H2A109.00C14—C15—H15111.00
C1—C2—H2B109.00C16—C15—H15111.00
N1—C2—H2B109.00C20—C15—H15111.00
H2A—C2—H2B108.00C15—C16—H16111.00
C9—C4—H4111.00C17—C16—H16111.00
C3—C4—H4111.00C18—C16—H16111.00
C5—C4—H4111.00C16—C18—H18116.00
C6—C5—H5111.00C19—C18—H18116.00
C7—C5—H5111.00C22—C18—H18116.00
C4—C5—H5111.00C18—C19—H19A113.00
C11—C7—H7116.00C18—C19—H19B113.00
C8—C7—H7116.00C20—C19—H19A113.00
C5—C7—H7116.00C20—C19—H19B113.00
C7—C8—H8B113.00H19A—C19—H19B110.00
H8A—C8—H8B110.00C15—C20—H20116.00
C9—C8—H8B113.00C19—C20—H20116.00
C7—C8—H8A113.00C21—C20—H20116.00
C9—C8—H8A113.00C20—C21—H21126.00
C10—C9—H9116.00C22—C21—H21126.00
C8—C9—H9116.00C18—C22—H22126.00
C4—C9—H9116.00C21—C22—H22126.00
C3—N1—C6—C56.13 (17)C4—C5—C7—C838.05 (16)
C2—N1—C6—C5179.33 (13)C8—C7—C11—C1032.68 (19)
C3—N1—C2—C194.00 (18)C5—C7—C11—C1070.38 (19)
C6—N1—C2—C178.35 (18)C5—C7—C8—C959.54 (15)
C2—N1—C3—O30.3 (2)C11—C7—C8—C949.25 (16)
C6—N1—C3—O3173.21 (14)C7—C8—C9—C458.76 (15)
C2—N1—C3—C4179.72 (13)C7—C8—C9—C1049.47 (15)
C6—N1—C3—C46.82 (16)C4—C9—C10—C1169.91 (19)
C3—N1—C6—O4172.69 (15)C8—C9—C10—C1133.32 (18)
C2—N1—C6—O40.5 (2)C9—C10—C11—C70.4 (2)
C14—N2—C17—C161.95 (18)O5—C12—C13—N2166.23 (15)
C13—N2—C14—C15174.18 (15)O6—C12—C13—N215.0 (3)
C14—N2—C13—C1291.2 (2)O7—C14—C15—C16179.5 (2)
C17—N2—C14—C152.1 (2)N2—C14—C15—C161.29 (19)
C14—N2—C17—O8179.16 (16)N2—C14—C15—C20111.26 (18)
C13—N2—C17—C16174.38 (14)O7—C14—C15—C2068.0 (3)
C13—N2—C17—O84.5 (2)C14—C15—C16—C170.18 (17)
C17—N2—C14—O7178.64 (19)C14—C15—C20—C2147.5 (2)
C17—N2—C13—C1292.86 (19)C16—C15—C20—C1937.85 (19)
C13—N2—C14—O75.1 (3)C16—C15—C20—C2166.4 (2)
O1—C1—C2—N1161.11 (14)C20—C15—C16—C180.96 (19)
O2—C1—C2—N120.5 (2)C14—C15—C16—C18121.38 (15)
N1—C3—C4—C9117.19 (14)C20—C15—C16—C17120.24 (15)
O3—C3—C4—C962.8 (2)C14—C15—C20—C19151.75 (18)
N1—C3—C4—C54.57 (15)C15—C16—C17—O8179.80 (17)
O3—C3—C4—C5175.46 (15)C15—C16—C18—C2266.9 (2)
C5—C4—C9—C1067.62 (16)C17—C16—C18—C19150.46 (16)
C3—C4—C5—C60.97 (15)C17—C16—C18—C2247.2 (2)
C5—C4—C9—C835.88 (16)C15—C16—C17—N21.00 (17)
C3—C4—C9—C8149.51 (14)C18—C16—C17—O867.1 (2)
C3—C4—C9—C1046.00 (19)C18—C16—C17—N2111.74 (16)
C3—C4—C5—C7119.94 (13)C15—C16—C18—C1936.34 (18)
C9—C4—C5—C6122.17 (13)C16—C18—C19—C2059.13 (16)
C9—C4—C5—C71.26 (15)C22—C18—C19—C2049.82 (17)
C4—C5—C6—N12.81 (16)C16—C18—C22—C2169.3 (2)
C4—C5—C6—O4175.88 (17)C19—C18—C22—C2133.9 (2)
C6—C5—C7—C1148.16 (18)C18—C19—C20—C1559.50 (16)
C6—C5—C7—C8151.85 (14)C18—C19—C20—C2149.99 (17)
C7—C5—C6—O463.5 (2)C15—C20—C21—C2270.5 (2)
C4—C5—C7—C1165.65 (16)C19—C20—C21—C2232.6 (2)
C7—C5—C6—N1115.25 (15)C20—C21—C22—C180.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.842.6504 (18)170
O5—H5A···O3ii0.821.862.6509 (18)163
C11—H11···O8iii0.932.573.440 (2)156
C15—H15···O8iv0.982.333.201 (2)147
C16—H16···O1iv0.982.483.1473 (19)125
Symmetry codes: (i) x1, y+1, z+1; (ii) x, y+2, z+1; (iii) x, y+1, z+1; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.842.6504 (18)170
O5—H5A···O3ii0.821.862.6509 (18)163
C11—H11···O8iii0.932.573.440 (2)156
C15—H15···O8iv0.982.333.201 (2)147
C16—H16···O1iv0.982.483.1473 (19)125
Symmetry codes: (i) x1, y+1, z+1; (ii) x, y+2, z+1; (iii) x, y+1, z+1; (iv) x+1, y, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. AJ and PS thanks Shiraz University Research Council for financial support (grant No. 91-GR—SC-23).

References

First citationBartkowska, B., Bohnen, F. M., Krüger, C. & Maier, W. F. (1997). Acta Cryst. C53, 521–522.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBiagini, S. C. G., Bush, S. M., Gibson, V. C., Mazzariol, L., North, M., Teasdale, W. G., Williams, C. M., Zagotto, G. & Zamuner, D. (1995). Tetrahedron, 51, 7247–7262.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds