organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Meth­­oxy­phen­yl)pyrrolidine-2,5-dione

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
*Correspondence e-mail: m.siraj09@yahoo.com

(Received 5 August 2013; accepted 9 August 2013; online 17 August 2013)

In the title compound, C11H11NO3, the di­hydro­furan-2,5-dione ring has a shallow envelope conformation, with one of the methyl­ene C atoms displaced by 0.216 (1) Å from the other atoms. These near-planar atoms subtend a dihedral angle of 55.88 (8)° with the benzene ring. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into [010] chains.

Related literature

For related structures, see: Sirajuddin et al. (2012[Sirajuddin, M., Ali, S. & Tahir, M. N. (2012). Acta Cryst. E68, o2282.]); Tahir et al. (2012[Tahir, M. N., Sirajuddin, M., Ali, S. & Munawar, K. S. (2012). Acta Cryst. E68, o2589.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11NO3

  • Mr = 205.21

  • Monoclinic, P 21 /n

  • a = 9.3684 (7) Å

  • b = 6.6146 (4) Å

  • c = 16.0720 (11) Å

  • β = 99.939 (4)°

  • V = 981.01 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.32 × 0.25 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.978

  • 7585 measured reflections

  • 1927 independent reflections

  • 1626 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.094

  • S = 1.04

  • 1927 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.93 2.50 3.1666 (17) 129
C5—H5⋯O2ii 0.93 2.47 3.3245 (17) 152
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Related literature top

For related structures, see: Sirajuddin et al. (2012); Tahir et al. (2012).

Experimental top

Equimolar quantities of 4-methoxyaniline and dihydrofuran-2,5-dione were stirred and refluxed in acetic acid for 4 h. The solution was kept at room temperature for 24 h which afforded colourless prisms of the title compound.

Refinement top

The H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing, which shows that molecules form dimers due to C—H···O bondings.
1-(4-Methoxyphenyl)pyrrolidine-2,5-dione top
Crystal data top
C11H11NO3Z = 4
Mr = 205.21F(000) = 432
Monoclinic, P21/nDx = 1.389 Mg m3
a = 9.3684 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.6146 (4) ŵ = 0.10 mm1
c = 16.0720 (11) ÅT = 296 K
β = 99.939 (4)°Prism, colourless
V = 981.01 (12) Å30.32 × 0.25 × 0.22 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1927 independent reflections
Radiation source: fine-focus sealed tube1626 reflections with I > 2σ(I)
Detector resolution: 8 pixels mm-1Rint = 0.018
ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.968, Tmax = 0.978k = 87
7585 measured reflectionsl = 1919
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.2498P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.14 e Å3
1927 reflectionsΔρmin = 0.14 e Å3
138 parametersExtinction correction: SHELXL2012 (Sheldrick, 2012), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.047 (4)
Crystal data top
C11H11NO3V = 981.01 (12) Å3
Mr = 205.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.3684 (7) ŵ = 0.10 mm1
b = 6.6146 (4) ÅT = 296 K
c = 16.0720 (11) Å0.32 × 0.25 × 0.22 mm
β = 99.939 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1927 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1626 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.978Rint = 0.018
7585 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.04Δρmax = 0.14 e Å3
1927 reflectionsΔρmin = 0.14 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.73798 (12)0.12759 (16)0.03467 (7)0.0594 (3)
O20.52321 (14)0.03671 (17)0.38782 (7)0.0685 (4)
O30.38050 (12)0.48906 (15)0.21179 (6)0.0588 (3)
N10.48031 (11)0.21443 (15)0.28804 (6)0.0397 (3)
C10.54572 (13)0.12100 (19)0.22333 (7)0.0378 (3)
C20.50543 (14)0.0707 (2)0.19526 (8)0.0418 (3)
H20.43670.14120.21920.050*
C30.56658 (14)0.1592 (2)0.13165 (8)0.0441 (3)
H30.53850.28820.11250.053*
C40.66963 (14)0.0546 (2)0.09689 (8)0.0427 (3)
C50.71239 (14)0.1368 (2)0.12663 (9)0.0461 (3)
H50.78300.20610.10390.055*
C60.65080 (14)0.2246 (2)0.18962 (8)0.0427 (3)
H60.67970.35290.20940.051*
C70.6833 (2)0.3084 (2)0.00666 (10)0.0639 (4)
H7A0.69410.41770.03330.096*
H7B0.73620.33860.05120.096*
H7C0.58250.29110.02990.096*
C80.47536 (15)0.1275 (2)0.36638 (8)0.0471 (3)
C90.39873 (18)0.2721 (2)0.41557 (9)0.0556 (4)
H9A0.45740.30090.47010.067*
H9B0.30670.21640.42440.067*
C100.37563 (16)0.4609 (2)0.36233 (9)0.0494 (4)
H10A0.27640.50780.35720.059*
H10B0.44020.56790.38690.059*
C110.40880 (14)0.39934 (19)0.27787 (8)0.0418 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0720 (7)0.0563 (6)0.0574 (6)0.0022 (5)0.0327 (5)0.0108 (5)
O20.0974 (9)0.0604 (7)0.0501 (6)0.0251 (6)0.0192 (6)0.0146 (5)
O30.0802 (7)0.0454 (6)0.0510 (6)0.0083 (5)0.0116 (5)0.0074 (5)
N10.0446 (6)0.0388 (6)0.0366 (6)0.0017 (4)0.0099 (4)0.0006 (4)
C10.0399 (6)0.0397 (6)0.0337 (6)0.0018 (5)0.0065 (5)0.0006 (5)
C20.0427 (7)0.0406 (7)0.0440 (7)0.0038 (5)0.0125 (5)0.0014 (5)
C30.0488 (7)0.0380 (7)0.0458 (7)0.0034 (6)0.0090 (6)0.0048 (6)
C40.0447 (7)0.0458 (7)0.0388 (7)0.0036 (6)0.0110 (5)0.0010 (6)
C50.0450 (7)0.0468 (8)0.0494 (8)0.0058 (6)0.0163 (6)0.0017 (6)
C60.0453 (7)0.0392 (7)0.0436 (7)0.0054 (5)0.0079 (5)0.0033 (5)
C70.0837 (11)0.0598 (10)0.0514 (9)0.0052 (8)0.0207 (8)0.0129 (7)
C80.0540 (8)0.0498 (8)0.0377 (7)0.0036 (6)0.0088 (6)0.0021 (6)
C90.0657 (9)0.0614 (9)0.0430 (8)0.0048 (7)0.0183 (7)0.0035 (7)
C100.0496 (8)0.0492 (8)0.0502 (8)0.0003 (6)0.0110 (6)0.0116 (6)
C110.0440 (7)0.0363 (6)0.0447 (7)0.0034 (5)0.0066 (5)0.0023 (6)
Geometric parameters (Å, º) top
O1—C41.3654 (16)C5—C61.3773 (18)
O1—C71.4203 (18)C5—H50.9300
O2—C81.2028 (17)C6—H60.9300
O3—C111.2055 (16)C7—H7A0.9600
N1—C111.3905 (16)C7—H7B0.9600
N1—C81.3920 (17)C7—H7C0.9600
N1—C11.4350 (15)C8—C91.5002 (19)
C1—C21.3766 (18)C9—C101.508 (2)
C1—C61.3844 (18)C9—H9A0.9700
C2—C31.3850 (18)C9—H9B0.9700
C2—H20.9300C10—C111.5003 (18)
C3—C41.3819 (18)C10—H10A0.9700
C3—H30.9300C10—H10B0.9700
C4—C51.3873 (19)
C4—O1—C7117.61 (11)O1—C7—H7B109.5
C11—N1—C8112.27 (11)H7A—C7—H7B109.5
C11—N1—C1123.43 (10)O1—C7—H7C109.5
C8—N1—C1124.25 (11)H7A—C7—H7C109.5
C2—C1—C6120.06 (11)H7B—C7—H7C109.5
C2—C1—N1120.46 (11)O2—C8—N1124.27 (13)
C6—C1—N1119.47 (11)O2—C8—C9127.83 (13)
C1—C2—C3120.42 (12)N1—C8—C9107.89 (12)
C1—C2—H2119.8C8—C9—C10105.29 (11)
C3—C2—H2119.8C8—C9—H9A110.7
C4—C3—C2119.58 (12)C10—C9—H9A110.7
C4—C3—H3120.2C8—C9—H9B110.7
C2—C3—H3120.2C10—C9—H9B110.7
O1—C4—C3124.58 (12)H9A—C9—H9B108.8
O1—C4—C5115.53 (12)C11—C10—C9104.87 (11)
C3—C4—C5119.87 (12)C11—C10—H10A110.8
C6—C5—C4120.36 (12)C9—C10—H10A110.8
C6—C5—H5119.8C11—C10—H10B110.8
C4—C5—H5119.8C9—C10—H10B110.8
C5—C6—C1119.69 (12)H10A—C10—H10B108.8
C5—C6—H6120.2O3—C11—N1124.39 (12)
C1—C6—H6120.2O3—C11—C10127.96 (13)
O1—C7—H7A109.5N1—C11—C10107.65 (11)
C11—N1—C1—C2123.12 (13)N1—C1—C6—C5179.05 (11)
C8—N1—C1—C253.95 (17)C11—N1—C8—O2176.06 (14)
C11—N1—C1—C657.37 (16)C1—N1—C8—O21.3 (2)
C8—N1—C1—C6125.55 (14)C11—N1—C8—C92.76 (16)
C6—C1—C2—C31.76 (19)C1—N1—C8—C9179.88 (12)
N1—C1—C2—C3178.74 (11)O2—C8—C9—C10174.72 (15)
C1—C2—C3—C40.6 (2)N1—C8—C9—C106.52 (16)
C7—O1—C4—C310.8 (2)C8—C9—C10—C1112.49 (15)
C7—O1—C4—C5170.72 (13)C8—N1—C11—O3168.93 (13)
C2—C3—C4—O1179.31 (12)C1—N1—C11—O38.5 (2)
C2—C3—C4—C50.8 (2)C8—N1—C11—C1011.02 (15)
O1—C4—C5—C6179.76 (12)C1—N1—C11—C10171.59 (11)
C3—C4—C5—C61.2 (2)C9—C10—C11—O3165.50 (14)
C4—C5—C6—C10.0 (2)C9—C10—C11—N114.44 (14)
C2—C1—C6—C51.44 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.932.503.1666 (17)129
C5—H5···O2ii0.932.473.3245 (17)152
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.932.503.1666 (17)129
C5—H5···O2ii0.932.473.3245 (17)152
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge Quaid-i-Azam University, Islam­abad, Pakistan, for providing research facilities, and the University Research Fund (URF) for financial support.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSirajuddin, M., Ali, S. & Tahir, M. N. (2012). Acta Cryst. E68, o2282.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Sirajuddin, M., Ali, S. & Munawar, K. S. (2012). Acta Cryst. E68, o2589.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds