organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Di­bromo-2,5-di-p-toluoyl­benzene

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhjnjut@hotmail.com

(Received 6 August 2013; accepted 9 August 2013; online 17 August 2013)

In the title compound, C22H16Br2O2, which has approximate non-crystallographic inversion symmetry, the dihedral angles between the central ring and the pendant rings are 89.1 (4) and 82.4 (3)°; the dihedral angle between the pendant rings is 12.1 (4)°. In the crystal, the packing is influenced by van der Waals forces and no aromatic ππ stacking is observed.

Related literature

For background to the applications of the title compound, see: Shimizu et al. (2011[Shimizu, M., Asai, Y., Takeda, Y., Yamatani, A. & Hiyama, T. (2011). Tetrahedron Lett. 52, 4084-4089.]). For further synthetic details, see: Chardonnens & Salamin (1968[Chardonnens, L. & Salamin, L. (1968). Helv. Chim. Acta, 51, 1095-1102.]).

[Scheme 1]

Experimental

Crystal data
  • C22H16Br2O2

  • Mr = 472.17

  • Monoclinic, P 21 /n

  • a = 9.855 (2) Å

  • b = 12.064 (2) Å

  • c = 16.345 (3) Å

  • β = 97.61 (3)°

  • V = 1926.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.22 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.486, Tmax = 0.678

  • 3664 measured reflections

  • 3452 independent reflections

  • 1518 reflections with I > 2σ(I)

  • Rint = 0.054

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.133

  • S = 1.00

  • 3452 reflections

  • 235 parameters

  • 48 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, 1,4-dibromo-2,5-di-p-toluoylbenzene is an important intermediate not only for manufacturing OLED materials, but also for sensing and switching devices that utilize solid-state luminescence as an output. (Shimizu et al., 2011). We now report here its the crystal structure.

The molecular structure of (I) is shown in Fig. 1, and the selected geometric parameters are give in Table 1. The dihedral angles between the phenyl rings in p-toluoyl and the dibromobenzene are 89.14 (2)° and 82.41 (2)°. The phenyl rings are almost parallel with the maximum deviation of 0.26 (8)°. The crystal packing of the molecules in the crystal is influenced by van der Waals forces.

Related literature top

For background to the applications of the title compound, see: Shimizu et al. (2011). For further synthetic details, see: Chardonnens & Salamin (1968).

Experimental top

The title compund was synthesized according to the published procedure (Chardonnens & Salamin, 1968). Colourless blocks were obtained by dissolving it (0.5 g) in tetrahydrofuran (20 ml) and evaporating the solvent slowly at room temperature for about 10 d.

Refinement top

H atoms were positioned geometrically and refined as riding groups, with C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for other H.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I).
1,4-Dibromo-2,5-di-p-toluoylbenzene top
Crystal data top
C22H16Br2O2F(000) = 936
Mr = 472.17Dx = 1.628 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 9.855 (2) Åθ = 10–13°
b = 12.064 (2) ŵ = 4.22 mm1
c = 16.345 (3) ÅT = 293 K
β = 97.61 (3)°Block, colourless
V = 1926.2 (7) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1518 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 25.2°, θmin = 2.1°
ω/2θ scansh = 1111
Absorption correction: ψ scan
(North et al., 1968)
k = 014
Tmin = 0.486, Tmax = 0.678l = 019
3664 measured reflections3 standard reflections every 200 reflections
3452 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.050P)2]
where P = (Fo2 + 2Fc2)/3
3452 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.46 e Å3
48 restraintsΔρmin = 0.40 e Å3
Crystal data top
C22H16Br2O2V = 1926.2 (7) Å3
Mr = 472.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.855 (2) ŵ = 4.22 mm1
b = 12.064 (2) ÅT = 293 K
c = 16.345 (3) Å0.20 × 0.10 × 0.10 mm
β = 97.61 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1518 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.054
Tmin = 0.486, Tmax = 0.6783 standard reflections every 200 reflections
3664 measured reflections intensity decay: none
3452 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06548 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.46 e Å3
3452 reflectionsΔρmin = 0.40 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.19197 (8)0.40011 (8)0.45593 (5)0.0639 (3)
O10.2881 (7)0.1341 (5)0.3699 (4)0.095 (2)
C10.6659 (9)0.2445 (8)0.6544 (5)0.105 (4)
H1A0.64840.31090.68640.158*
H1B0.64830.18100.68970.158*
H1C0.75970.24360.62950.158*
Br20.44399 (8)0.39910 (9)0.28265 (5)0.0788 (4)
O20.0549 (6)0.6656 (5)0.3651 (3)0.0740 (18)
C20.5731 (9)0.2412 (9)0.5877 (5)0.066 (3)
C30.5798 (8)0.1529 (7)0.5314 (5)0.060 (2)
H3A0.64270.09620.53490.072*
C40.4954 (8)0.1491 (7)0.4718 (5)0.059 (2)
H4A0.50230.09030.43470.071*
C50.3983 (7)0.2326 (7)0.4658 (4)0.045 (2)
C60.3985 (8)0.3206 (7)0.5191 (5)0.058 (2)
H6A0.34030.38000.51380.070*
C70.4805 (10)0.3237 (7)0.5792 (5)0.068 (3)
H7A0.47380.38320.61560.081*
C80.3040 (8)0.2209 (7)0.4062 (5)0.053 (2)
C90.2155 (7)0.3172 (6)0.3889 (4)0.0425 (18)
C100.0778 (8)0.3180 (6)0.4244 (4)0.0504 (19)
H10A0.04360.26190.46030.061*
C110.0067 (6)0.4036 (6)0.4052 (4)0.0404 (17)
C120.0358 (7)0.4850 (6)0.3498 (4)0.0422 (18)
C130.1739 (7)0.4818 (6)0.3136 (4)0.0483 (19)
H13A0.20610.53610.27550.058*
C140.2627 (7)0.4003 (7)0.3332 (4)0.0464 (18)
C150.0537 (8)0.5788 (7)0.3286 (4)0.051 (2)
C160.1406 (7)0.5582 (7)0.2634 (4)0.0385 (18)
C170.1434 (7)0.4579 (7)0.2242 (4)0.051 (2)
H17A0.08760.40020.23740.062*
C180.2315 (7)0.4427 (7)0.1637 (4)0.050 (2)
H18A0.23410.37390.13830.060*
C190.3118 (7)0.5248 (8)0.1418 (4)0.053 (2)
C200.3079 (8)0.6253 (8)0.1798 (5)0.067 (3)
H20A0.36280.68280.16520.080*
C210.2236 (8)0.6427 (7)0.2394 (5)0.065 (2)
H21A0.22200.71200.26420.078*
C220.4080 (8)0.5080 (8)0.0781 (4)0.085 (3)
H22A0.39810.43390.05670.127*
H22B0.50060.51920.10330.127*
H22C0.38640.56000.03390.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0470 (5)0.0762 (6)0.0651 (6)0.0002 (5)0.0061 (4)0.0053 (5)
O10.116 (6)0.083 (5)0.098 (5)0.033 (4)0.055 (4)0.022 (4)
C10.081 (7)0.159 (11)0.087 (7)0.057 (7)0.054 (6)0.042 (7)
Br20.0463 (6)0.1113 (8)0.0740 (7)0.0026 (6)0.0098 (4)0.0075 (6)
O20.091 (5)0.074 (5)0.064 (4)0.010 (4)0.039 (3)0.018 (3)
C20.058 (6)0.095 (8)0.046 (5)0.018 (5)0.013 (5)0.029 (6)
C30.045 (5)0.065 (6)0.072 (6)0.006 (4)0.013 (5)0.018 (5)
C40.054 (5)0.076 (6)0.049 (5)0.005 (5)0.010 (4)0.011 (5)
C50.042 (5)0.056 (5)0.040 (5)0.009 (4)0.012 (4)0.002 (4)
C60.052 (5)0.074 (7)0.047 (5)0.013 (5)0.002 (4)0.009 (5)
C70.094 (7)0.062 (6)0.053 (6)0.004 (6)0.033 (5)0.006 (5)
C80.045 (5)0.061 (6)0.052 (5)0.003 (5)0.008 (4)0.018 (5)
C90.046 (4)0.051 (5)0.035 (4)0.001 (4)0.023 (3)0.002 (3)
C100.063 (4)0.051 (4)0.040 (4)0.005 (4)0.015 (3)0.008 (4)
C110.038 (4)0.045 (4)0.041 (4)0.005 (3)0.012 (3)0.003 (4)
C120.050 (4)0.056 (5)0.026 (4)0.002 (4)0.022 (3)0.006 (3)
C130.054 (4)0.058 (5)0.032 (4)0.010 (4)0.000 (3)0.014 (4)
C140.047 (4)0.056 (4)0.037 (4)0.001 (4)0.010 (3)0.001 (4)
C150.052 (5)0.071 (7)0.032 (5)0.005 (5)0.011 (4)0.006 (4)
C160.034 (4)0.058 (5)0.025 (4)0.005 (4)0.008 (3)0.001 (4)
C170.043 (5)0.078 (6)0.037 (5)0.001 (4)0.023 (4)0.001 (4)
C180.046 (5)0.050 (5)0.055 (5)0.005 (4)0.007 (4)0.001 (4)
C190.042 (5)0.085 (7)0.032 (5)0.015 (5)0.010 (4)0.010 (5)
C200.063 (6)0.083 (8)0.056 (6)0.025 (5)0.016 (5)0.010 (5)
C210.065 (6)0.074 (6)0.060 (6)0.011 (5)0.019 (5)0.003 (5)
C220.070 (6)0.136 (9)0.054 (6)0.015 (6)0.032 (5)0.004 (6)
Geometric parameters (Å, º) top
Br1—C111.904 (6)C10—C111.388 (9)
O1—C81.224 (8)C10—H10A0.9300
C1—C21.514 (10)C11—C121.363 (9)
C1—H1A0.9600C12—C131.410 (9)
C1—H1B0.9600C12—C151.503 (9)
C1—H1C0.9600C13—C141.382 (9)
Br2—C141.867 (7)C13—H13A0.9300
O2—C151.204 (8)C15—C161.475 (9)
C2—C71.369 (11)C16—C171.371 (9)
C2—C31.403 (11)C16—C211.395 (10)
C3—C41.363 (9)C17—C181.411 (9)
C3—H3A0.9300C17—H17A0.9300
C4—C51.402 (10)C18—C191.346 (9)
C4—H4A0.9300C18—H18A0.9300
C5—C61.374 (9)C19—C201.365 (10)
C5—C81.439 (9)C19—C221.512 (9)
C6—C71.352 (9)C20—C211.378 (10)
C6—H6A0.9300C20—H20A0.9300
C7—H7A0.9300C21—H21A0.9300
C8—C91.502 (10)C22—H22A0.9600
C9—C141.391 (9)C22—H22B0.9600
C9—C101.404 (9)C22—H22C0.9600
C2—C1—H1A109.5C11—C12—C13117.0 (7)
C2—C1—H1B109.5C11—C12—C15123.8 (7)
H1A—C1—H1B109.5C13—C12—C15119.1 (7)
C2—C1—H1C109.5C14—C13—C12121.8 (7)
H1A—C1—H1C109.5C14—C13—H13A119.1
H1B—C1—H1C109.5C12—C13—H13A119.1
C7—C2—C3117.3 (8)C13—C14—C9119.8 (6)
C7—C2—C1121.9 (9)C13—C14—Br2120.1 (6)
C3—C2—C1120.8 (9)C9—C14—Br2120.1 (6)
C4—C3—C2120.9 (8)O2—C15—C16122.5 (7)
C4—C3—H3A119.5O2—C15—C12120.5 (7)
C2—C3—H3A119.5C16—C15—C12117.0 (7)
C3—C4—C5120.9 (8)C17—C16—C21117.7 (7)
C3—C4—H4A119.6C17—C16—C15122.4 (7)
C5—C4—H4A119.6C21—C16—C15119.9 (7)
C6—C5—C4116.9 (7)C16—C17—C18119.6 (7)
C6—C5—C8124.1 (8)C16—C17—H17A120.2
C4—C5—C8119.0 (8)C18—C17—H17A120.2
C7—C6—C5122.2 (8)C19—C18—C17121.9 (8)
C7—C6—H6A118.9C19—C18—H18A119.0
C5—C6—H6A118.9C17—C18—H18A119.0
C6—C7—C2121.6 (9)C18—C19—C20118.7 (7)
C6—C7—H7A119.2C18—C19—C22121.9 (8)
C2—C7—H7A119.2C20—C19—C22119.4 (9)
O1—C8—C5123.2 (8)C19—C20—C21120.8 (8)
O1—C8—C9117.1 (7)C19—C20—H20A119.6
C5—C8—C9119.7 (7)C21—C20—H20A119.6
C14—C9—C10119.1 (7)C20—C21—C16121.2 (8)
C14—C9—C8121.9 (7)C20—C21—H21A119.4
C10—C9—C8118.8 (7)C16—C21—H21A119.4
C11—C10—C9119.2 (7)C19—C22—H22A109.5
C11—C10—H10A120.4C19—C22—H22B109.5
C9—C10—H10A120.4H22A—C22—H22B109.5
C12—C11—C10123.1 (7)C19—C22—H22C109.5
C12—C11—Br1119.9 (5)H22A—C22—H22C109.5
C10—C11—Br1117.0 (6)H22B—C22—H22C109.5
C7—C2—C3—C41.1 (12)C11—C12—C13—C140.1 (10)
C1—C2—C3—C4179.3 (7)C15—C12—C13—C14177.3 (7)
C2—C3—C4—C50.8 (12)C12—C13—C14—C91.3 (11)
C3—C4—C5—C63.8 (11)C12—C13—C14—Br2179.4 (5)
C3—C4—C5—C8175.1 (7)C10—C9—C14—C130.1 (10)
C4—C5—C6—C75.0 (11)C8—C9—C14—C13174.2 (7)
C8—C5—C6—C7173.8 (7)C10—C9—C14—Br2178.2 (5)
C5—C6—C7—C23.2 (13)C8—C9—C14—Br23.9 (9)
C3—C2—C7—C60.0 (12)C11—C12—C15—O292.6 (10)
C1—C2—C7—C6179.6 (8)C13—C12—C15—O284.6 (9)
C6—C5—C8—O1166.2 (8)C11—C12—C15—C1686.1 (8)
C4—C5—C8—O112.7 (12)C13—C12—C15—C1696.7 (8)
C6—C5—C8—C911.4 (11)O2—C15—C16—C17177.2 (7)
C4—C5—C8—C9169.8 (7)C12—C15—C16—C171.4 (10)
O1—C8—C9—C1498.5 (9)O2—C15—C16—C212.9 (11)
C5—C8—C9—C1483.8 (9)C12—C15—C16—C21178.4 (7)
O1—C8—C9—C1075.8 (9)C21—C16—C17—C181.8 (10)
C5—C8—C9—C10101.9 (8)C15—C16—C17—C18178.4 (6)
C14—C9—C10—C112.1 (10)C16—C17—C18—C191.3 (11)
C8—C9—C10—C11176.6 (6)C17—C18—C19—C200.4 (11)
C9—C10—C11—C123.4 (10)C17—C18—C19—C22178.9 (7)
C9—C10—C11—Br1179.7 (5)C18—C19—C20—C210.0 (12)
C10—C11—C12—C132.2 (10)C22—C19—C20—C21178.5 (7)
Br1—C11—C12—C13179.1 (5)C19—C20—C21—C160.5 (12)
C10—C11—C12—C15179.5 (7)C17—C16—C21—C201.4 (11)
Br1—C11—C12—C153.6 (9)C15—C16—C21—C20178.7 (7)

Experimental details

Crystal data
Chemical formulaC22H16Br2O2
Mr472.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.855 (2), 12.064 (2), 16.345 (3)
β (°) 97.61 (3)
V3)1926.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)4.22
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.486, 0.678
No. of measured, independent and
observed [I > 2σ(I)] reflections
3664, 3452, 1518
Rint0.054
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.133, 1.00
No. of reflections3452
No. of parameters235
No. of restraints48
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.40

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Center of Test and Analysis, Nanjing University, for the data collection.

References

First citationChardonnens, L. & Salamin, L. (1968). Helv. Chim. Acta, 51, 1095–1102.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimizu, M., Asai, Y., Takeda, Y., Yamatani, A. & Hiyama, T. (2011). Tetrahedron Lett. 52, 4084–4089.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds