metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages m515-m516

Di-μ-aqua-bis­­[aqua­(5-carboxyl­ato-1H-1,2,3-triazole-4-carb­­oxy­lic acid-κ2N3,O4)lithium]

aInstitute of Nuclear Chemistry and Technology, ul.Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl

(Received 13 August 2013; accepted 18 August 2013; online 23 August 2013)

The crystal structure of the title compound, [Li2(C4H2N3O4)2(H2O)4], contains centrosymmetric dinuclear mol­ecules in which two LiI ions are bridged by two water O atoms. The metal ion is coordinated by one N,O-bidentate ligand and three water O atoms (one of them is symmetry generated), with one of the bridging water O atoms in the apical position of a distorted square pyramid. The carboxyl­ate group that participates in coordination to the metal ion remains protonated; the other is deprotonated and coordination inactive. An intra­molecular O—H⋯O hydrogen bond between carboxyl­ate groups is observed. In the crystal, dimers are linked by O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds, generating a three-dimensional network.

Related literature

For the structures of Co and Ni complexes with the 1,2,3-trizole-4,5-di­carboxyl­ate ligand, see: Tong et al. (2011[Tong, X.-L., Xin, J.-H., Guo, V.-H. & Zhu, X.-P. (2011). J. Coord. Chem. 64, 2984-2994.]).

[Scheme 1]

Experimental

Crystal data
  • [Li2(C4H2N3O4)2(H2O)4]

  • Mr = 398.12

  • Triclinic, [P \overline 1]

  • a = 5.1264 (10) Å

  • b = 8.0350 (16) Å

  • c = 10.040 (2) Å

  • α = 68.60 (3)°

  • β = 77.64 (3)°

  • γ = 85.16 (3)°

  • V = 376.12 (13) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 293 K

  • 0.45 × 0.26 × 0.22 mm

Data collection
  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.951, Tmax = 0.966

  • 2414 measured reflections

  • 2185 independent reflections

  • 1695 reflections with I > 2σ(I)

  • Rint = 0.110

  • 3 standard reflections every 200 reflections intensity decay: 3.7%

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.151

  • S = 1.04

  • 2185 reflections

  • 151 parameters

  • All H-atom parameters refined

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected bond lengths (Å)

Li1—O1 2.156 (3)
Li1—O5 2.089 (3)
Li1—O5i 2.029 (3)
Li1—O6 1.916 (3)
Li1—N3 2.234 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H52⋯O1ii 0.86 (2) 1.93 (2) 2.7873 (16) 172 (2)
O6—H61⋯N2iii 0.84 (4) 2.30 (4) 3.0545 (19) 150 (4)
O5—H51⋯O3iv 0.90 (2) 1.98 (3) 2.8834 (16) 174 (2)
O6—H62⋯O4v 0.91 (5) 1.83 (5) 2.7343 (16) 176 (4)
N1—H1⋯O4vi 0.86 (2) 1.92 (2) 2.7522 (17) 162 (2)
O2—H2⋯O3 0.93 (5) 1.63 (5) 2.5380 (16) 167 (4)
Symmetry codes: (ii) x+1, y, z; (iii) -x+2, -y, -z+1; (iv) -x+1, -y+1, -z; (v) x, y, z+1; (vi) -x+2, -y, -z.

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The triclinic unit cell of the title compound comprises two Li(C4H2N3O4)(H2O)2 molecules related by an inversion centre to form a dimeric moiety in which two LiI ions are bridged by an aqua O atom donated by each molecule {Fig.1). The coordination of the LiI ion is distorted square-pyramidal: carboxylate O1, hetero-ring N1, aquua O6 and O5(i) atoms constitute its base [r.m.s. 0.0798 (2) Å], the Li1 ion is 0.1995 (2) Å out of it, the aqua O5(i) is at the apex. Li—O and Li—N bond distances are usual (Table 2). The ligand triazole ring is almost planar [r.m.s. 0.0006 (1) Å]. The carboxylate C6/O1/O2 and C7/O3/O4 groups make with it dihedral angles of 2.0 (1)° and 5.5 (1)°, respectively. The Fourier map indicates clearly that the O2 atom is protonated and acts as a donor in a fairly short intra-molecular hydrogen bond of 2.538 (2) Å to the O3 atom as an acceptor. The C7/O3/O4 carboxylic group remains deprotonated and coordination inactive. The bond distances and bond angles within the triazole ring do not differ from those reported in the structures of other complexes, for example, with Co and Ni (Tong et al., 2011). The dimers form molecular sheets (Fig. 2) in which they interact via an extensive hydrogen bond network; coordinated water molecules are as donors a hetero-ring N atom and carboxylate O atoms as acceptors (Table 3).

Related literature top

For the structures of Co and Ni complexes with the 1,2,3-trizole-4,5-dicarboxylate ligand, see: Tong et al. (2011).

Experimental top

1 mmol of 1,2,3-triazole-4,5-dicarboxylic acid and ca2 mmol s of lithium hydroxide dissolved in 50 ml of hot, doubly distilled water were boiled under reflux with stirring for ten hours and then left to crystallize at room temperature. Colourless blocks deposited after a week among polycrystalline material. After extraction, the crystals were washed with cold ethanol and dried in the air.

Refinement top

H atoms belonging to water molecules, the carboxylate group and hetero-ring N atom were located in a difference map and refined isotropically.

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A dimeric molecule of the title complex with 50% probability displacement ellipsoids. Symmetry code: (i): -x + 1, -y + 1, -z + 1.
[Figure 2] Fig. 2. The packing of the dimers with hydrogen bonds shown as dashed lines.
Di-µ-aqua-bis[aqua(5-carboxylato-1H-1,2,3-triazole-4-carboxylic acid-κ2N3,O4)lithium] top
Crystal data top
[Li2(C4H2N3O4)2(H2O)4]Z = 1
Mr = 398.12F(000) = 204
Triclinic, P1Dx = 1.758 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.1264 (10) ÅCell parameters from 25 reflections
b = 8.0350 (16) Åθ = 6–15°
c = 10.040 (2) ŵ = 0.16 mm1
α = 68.60 (3)°T = 293 K
β = 77.64 (3)°Blocks, colourless
γ = 85.16 (3)°0.45 × 0.26 × 0.22 mm
V = 376.12 (13) Å3
Data collection top
Kuma KM-4 four-circle
diffractometer
1695 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.110
Graphite monochromatorθmax = 30.1°, θmin = 2.2°
profile data from ω/2θ scanh = 07
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1111
Tmin = 0.951, Tmax = 0.966l = 1313
2414 measured reflections3 standard reflections every 200 reflections
2185 independent reflections intensity decay: 3.7%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.121P)2]
where P = (Fo2 + 2Fc2)/3
2185 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Li2(C4H2N3O4)2(H2O)4]γ = 85.16 (3)°
Mr = 398.12V = 376.12 (13) Å3
Triclinic, P1Z = 1
a = 5.1264 (10) ÅMo Kα radiation
b = 8.0350 (16) ŵ = 0.16 mm1
c = 10.040 (2) ÅT = 293 K
α = 68.60 (3)°0.45 × 0.26 × 0.22 mm
β = 77.64 (3)°
Data collection top
Kuma KM-4 four-circle
diffractometer
1695 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.110
Tmin = 0.951, Tmax = 0.9663 standard reflections every 200 reflections
2414 measured reflections intensity decay: 3.7%
2185 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.151All H-atom parameters refined
S = 1.04Δρmax = 0.62 e Å3
2185 reflectionsΔρmin = 0.43 e Å3
151 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21219 (19)0.40701 (15)0.33815 (11)0.0281 (2)
N30.6270 (2)0.17626 (16)0.33674 (12)0.0254 (3)
C50.6283 (2)0.17546 (15)0.11571 (12)0.0194 (2)
C40.5041 (2)0.24296 (16)0.22126 (12)0.0195 (3)
N10.8213 (2)0.07012 (16)0.17492 (12)0.0245 (3)
C60.2768 (2)0.36533 (16)0.22992 (13)0.0205 (3)
N20.8203 (2)0.07056 (17)0.30842 (13)0.0295 (3)
O30.38723 (19)0.29832 (14)0.07107 (10)0.0269 (2)
O40.7499 (2)0.13549 (15)0.10818 (11)0.0301 (3)
O50.71001 (19)0.56809 (15)0.36456 (11)0.0280 (2)
O60.7261 (3)0.19431 (19)0.60872 (13)0.0419 (3)
Li10.4924 (5)0.3334 (4)0.4828 (3)0.0317 (5)
H520.871 (4)0.527 (3)0.358 (2)0.032 (5)*
H510.682 (4)0.618 (3)0.272 (3)0.042 (6)*
O20.15267 (19)0.42563 (14)0.12078 (11)0.0266 (2)
C70.5863 (2)0.20502 (16)0.03313 (12)0.0207 (3)
H610.848 (8)0.120 (5)0.600 (4)0.094 (12)*
H620.735 (8)0.181 (6)0.701 (5)0.117 (14)*
H20.214 (8)0.380 (6)0.047 (5)0.099 (12)*
H10.944 (4)0.012 (3)0.136 (2)0.036 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0267 (4)0.0409 (6)0.0228 (5)0.0088 (4)0.0017 (3)0.0222 (4)
N30.0307 (5)0.0320 (6)0.0160 (5)0.0076 (4)0.0041 (4)0.0134 (4)
C50.0236 (5)0.0229 (5)0.0130 (5)0.0028 (4)0.0005 (4)0.0104 (4)
C40.0236 (5)0.0232 (5)0.0131 (5)0.0020 (4)0.0000 (4)0.0106 (4)
N10.0300 (5)0.0298 (5)0.0163 (5)0.0098 (4)0.0044 (4)0.0135 (4)
C60.0205 (5)0.0248 (6)0.0170 (5)0.0014 (4)0.0014 (4)0.0117 (4)
N20.0367 (6)0.0372 (6)0.0188 (5)0.0135 (5)0.0091 (4)0.0159 (5)
O30.0302 (5)0.0359 (5)0.0171 (4)0.0086 (4)0.0051 (3)0.0138 (4)
O40.0360 (5)0.0401 (6)0.0175 (4)0.0134 (4)0.0031 (4)0.0184 (4)
O50.0258 (5)0.0406 (6)0.0181 (4)0.0071 (4)0.0011 (3)0.0144 (4)
O60.0534 (7)0.0546 (7)0.0232 (5)0.0265 (5)0.0144 (5)0.0224 (5)
Li10.0375 (12)0.0382 (13)0.0210 (11)0.0030 (10)0.0014 (9)0.0158 (10)
O20.0275 (4)0.0341 (5)0.0215 (5)0.0086 (3)0.0050 (3)0.0155 (4)
C70.0259 (5)0.0241 (5)0.0132 (5)0.0016 (4)0.0006 (4)0.0102 (4)
Geometric parameters (Å, º) top
Li1—O12.156 (3)N1—N21.3405 (15)
Li1—O52.089 (3)N1—H10.86 (2)
Li1—O5i2.029 (3)C6—O21.3035 (16)
Li1—O61.916 (3)O3—C71.2559 (16)
Li1—N32.234 (3)O4—C71.2415 (15)
O1—C61.2229 (15)O5—Li1i2.029 (3)
N3—N21.3029 (16)O5—H520.86 (2)
N3—C41.3529 (16)O5—H510.90 (2)
C5—N11.3386 (17)O6—H610.84 (4)
C5—C41.3765 (16)O6—H620.91 (5)
C5—C71.4852 (16)Li1—Li1i2.831 (5)
C4—C61.4692 (17)O2—H20.93 (5)
C6—O1—Li1115.52 (11)Li1—O6—H61133 (3)
N2—N3—C4108.64 (11)Li1—O6—H62132 (3)
N2—N3—Li1140.62 (11)H61—O6—H6295 (4)
C4—N3—Li1108.55 (11)O6—Li1—O5i92.37 (11)
N1—C5—C4103.63 (11)O6—Li1—O5102.05 (13)
N1—C5—C7123.52 (11)O5i—Li1—O593.17 (11)
C4—C5—C7132.82 (11)O6—Li1—O1161.54 (16)
N3—C4—C5108.86 (11)O5i—Li1—O198.57 (11)
N3—C4—C6118.02 (11)O5—Li1—O192.20 (12)
C5—C4—C6133.12 (12)O6—Li1—N389.77 (11)
C5—N1—N2111.56 (11)O5i—Li1—N3165.21 (15)
C5—N1—H1128.6 (14)O5—Li1—N3100.70 (11)
N2—N1—H1119.7 (14)O1—Li1—N375.95 (9)
O1—C6—O2122.70 (12)O6—Li1—Li1i100.59 (15)
O1—C6—C4119.06 (12)O5i—Li1—Li1i47.47 (8)
O2—C6—C4118.23 (11)O5—Li1—Li1i45.70 (8)
N3—N2—N1107.31 (11)O1—Li1—Li1i97.76 (14)
Li1i—O5—Li186.83 (11)N3—Li1—Li1i146.10 (17)
Li1i—O5—H52126.9 (15)C6—O2—H2115 (3)
Li1—O5—H52101.1 (13)O4—C7—O3126.12 (12)
Li1i—O5—H51118.6 (15)O4—C7—C5117.29 (12)
Li1—O5—H51112.5 (13)O3—C7—C5116.59 (11)
H52—O5—H51107 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H52···O1ii0.86 (2)1.93 (2)2.7873 (16)172 (2)
O6—H61···N2iii0.84 (4)2.30 (4)3.0545 (19)150 (4)
O5—H51···O3iv0.90 (2)1.98 (3)2.8834 (16)174 (2)
O6—H62···O4v0.91 (5)1.83 (5)2.7343 (16)176 (4)
N1—H1···O4vi0.86 (2)1.92 (2)2.7522 (17)162 (2)
O2—H2···O30.93 (5)1.63 (5)2.5380 (16)167 (4)
Symmetry codes: (ii) x+1, y, z; (iii) x+2, y, z+1; (iv) x+1, y+1, z; (v) x, y, z+1; (vi) x+2, y, z.
Selected bond lengths (Å) top
Li1—O12.156 (3)Li1—O61.916 (3)
Li1—O52.089 (3)Li1—N32.234 (3)
Li1—O5i2.029 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H52···O1ii0.86 (2)1.93 (2)2.7873 (16)172 (2)
O6—H61···N2iii0.84 (4)2.30 (4)3.0545 (19)150 (4)
O5—H51···O3iv0.90 (2)1.98 (3)2.8834 (16)174 (2)
O6—H62···O4v0.91 (5)1.83 (5)2.7343 (16)176 (4)
N1—H1···O4vi0.86 (2)1.92 (2)2.7522 (17)162 (2)
O2—H2···O30.93 (5)1.63 (5)2.5380 (16)167 (4)
Symmetry codes: (ii) x+1, y, z; (iii) x+2, y, z+1; (iv) x+1, y+1, z; (v) x, y, z+1; (vi) x+2, y, z.
 

References

First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTong, X.-L., Xin, J.-H., Guo, V.-H. & Zhu, X.-P. (2011). J. Coord. Chem. 64, 2984–2994.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages m515-m516
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds