organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl­benzyl­ammonium nitrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: houda_marouani@voila.fr

(Received 13 August 2013; accepted 13 August 2013; online 21 August 2013)

In the title salt, C8H12N+·NO3, the N atom of the 4-methyl­benzyl­ammonium cation is displaced by 1.366 (2) Å from the mean plane of the other atoms. In the crystal, the cations are connected to the anions by N—H⋯O and N—H⋯(O,O) hydrogen bonds, generating a layered network parallel to (100). A weak C—H⋯O inter­action also occurs.

Related literature

For related structures, see: Kefi et al. (2011[Kefi, R., Jeanneau, E., Lefebvre, F. & Ben Nasr, C. (2011). Acta Cryst. C67, m126-m129.]); Rahmouni et al. (2011[Rahmouni, H., Smirani Sta, W., Al-Deyab, S. S. & Rzaigui, M. (2011). Acta Cryst. E67, o2334.]). For a discussion on hydrogen bonding, see: Brown (1976[Brown, I. D. (1976). Acta Cryst. A32, 24-31.]); Blessing (1986[Blessing, R. H. (1986). Acta Cryst. B42, 613-621.]). For aromatic ππ stacking inter­actions, see: Janiak (2000[Janiak, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). For graph-set notation of hydrogen-bonding patterns, see: Bernstein et al. (1995[Bernstein, J., David, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N+·NO3

  • Mr = 184.20

  • Monoclinic, P 21 /c

  • a = 15.097 (2) Å

  • b = 5.8121 (10) Å

  • c = 10.486 (2) Å

  • β = 99.75 (2)°

  • V = 906.8 (3) Å3

  • Z = 4

  • Ag Kα radiation

  • λ = 0.56083 Å

  • μ = 0.06 mm−1

  • T = 293 K

  • 0.40 × 0.35 × 0.30 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 6579 measured reflections

  • 4430 independent reflections

  • 2415 reflections with I > 2σ(I)

  • Rint = 0.033

  • 2 standard reflections every 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.216

  • S = 0.96

  • 4430 reflections

  • 122 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.89 2.07 2.936 (3) 164
N1—H1A⋯O3i 0.89 2.52 3.065 (2) 120
N1—H1B⋯O3ii 0.89 2.12 2.9378 (19) 153
N1—H1C⋯O3 0.89 2.01 2.900 (2) 179
N1—H1C⋯O2 0.89 2.55 3.158 (3) 126
C8—H8A⋯O1iii 0.97 2.45 3.234 (2) 138
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+2, -z+1; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

We report here the preparation and the crystal structure of the title compound, C8H12N·NO3 (I).

The asymmetric unit of (I) consists of one nitrate anion and one 4-methylbenzylammonium cation (Figure 1). The 4-methylbenzylammonium cations are connected to the nitrate anions through weak N—H···O and C—H···O hydrogen bonds with donor-acceptor distances varying between 2.900 (2) and 3.234 (2) Å [d (N(C)···O) > 2.73 Å] (Brown, 1976); (Blessing, 1986) (Table 1, Figure 2).

In the nitrate anion, the distance N2—O2 is significantly shorter than the N2—O1 and N2—O3 distances because O2 is applied in only one hydrogen bond (table1) while O1 and O3 are applied in two and three hydrogen bonds, respectively. These geometrical features have also been noticed in other crystal structures (Rahmouni, et al., 2011).

Each organic entity is bounded to three different nitrate anions through five N—H···O hydrogen bonds forming R12(4) and R42(8) motifs (Fig. 3) (Bernstein, et al., 1995). Examination of the 4-methylbenzylammonium cation shows that the bond distances and angles show no significant difference from those obtained in other structures involving the same organic groups (Kefi, et al., 2011). The aromatic ring of the organic cation is essentially planar with an r.m.s deviation of 0.0099 Å. The inter-planar distance between nearby phenyl rings is in the vicinity of 5.925 Å, which is much longer than 3.80 Å, value required for the formation of ππ interactions (Janiak, 2000).

The crystal cohesion and stability are ensured by electrostatic and van der Waals interactions which, together with N—H···O and C—H···O hydrogen bonds, build up a two-dimensional network.

Related literature top

For related structures, see: Kefi et al. (2011); Rahmouni et al. (2011). For a discussion on hydrogen bonding, see: Brown (1976); Blessing (1986). For aromatic ππ stacking interactions, see: Janiak (2000). For graph-set notation of hydrogen-bonding patterns, see: Bernstein et al. (1995).

Experimental top

An aqueous solution containing 1 mmol of HNO3 in 10 ml of water, was added to 1 mmol of 4-xylylamine in 10 ml of ethanol. The obtained solution was stirred for 20 min and then left to stand at room temperature. Colorless prisms of the title compound were obtained after some days.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) or 0.96 Å (methyl), N—H = 0.89 Å with Uiso(H) = 1.2Ueq(C or N).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dotted lines.
[Figure 2] Fig. 2. Projection of (I) along the b axis. The H-atoms not involved in H-bonding are omitted.
[Figure 3] Fig. 3. Hydrogen bond motifs in (I).
4-Methylbenzylammonium nitrate top
Crystal data top
C8H12N+·NO3F(000) = 392
Mr = 184.20Dx = 1.349 Mg m3
Monoclinic, P21/cAg Kα radiation, λ = 0.56083 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 15.097 (2) Åθ = 9–11°
b = 5.8121 (10) ŵ = 0.06 mm1
c = 10.486 (2) ÅT = 293 K
β = 99.75 (2)°Prism, colorless
V = 906.8 (3) Å30.40 × 0.35 × 0.30 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.033
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.2°
Graphite monochromatorh = 225
non–profiled ω scansk = 92
6579 measured reflectionsl = 1717
4430 independent reflections2 standard reflections every 120 min
2415 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0879P)2]
where P = (Fo2 + 2Fc2)/3
4430 reflections(Δ/σ)max = 0.011
122 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C8H12N+·NO3V = 906.8 (3) Å3
Mr = 184.20Z = 4
Monoclinic, P21/cAg Kα radiation, λ = 0.56083 Å
a = 15.097 (2) ŵ = 0.06 mm1
b = 5.8121 (10) ÅT = 293 K
c = 10.486 (2) Å0.40 × 0.35 × 0.30 mm
β = 99.75 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.033
6579 measured reflections2 standard reflections every 120 min
4430 independent reflections intensity decay: 1%
2415 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.216H-atom parameters constrained
S = 0.96Δρmax = 0.31 e Å3
4430 reflectionsΔρmin = 0.17 e Å3
122 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.42764 (9)0.7571 (2)0.58898 (11)0.0491 (4)
N20.40982 (10)0.7432 (3)0.70119 (15)0.0495 (4)
N10.40818 (11)1.2425 (3)0.52659 (18)0.0576 (5)
H1A0.41361.32500.59900.086*
H1B0.45001.28590.48110.086*
H1C0.41511.09400.54640.086*
C60.20891 (13)1.2197 (3)0.60241 (18)0.0485 (5)
H60.22671.36000.64110.058*
C20.11570 (12)0.8824 (3)0.59300 (17)0.0455 (5)
C70.14446 (13)1.0904 (4)0.64823 (18)0.0510 (5)
H70.11981.14470.71800.061*
C50.24736 (12)1.1432 (3)0.49952 (16)0.0420 (4)
C40.21981 (13)0.9329 (3)0.44485 (18)0.0494 (5)
H40.24530.87680.37630.059*
C80.31895 (14)1.2799 (4)0.44969 (19)0.0538 (5)
H8A0.32001.23690.36060.065*
H8B0.30421.44230.45110.065*
C30.15502 (13)0.8059 (3)0.49093 (19)0.0517 (5)
H30.13730.66540.45250.062*
O10.39214 (12)0.5519 (3)0.74280 (15)0.0818 (6)
O20.41003 (13)0.9155 (3)0.76752 (16)0.0859 (6)
C10.04360 (14)0.7443 (4)0.6414 (2)0.0632 (6)
H1D0.04770.76760.73290.095*
H1E0.05160.58400.62440.095*
H1F0.01440.79330.59770.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0556 (8)0.0473 (8)0.0478 (7)0.0014 (6)0.0184 (6)0.0008 (6)
N20.0483 (9)0.0536 (10)0.0499 (9)0.0024 (8)0.0175 (7)0.0024 (8)
N10.0558 (10)0.0390 (9)0.0870 (12)0.0007 (8)0.0379 (9)0.0063 (9)
C60.0555 (11)0.0418 (10)0.0504 (10)0.0018 (9)0.0157 (9)0.0056 (9)
C20.0400 (9)0.0471 (11)0.0494 (10)0.0003 (9)0.0073 (8)0.0096 (9)
C70.0523 (11)0.0537 (12)0.0506 (10)0.0038 (10)0.0197 (9)0.0026 (9)
C50.0471 (10)0.0377 (9)0.0428 (9)0.0005 (9)0.0117 (8)0.0029 (8)
C40.0628 (12)0.0432 (11)0.0459 (10)0.0024 (10)0.0195 (9)0.0029 (8)
C80.0662 (13)0.0471 (12)0.0531 (10)0.0053 (10)0.0245 (10)0.0021 (9)
C30.0607 (12)0.0409 (11)0.0541 (11)0.0055 (9)0.0116 (10)0.0006 (9)
O10.1100 (14)0.0670 (11)0.0772 (11)0.0136 (10)0.0413 (10)0.0139 (9)
O20.1169 (15)0.0737 (12)0.0739 (10)0.0027 (11)0.0353 (10)0.0280 (9)
C10.0542 (12)0.0675 (15)0.0705 (13)0.0100 (11)0.0178 (11)0.0083 (12)
Geometric parameters (Å, º) top
O3—N21.2533 (19)C2—C11.508 (3)
N2—O21.219 (2)C7—H70.9300
N2—O11.240 (2)C5—C41.384 (3)
N1—C81.464 (3)C5—C81.505 (2)
N1—H1A0.8900C4—C31.376 (3)
N1—H1B0.8900C4—H40.9300
N1—H1C0.8900C8—H8A0.9700
C6—C71.379 (3)C8—H8B0.9700
C6—C51.383 (2)C3—H30.9300
C6—H60.9300C1—H1D0.9600
C2—C71.378 (3)C1—H1E0.9600
C2—C31.382 (3)C1—H1F0.9600
O2—N2—O1121.05 (17)C4—C5—C8120.39 (16)
O2—N2—O3120.18 (18)C3—C4—C5120.63 (17)
O1—N2—O3118.77 (17)C3—C4—H4119.7
C8—N1—H1A109.5C5—C4—H4119.7
C8—N1—H1B109.5N1—C8—C5112.22 (16)
H1A—N1—H1B109.5N1—C8—H8A109.2
C8—N1—H1C109.5C5—C8—H8A109.2
H1A—N1—H1C109.5N1—C8—H8B109.2
H1B—N1—H1C109.5C5—C8—H8B109.2
C7—C6—C5120.72 (18)H8A—C8—H8B107.9
C7—C6—H6119.6C4—C3—C2121.56 (19)
C5—C6—H6119.6C4—C3—H3119.2
C7—C2—C3117.47 (17)C2—C3—H3119.2
C7—C2—C1121.30 (18)C2—C1—H1D109.5
C3—C2—C1121.2 (2)C2—C1—H1E109.5
C2—C7—C6121.50 (18)H1D—C1—H1E109.5
C2—C7—H7119.3C2—C1—H1F109.5
C6—C7—H7119.3H1D—C1—H1F109.5
C6—C5—C4118.11 (17)H1E—C1—H1F109.5
C6—C5—C8121.48 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.892.072.936 (3)164
N1—H1A···O3i0.892.523.065 (2)120
N1—H1B···O3ii0.892.122.9378 (19)153
N1—H1C···O30.892.012.900 (2)179
N1—H1C···O20.892.553.158 (3)126
C8—H8A···O1iii0.972.453.234 (2)138
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1; (iii) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.892.072.936 (3)164
N1—H1A···O3i0.892.523.065 (2)120
N1—H1B···O3ii0.892.122.9378 (19)153
N1—H1C···O30.892.012.900 (2)179
N1—H1C···O20.892.553.158 (3)126
C8—H8A···O1iii0.972.453.234 (2)138
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1; (iii) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported by the Tunisian Ministry of HEScR.

References

First citationBernstein, J., David, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1986). Acta Cryst. B42, 613–621.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. (1976). Acta Cryst. A32, 24–31.  CrossRef IUCr Journals Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJaniak, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKefi, R., Jeanneau, E., Lefebvre, F. & Ben Nasr, C. (2011). Acta Cryst. C67, m126–m129.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRahmouni, H., Smirani Sta, W., Al-Deyab, S. S. & Rzaigui, M. (2011). Acta Cryst. E67, o2334.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds