organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[3-({[Bis(2-methyl­prop­yl)carbamo­thio­yl]amino}­carbon­yl)benzoyl]-3,3-bis­­(2-methyl­prop­yl)thio­urea

aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 28 July 2013; accepted 29 July 2013; online 3 August 2013)

The title compound, C26H42N4O2S2, adopts a shallow U-shape as both pendant arms of the 1,3-substituted benzene ring are orientated in the same direction. The thione S atoms lie to the same side of the benzene ring and the carbonyl O atoms to the other. The most prominent feature of the crystal packing is the formation of inversion dimers mediated by N—H⋯S hydrogen bonds. One of the 2-methyl­propyl groups is statistically disordered over two positions.

Related literature

For the use of the title compound in the synthesis of metal macrocycles, see: Nguyen et al. (2011[Nguyen, H. H., Thang, P. C., Rodenstein, A., Kirmse, R. & Abram, U. (2011). Inorg. Chem. 50, 590-596.]). For the structure of the methanol solvate, see: Rodenstein et al. (2007[Rodenstein, A., Richter, R. & Kirmse, R. (2007). Z. Anorg. Allg. Chem. 633, 1713-1717.]).

[Scheme 1]

Experimental

Crystal data
  • C26H42N4O2S2

  • Mr = 506.76

  • Monoclinic, P 21 /c

  • a = 12.6926 (2) Å

  • b = 11.8015 (2) Å

  • c = 19.9701 (4) Å

  • β = 103.883 (2)°

  • V = 2903.97 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.87 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.217, Tmax = 1.000

  • 11629 measured reflections

  • 5743 independent reflections

  • 5234 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.142

  • S = 1.01

  • 5743 reflections

  • 316 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S2i 0.88 2.62 3.4745 (17) 163
N3—H3⋯S2i 0.88 2.54 3.3870 (18) 162
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), for which the structure of a methanol solvate is known (Rodenstein et al., 2007), plays a vital role in forming a metallamacrocyclic square-planar d8 metal complexes via self-assembly (Nguyen et al., 2011).

In (I), Fig. 1, there is an almost orthogonal relationship between adjacent thione and carbonyl groups as seen in the C10—N2—C9—S1 and C17—N3—C18—S2 torsion angles of -113.25 (18) and 112.56 (18)°, respectively. Globally, the molecule adopts a flattened U-shape. The thione-S atoms lie to one side of the plane through the central benzene and the carbonyl-O atoms to the other so that the molecule has approximate mirror symmetry. The structure reported here for (I) is quite distinct that that observed in the methanol solvate of (I) (Rodenstein et al., 2007). In the latter, the thione-S atoms lie to either side of the benzene ring and, to a first approximation, the carbonyl-O atoms are co-planar with the ring.

Being direct towards the centre of the U-shaped molecule, the nitrogen-bound hydrogen atoms are well placed to form two N—H···S hydrogen bonds with an inverted U-shaped molecule with the central pair forming an eight-membered {···HNCS}2 synthon, Fig. 2 and Table 1. A detailed analysis of the crystal packing is precluded owing to the presence of disorder in the molecule.

Related literature top

For the use of the title compound in the synthesis of metal macrocycles, see: Nguyen et al. (2011). For the structure of the methanol solvate, see: Rodenstein et al. (2007).

Experimental top

Isophthaloyl dichloride (2.0302 g, 10 mmol) dissolved in acetone (80 ml) was placed in a dropping funnel and added drop wise with stirring to potassium thiocyanate (1.9436 g, 20 mmol) dissolved in acetone (80 ml), under an N2 atmosphere, in a three-necked round bottom flask. The mixture was heated to reflux for 30 min. and then allowed to cool. A solution of diisobutylamine (2.2850 g, 20 mmol) in acetone (80 ml) was added drop wise from a dropping funnel to the reaction mixture and the resulting mixture was stirred for 2 h. Hydrochloric acid (0.1 N, 300 ml) was added and the resulting white solid was filtered off, washed with water and dried in vacuo. Single crystals were grown at room temperature from its acetonitrile solution. FT—IR (KBr): ν(N—H) 3275, ν(CO) 1694, ν(CC) 1604, ν(CS) 1262 cm-1.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [N—H = 0.88 Å; C—H = 0.95–0.99 Å, Uiso(H) = 1.2–1.5Ueq(N, C)] and were included in the refinement in the riding model approximation. The C24-containing groups was disordered over two positions of equal weight, from refinement. Pairs of 1,2-related distances were restrained to 1.50±0.01 Å and the 1,3-related ones to 2.35±0.01 Å. The anisotropic displacement parameters (adp) of the primed atoms were set to those of the unprimed ones, and the adp of the three components of the affected atoms were tightly restrained with the ISOR command in SHELXL97.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view of the supramolecular dimer sustained by N—H···S hydrogen bonding, shown as orange dashed lines.
1-[3-({[Bis(2-methylpropyl)carbamothioyl]amino}carbonyl)benzoyl]-3,3-bis(2-methylpropyl)thiourea top
Crystal data top
C26H42N4O2S2F(000) = 1096
Mr = 506.76Dx = 1.159 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 7250 reflections
a = 12.6926 (2) Åθ = 3.6–74.2°
b = 11.8015 (2) ŵ = 1.87 mm1
c = 19.9701 (4) ÅT = 100 K
β = 103.883 (2)°Prism, colourless
V = 2903.97 (9) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5743 independent reflections
Radiation source: SuperNova (Cu) X-ray Source5234 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.4041 pixels mm-1θmax = 74.4°, θmin = 3.6°
ω scanh = 1513
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1214
Tmin = 0.217, Tmax = 1.000l = 2424
11629 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0843P)2 + 2.364P]
where P = (Fo2 + 2Fc2)/3
5743 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.89 e Å3
30 restraintsΔρmin = 0.82 e Å3
Crystal data top
C26H42N4O2S2V = 2903.97 (9) Å3
Mr = 506.76Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.6926 (2) ŵ = 1.87 mm1
b = 11.8015 (2) ÅT = 100 K
c = 19.9701 (4) Å0.30 × 0.25 × 0.20 mm
β = 103.883 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5743 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
5234 reflections with I > 2σ(I)
Tmin = 0.217, Tmax = 1.000Rint = 0.028
11629 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05030 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.01Δρmax = 0.89 e Å3
5743 reflectionsΔρmin = 0.82 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.11609 (4)0.55881 (4)0.67655 (3)0.02477 (15)
S20.62752 (4)0.46118 (4)0.44878 (3)0.02293 (15)
O10.17340 (12)0.22802 (13)0.68690 (8)0.0241 (3)
O20.61704 (11)0.15808 (12)0.54351 (7)0.0206 (3)
N10.24077 (13)0.43431 (13)0.77683 (8)0.0169 (3)
N20.25286 (13)0.39332 (14)0.66500 (8)0.0170 (3)
H20.29640.42610.64260.020*
N30.56570 (13)0.34366 (14)0.54531 (9)0.0176 (3)
H30.51910.39010.55720.021*
N40.75240 (13)0.37320 (13)0.56575 (9)0.0178 (3)
C10.18861 (16)0.48806 (17)0.82699 (10)0.0203 (4)
H1A0.17450.56880.81450.024*
H1B0.23880.48510.87330.024*
C20.08139 (17)0.43044 (18)0.82988 (11)0.0219 (4)
H2A0.03280.43160.78240.026*
C30.0975 (2)0.3077 (2)0.85294 (13)0.0306 (5)
H3A0.13390.26650.82230.046*
H3B0.02680.27290.85110.046*
H3C0.14210.30460.90030.046*
C40.02682 (19)0.4997 (2)0.87688 (13)0.0323 (5)
H4A0.04130.46300.87960.048*
H4B0.01160.57630.85800.048*
H4C0.07520.50420.92310.048*
C50.33477 (16)0.36086 (17)0.80564 (10)0.0196 (4)
H5A0.34580.30860.76910.023*
H5B0.31830.31430.84310.023*
C60.44031 (17)0.42639 (19)0.83420 (11)0.0239 (4)
H60.43050.47460.87340.029*
C70.47084 (19)0.5028 (2)0.78033 (13)0.0334 (5)
H7A0.53900.54200.80080.050*
H7B0.41320.55870.76430.050*
H7C0.48000.45680.74120.050*
C80.52897 (19)0.3391 (2)0.86208 (13)0.0347 (5)
H8A0.59800.37820.88040.052*
H8B0.53630.28810.82480.052*
H8C0.50940.29520.89900.052*
C90.20600 (16)0.45859 (16)0.71007 (10)0.0177 (4)
C100.23093 (15)0.27912 (16)0.65600 (10)0.0173 (4)
C110.28645 (15)0.22035 (16)0.60795 (10)0.0164 (4)
C120.23975 (16)0.12179 (16)0.57527 (10)0.0183 (4)
H120.17250.09560.58240.022*
C130.29103 (16)0.06192 (16)0.53250 (10)0.0196 (4)
H130.25800.00400.50930.024*
C140.39096 (16)0.09851 (16)0.52349 (10)0.0179 (4)
H140.42660.05680.49470.021*
C150.43890 (15)0.19632 (16)0.55670 (10)0.0162 (4)
C160.38622 (15)0.25765 (16)0.59863 (9)0.0158 (4)
H160.41820.32480.62080.019*
C170.54908 (15)0.22891 (16)0.54792 (10)0.0164 (4)
C180.65585 (16)0.38956 (16)0.52398 (10)0.0173 (4)
C190.85265 (15)0.40405 (17)0.54486 (11)0.0200 (4)
H19A0.89970.44960.58190.024*
H19B0.83370.45150.50280.024*
C200.91545 (16)0.29955 (17)0.53062 (11)0.0217 (4)
H200.93520.25290.57360.026*
C211.02006 (16)0.33990 (19)0.51283 (11)0.0252 (4)
H21A1.06120.38730.55040.038*
H21B1.00200.38410.47000.038*
H21C1.06390.27410.50670.038*
C220.84824 (19)0.22679 (19)0.47291 (13)0.0292 (5)
H22A0.78170.20230.48540.044*
H22B0.89040.16010.46600.044*
H22C0.82940.27110.43020.044*
C230.76747 (16)0.33369 (17)0.63803 (10)0.0208 (4)
H23A0.72820.26110.63750.025*0.50
H23B0.84560.31810.65700.025*0.50
H23C0.83140.28300.65010.025*0.50
H23D0.70300.28980.64230.025*0.50
C240.7304 (4)0.4126 (4)0.6856 (2)0.0249 (7)0.50
H240.64980.42190.67180.030*0.50
C250.7662 (18)0.3648 (9)0.7587 (4)0.0535 (12)0.50
H25A0.75000.28350.75800.080*0.50
H25B0.72720.40380.78880.080*0.50
H25C0.84450.37640.77630.080*0.50
C260.7866 (5)0.5259 (4)0.6858 (3)0.0385 (8)0.50
H26A0.77440.57230.72390.058*0.50
H26B0.75710.56490.64200.058*0.50
H26C0.86470.51380.69160.058*0.50
C24'0.7841 (4)0.4354 (4)0.6890 (2)0.0249 (7)0.50
H24'0.85980.46530.69640.030*0.50
C25'0.7669 (18)0.3828 (10)0.7565 (4)0.0535 (12)0.50
H25D0.78280.43950.79340.080*0.50
H25E0.81560.31780.76950.080*0.50
H25F0.69150.35760.74940.080*0.50
C26'0.7058 (5)0.5276 (4)0.6693 (3)0.0385 (8)0.50
H26D0.70600.55360.62270.058*0.50
H26E0.72570.59050.70190.058*0.50
H26F0.63310.50030.67000.058*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0289 (3)0.0230 (3)0.0233 (3)0.00895 (19)0.0080 (2)0.00262 (19)
S20.0208 (3)0.0234 (3)0.0279 (3)0.00407 (18)0.0124 (2)0.00993 (19)
O10.0282 (8)0.0239 (7)0.0252 (7)0.0074 (6)0.0163 (6)0.0031 (6)
O20.0200 (7)0.0164 (7)0.0286 (8)0.0007 (5)0.0119 (6)0.0014 (5)
N10.0179 (8)0.0179 (8)0.0167 (8)0.0007 (6)0.0078 (6)0.0014 (6)
N20.0189 (8)0.0175 (8)0.0175 (8)0.0016 (6)0.0101 (6)0.0002 (6)
N30.0165 (8)0.0143 (8)0.0255 (9)0.0001 (6)0.0121 (7)0.0015 (6)
N40.0187 (8)0.0141 (7)0.0228 (8)0.0011 (6)0.0092 (6)0.0005 (6)
C10.0227 (10)0.0206 (10)0.0200 (9)0.0001 (8)0.0098 (8)0.0042 (8)
C20.0219 (10)0.0248 (10)0.0217 (10)0.0019 (8)0.0106 (8)0.0042 (8)
C30.0328 (12)0.0269 (11)0.0376 (13)0.0042 (9)0.0190 (10)0.0012 (9)
C40.0283 (11)0.0371 (13)0.0369 (13)0.0012 (10)0.0186 (10)0.0105 (10)
C50.0212 (10)0.0207 (10)0.0180 (9)0.0021 (8)0.0071 (8)0.0010 (7)
C60.0206 (10)0.0299 (11)0.0215 (10)0.0002 (8)0.0052 (8)0.0059 (8)
C70.0249 (11)0.0387 (13)0.0370 (13)0.0099 (10)0.0085 (10)0.0008 (10)
C80.0256 (11)0.0425 (14)0.0326 (12)0.0074 (10)0.0002 (9)0.0060 (10)
C90.0188 (9)0.0161 (9)0.0202 (9)0.0026 (7)0.0086 (8)0.0020 (7)
C100.0170 (9)0.0193 (9)0.0168 (9)0.0005 (7)0.0063 (7)0.0005 (7)
C110.0189 (9)0.0156 (9)0.0163 (9)0.0002 (7)0.0070 (7)0.0023 (7)
C120.0167 (9)0.0177 (9)0.0216 (9)0.0022 (7)0.0065 (7)0.0009 (7)
C130.0215 (10)0.0157 (9)0.0221 (10)0.0032 (7)0.0058 (8)0.0023 (7)
C140.0202 (9)0.0159 (9)0.0187 (9)0.0010 (7)0.0071 (7)0.0012 (7)
C150.0175 (9)0.0151 (9)0.0171 (9)0.0002 (7)0.0066 (7)0.0029 (7)
C160.0182 (9)0.0134 (8)0.0164 (9)0.0017 (7)0.0052 (7)0.0002 (7)
C170.0190 (9)0.0157 (9)0.0162 (9)0.0010 (7)0.0078 (7)0.0005 (7)
C180.0192 (9)0.0122 (8)0.0235 (10)0.0000 (7)0.0110 (7)0.0003 (7)
C190.0160 (9)0.0181 (9)0.0285 (10)0.0021 (7)0.0104 (8)0.0025 (8)
C200.0220 (10)0.0202 (10)0.0261 (10)0.0045 (8)0.0118 (8)0.0060 (8)
C210.0174 (10)0.0325 (11)0.0266 (11)0.0029 (8)0.0073 (8)0.0022 (9)
C220.0303 (11)0.0215 (10)0.0416 (13)0.0044 (9)0.0202 (10)0.0055 (9)
C230.0198 (9)0.0217 (10)0.0217 (10)0.0007 (8)0.0067 (8)0.0020 (8)
C240.026 (2)0.0248 (17)0.0264 (14)0.0041 (16)0.0106 (18)0.0030 (13)
C250.072 (2)0.066 (3)0.0243 (14)0.030 (3)0.0160 (14)0.0035 (15)
C260.050 (2)0.0312 (17)0.0356 (19)0.0013 (19)0.0119 (18)0.0110 (15)
C24'0.026 (2)0.0248 (17)0.0264 (14)0.0041 (16)0.0106 (18)0.0030 (13)
C25'0.072 (2)0.066 (3)0.0243 (14)0.030 (3)0.0160 (14)0.0035 (15)
C26'0.050 (2)0.0312 (17)0.0356 (19)0.0013 (19)0.0119 (18)0.0110 (15)
Geometric parameters (Å, º) top
S1—C91.668 (2)C12—H120.9500
S2—C181.685 (2)C13—C141.392 (3)
O1—C101.222 (2)C13—H130.9500
O2—C171.219 (2)C14—C151.396 (3)
N1—C91.331 (3)C14—H140.9500
N1—C11.470 (2)C15—C161.393 (3)
N1—C51.475 (2)C15—C171.501 (3)
N2—C101.379 (3)C16—H160.9500
N2—C91.419 (2)C19—C201.532 (3)
N2—H20.8800C19—H19A0.9900
N3—C171.374 (2)C19—H19B0.9900
N3—C181.421 (2)C20—C221.524 (3)
N3—H30.8800C20—C211.530 (3)
N4—C181.321 (3)C20—H201.0000
N4—C191.477 (2)C21—H21A0.9800
N4—C231.485 (3)C21—H21B0.9800
C1—C21.535 (3)C21—H21C0.9800
C1—H1A0.9900C22—H22A0.9800
C1—H1B0.9900C22—H22B0.9800
C2—C31.519 (3)C22—H22C0.9800
C3—H3A0.9800C23—C241.485 (4)
C3—H3B0.9800C23—C24'1.556 (4)
C3—H3C0.9800C23—H23A0.9900
C2—C41.530 (3)C23—H23B0.9900
C2—H2A1.0000C23—H23C0.9900
C4—H4A0.9800C23—H23D0.9900
C4—H4B0.9800C24—C261.515 (6)
C4—H4C0.9800C24—C251.529 (8)
C5—C61.533 (3)C24—H241.0000
C5—H5A0.9900C25—H25A0.9800
C5—H5B0.9900C25—H25B0.9800
C6—C71.523 (3)C25—H25C0.9800
C6—C81.528 (3)C26—H26A0.9800
C6—H61.0000C26—H26B0.9800
C7—H7A0.9800C26—H26C0.9800
C7—H7B0.9800C24'—C26'1.463 (6)
C7—H7C0.9800C24'—C25'1.547 (8)
C8—H8A0.9800C24'—H24'1.0000
C8—H8B0.9800C25'—H25D0.9800
C8—H8C0.9800C25'—H25E0.9800
C10—C111.491 (3)C25'—H25F0.9800
C11—C161.395 (3)C26'—H26D0.9800
C11—C121.395 (3)C26'—H26E0.9800
C12—C131.385 (3)C26'—H26F0.9800
C9—N1—C1119.61 (16)N3—C17—C15114.39 (16)
C9—N1—C5124.04 (16)N4—C18—N3116.55 (17)
C1—N1—C5116.23 (15)N4—C18—S2127.12 (15)
C10—N2—C9120.73 (16)N3—C18—S2116.32 (14)
C10—N2—H2119.6N4—C19—C20112.09 (16)
C9—N2—H2119.6N4—C19—H19A109.2
C17—N3—C18121.97 (16)C20—C19—H19A109.2
C17—N3—H3119.0N4—C19—H19B109.2
C18—N3—H3119.0C20—C19—H19B109.2
C18—N4—C19121.16 (17)H19A—C19—H19B107.9
C18—N4—C23122.92 (16)C22—C20—C21111.05 (17)
C19—N4—C23115.67 (16)C22—C20—C19111.87 (17)
N1—C1—C2112.50 (16)C21—C20—C19108.17 (17)
N1—C1—H1A109.1C22—C20—H20108.6
C2—C1—H1A109.1C21—C20—H20108.6
N1—C1—H1B109.1C19—C20—H20108.6
C2—C1—H1B109.1C20—C21—H21A109.5
H1A—C1—H1B107.8C20—C21—H21B109.5
C2—C3—H3A109.5H21A—C21—H21B109.5
C2—C3—H3B109.5C20—C21—H21C109.5
H3A—C3—H3B109.5H21A—C21—H21C109.5
C2—C3—H3C109.5H21B—C21—H21C109.5
H3A—C3—H3C109.5C20—C22—H22A109.5
H3B—C3—H3C109.5C20—C22—H22B109.5
C3—C2—C4111.80 (19)H22A—C22—H22B109.5
C3—C2—C1112.21 (18)C20—C22—H22C109.5
C4—C2—C1108.81 (17)H22A—C22—H22C109.5
C3—C2—H2A108.0H22B—C22—H22C109.5
C4—C2—H2A108.0C24—C23—N4116.0 (2)
C1—C2—H2A108.0C24—C23—C24'27.3 (2)
C2—C4—H4A109.5N4—C23—C24'111.1 (2)
C2—C4—H4B109.5C24—C23—H23A108.3
H4A—C4—H4B109.5N4—C23—H23A108.3
C2—C4—H4C109.5C24'—C23—H23A131.6
H4A—C4—H4C109.5C24—C23—H23B108.3
H4B—C4—H4C109.5N4—C23—H23B108.3
N1—C5—C6113.66 (17)C24'—C23—H23B85.8
N1—C5—H5A108.8H23A—C23—H23B107.4
C6—C5—H5A108.8C24—C23—H23C126.2
N1—C5—H5B108.8N4—C23—H23C109.4
C6—C5—H5B108.8C24'—C23—H23C109.4
H5A—C5—H5B107.7H23A—C23—H23C82.0
C7—C6—C8111.48 (19)H23B—C23—H23C26.8
C7—C6—C5112.55 (18)C24—C23—H23D82.9
C8—C6—C5107.27 (18)N4—C23—H23D109.4
C7—C6—H6108.5C24'—C23—H23D109.4
C8—C6—H6108.5H23A—C23—H23D28.7
C5—C6—H6108.5H23B—C23—H23D130.0
C6—C7—H7A109.5H23C—C23—H23D108.0
C6—C7—H7B109.5C23—C24—C26109.5 (3)
H7A—C7—H7B109.5C23—C24—C25108.2 (6)
C6—C7—H7C109.5C26—C24—C25106.9 (7)
H7A—C7—H7C109.5C23—C24—H24110.7
H7B—C7—H7C109.5C26—C24—H24110.7
C6—C8—H8A109.5C25—C24—H24110.7
C6—C8—H8B109.5C24—C25—H25A109.5
H8A—C8—H8B109.5C24—C25—H25B109.5
C6—C8—H8C109.5H25A—C25—H25B109.5
H8A—C8—H8C109.5C24—C25—H25C109.5
H8B—C8—H8C109.5H25A—C25—H25C109.5
N1—C9—N2115.45 (17)H25B—C25—H25C109.5
N1—C9—S1125.80 (15)C24—C26—H26A109.5
N2—C9—S1118.74 (15)C24—C26—H26B109.5
O1—C10—N2122.87 (18)H26A—C26—H26B109.5
O1—C10—C11121.82 (18)C24—C26—H26C109.5
N2—C10—C11115.26 (16)H26A—C26—H26C109.5
C16—C11—C12119.89 (18)H26B—C26—H26C109.5
C16—C11—C10121.58 (17)C26'—C24'—C25'107.7 (7)
C12—C11—C10118.41 (17)C26'—C24'—C23114.8 (4)
C13—C12—C11120.28 (18)C25'—C24'—C23103.6 (5)
C13—C12—H12119.9C26'—C24'—H24'110.1
C11—C12—H12119.9C25'—C24'—H24'110.1
C12—C13—C14119.94 (18)C23—C24'—H24'110.1
C12—C13—H13120.0C24'—C25'—H25D109.5
C14—C13—H13120.0C24'—C25'—H25E109.5
C13—C14—C15120.12 (18)H25D—C25'—H25E109.5
C13—C14—H14119.9C24'—C25'—H25F109.5
C15—C14—H14119.9H25D—C25'—H25F109.5
C16—C15—C14119.86 (17)H25E—C25'—H25F109.5
C16—C15—C17122.16 (17)C24'—C26'—H26D109.5
C14—C15—C17117.94 (17)C24'—C26'—H26E109.5
C15—C16—C11119.89 (17)H26D—C26'—H26E109.5
C15—C16—H16120.1C24'—C26'—H26F109.5
C11—C16—H16120.1H26D—C26'—H26F109.5
O2—C17—N3123.74 (17)H26E—C26'—H26F109.5
O2—C17—C15121.87 (17)
C9—N1—C1—C280.0 (2)C10—C11—C16—C15175.89 (17)
C5—N1—C1—C2103.8 (2)C18—N3—C17—O212.4 (3)
N1—C1—C2—C362.2 (2)C18—N3—C17—C15167.52 (17)
N1—C1—C2—C4173.59 (18)C16—C15—C17—O2142.2 (2)
C9—N1—C5—C696.8 (2)C14—C15—C17—O235.2 (3)
C1—N1—C5—C679.3 (2)C16—C15—C17—N337.8 (3)
N1—C5—C6—C757.2 (2)C14—C15—C17—N3144.76 (18)
N1—C5—C6—C8179.81 (17)C19—N4—C18—N3172.06 (16)
C1—N1—C9—N2173.21 (16)C23—N4—C18—N313.9 (3)
C5—N1—C9—N210.8 (3)C19—N4—C18—S29.2 (3)
C1—N1—C9—S18.1 (3)C23—N4—C18—S2164.81 (15)
C5—N1—C9—S1167.84 (15)C17—N3—C18—N468.6 (2)
C10—N2—C9—N168.0 (2)C17—N3—C18—S2112.56 (18)
C10—N2—C9—S1113.25 (18)C18—N4—C19—C20108.5 (2)
C9—N2—C10—O11.9 (3)C23—N4—C19—C2077.1 (2)
C9—N2—C10—C11179.25 (17)N4—C19—C20—C2260.0 (2)
O1—C10—C11—C16148.7 (2)N4—C19—C20—C21177.34 (17)
N2—C10—C11—C1628.7 (3)C18—N4—C23—C2465.4 (3)
O1—C10—C11—C1227.3 (3)C19—N4—C23—C24108.9 (3)
N2—C10—C11—C12155.33 (18)C18—N4—C23—C24'94.8 (3)
C16—C11—C12—C131.2 (3)C19—N4—C23—C24'79.6 (3)
C10—C11—C12—C13177.27 (18)N4—C23—C24—C2656.3 (4)
C11—C12—C13—C141.7 (3)C24'—C23—C24—C2629.6 (5)
C12—C13—C14—C150.9 (3)N4—C23—C24—C25172.5 (8)
C13—C14—C15—C160.3 (3)C24'—C23—C24—C2586.6 (10)
C13—C14—C15—C17177.14 (18)C24—C23—C24'—C26'58.2 (6)
C14—C15—C16—C110.8 (3)N4—C23—C24'—C26'47.9 (4)
C17—C15—C16—C11176.57 (17)C24—C23—C24'—C25'59.0 (10)
C12—C11—C16—C150.0 (3)N4—C23—C24'—C25'165.1 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S2i0.882.623.4745 (17)163
N3—H3···S2i0.882.543.3870 (18)162
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S2i0.882.623.4745 (17)163
N3—H3···S2i0.882.543.3870 (18)162
Symmetry code: (i) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: kar@nitt.edu.

Acknowledgements

NS thanks NITT for a Fellowship. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNguyen, H. H., Thang, P. C., Rodenstein, A., Kirmse, R. & Abram, U. (2011). Inorg. Chem. 50, 590–596.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRodenstein, A., Richter, R. & Kirmse, R. (2007). Z. Anorg. Allg. Chem. 633, 1713–1717.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds