metal-organic compounds
Di-μ-chlorido-bis[(2-aminobenzamide-κ2N2,O)chloridocopper(II)]
aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000 , Algeria, bLaboratory of Solid State Chemistry and Mössbauer Spectroscopy, Laboratories for Inorganic Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H3G 1M8, Canada, cDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi 04000, Algeria, and dLaboratoire de Chimie de Coordination, UPR CNRS 8241, 205 route de Narbonne, 31077 Toulouse cedex, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
The title compound, [Cu2Cl4(C7H8N2O)2], crystallizes as discrete [CuLCl2]2 (L = 2-aminobenzamide) dimers with inversion symmetry. Each CuII ion is five-coordinated and is bound to two bridging chloride ligands, a terminal chloride ligand and a bidentate 2-aminobenzamide ligand. The exhibits alternating layers parallel to (010) along the b-axis direction. In the crystal, the components are linked via N—H⋯Cl hydrogen bonds, forming a three-dimensional network. These interactions link the molecules within the layers and also link the layers together and reinforce the cohesion of the structure.
Related literature
For general background to 2-aminobenzamide derivatives, see: Nagaoka et al. (2006); Butsch et al. (2011); Kapoor et al. (2010). For related structures, see: Yang et al. (2012); Lah et al. (2006). For standard bond lengths, see: Allen (2002)
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
10.1107/S1600536813021879/hg5337sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813021879/hg5337Isup2.hkl
An aqueous acidic solution of copper(II) chloride was added to an aqueous solution of the 2-aminobenzamide ligand (L) (1:l mol ratio). The mixture was then stirred for several hours during which time darkish green crystals of [CuLCl2]2 were deposited. This crystalline product was collected and washed with ether and was carefully isolated under polarizing microscope for analysis by X-ray diffraction.
All non-H atoms were refined with anisotropic atomic displacement parameters. The remaining H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C and N) with C—H=0.95 Å and N—H=0.88 or 0.92 Å and Uiso(H)=1.2Ueq(C or N).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. (Farrugia, 2012) The molecule structure of the title dimer with the atomic labelling scheme·Displacement are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius. Only the contents of the asymmetric unit are numbered. | |
Fig. 2. (Brandenburg & Berndt, 2001) A diagram of the layered crystal packing in (I), viewed down the b axis, showing layers parallel to (010) and hydrogen bond connections as dashed line. |
[Cu2Cl4(C7H8N2O)2] | F(000) = 540 |
Mr = 541.21 | Dx = 1.965 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3363 reflections |
a = 8.1888 (5) Å | θ = 2.9–28.2° |
b = 13.8545 (6) Å | µ = 2.93 mm−1 |
c = 8.1592 (4) Å | T = 180 K |
β = 98.771 (5)° | Cube, green |
V = 914.85 (8) Å3 | 0.15 × 0.13 × 0.12 mm |
Z = 2 |
Agilent Xcalibur (Sapphire1) diffractometer | 2058 independent reflections |
Radiation source: fine-focus sealed tube | 1897 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 8.2632 pixels mm-1 | θmax = 28.3°, θmin = 2.9° |
ω scans | h = −9→10 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −17→18 |
Tmin = 0.699, Tmax = 1 | l = −10→10 |
5578 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.058 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0307P)2 + 0.3739P] where P = (Fo2 + 2Fc2)/3 |
2058 reflections | (Δ/σ)max = 0.003 |
118 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.41 e Å−3 |
[Cu2Cl4(C7H8N2O)2] | V = 914.85 (8) Å3 |
Mr = 541.21 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.1888 (5) Å | µ = 2.93 mm−1 |
b = 13.8545 (6) Å | T = 180 K |
c = 8.1592 (4) Å | 0.15 × 0.13 × 0.12 mm |
β = 98.771 (5)° |
Agilent Xcalibur (Sapphire1) diffractometer | 2058 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 1897 reflections with I > 2σ(I) |
Tmin = 0.699, Tmax = 1 | Rint = 0.022 |
5578 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | 0 restraints |
wR(F2) = 0.058 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.41 e Å−3 |
2058 reflections | Δρmin = −0.41 e Å−3 |
118 parameters |
Experimental. Absorption correction: empirical using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm CrysAlis PRO (Agilent, 2011). |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.18491 (3) | −0.04957 (2) | 0.58700 (3) | 0.0126 (1) | |
Cl1 | 0.05270 (6) | 0.10533 (3) | 0.57135 (6) | 0.0161 (1) | |
Cl2 | 0.36324 (6) | −0.12970 (3) | 0.44121 (6) | 0.0162 (1) | |
O1 | 0.15024 (17) | −0.13480 (9) | 0.79155 (16) | 0.0156 (4) | |
N1 | 0.37924 (19) | −0.00155 (11) | 0.74251 (18) | 0.0126 (4) | |
N2 | 0.1556 (2) | −0.16908 (11) | 1.0607 (2) | 0.0180 (5) | |
C1 | 0.2398 (2) | −0.00937 (12) | 0.9884 (2) | 0.0107 (5) | |
C2 | 0.3341 (2) | 0.04226 (12) | 0.8882 (2) | 0.0111 (5) | |
C3 | 0.3819 (2) | 0.13689 (13) | 0.9288 (2) | 0.0147 (5) | |
C4 | 0.3337 (3) | 0.18053 (13) | 1.0665 (2) | 0.0181 (5) | |
C5 | 0.2408 (3) | 0.13070 (13) | 1.1664 (2) | 0.0171 (5) | |
C6 | 0.1958 (2) | 0.03556 (13) | 1.1275 (2) | 0.0140 (5) | |
C7 | 0.1801 (2) | −0.10930 (12) | 0.9406 (2) | 0.0122 (5) | |
H1A | 0.43529 | 0.04286 | 0.68835 | 0.0152* | |
H1B | 0.44964 | −0.05231 | 0.77350 | 0.0152* | |
H2A | 0.11781 | −0.22765 | 1.03652 | 0.0216* | |
H2B | 0.17697 | −0.15031 | 1.16476 | 0.0216* | |
H3 | 0.44744 | 0.17143 | 0.86209 | 0.0176* | |
H4 | 0.36477 | 0.24546 | 1.09246 | 0.0217* | |
H5 | 0.20810 | 0.16101 | 1.26070 | 0.0206* | |
H6 | 0.13389 | 0.00073 | 1.19728 | 0.0168* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0105 (1) | 0.0152 (1) | 0.0119 (1) | 0.0003 (1) | 0.0005 (1) | −0.0027 (1) |
Cl1 | 0.0141 (2) | 0.0125 (2) | 0.0198 (2) | 0.0006 (2) | −0.0036 (2) | −0.0023 (2) |
Cl2 | 0.0160 (2) | 0.0175 (2) | 0.0162 (2) | 0.0013 (2) | 0.0059 (2) | −0.0026 (2) |
O1 | 0.0214 (7) | 0.0129 (6) | 0.0121 (6) | −0.0036 (5) | 0.0016 (5) | −0.0002 (5) |
N1 | 0.0118 (7) | 0.0148 (7) | 0.0119 (7) | −0.0002 (6) | 0.0038 (6) | 0.0005 (6) |
N2 | 0.0280 (10) | 0.0118 (7) | 0.0140 (8) | −0.0036 (7) | 0.0026 (7) | −0.0001 (6) |
C1 | 0.0100 (8) | 0.0100 (8) | 0.0113 (8) | 0.0013 (7) | −0.0007 (7) | 0.0004 (7) |
C2 | 0.0084 (8) | 0.0147 (8) | 0.0094 (8) | 0.0021 (7) | −0.0011 (7) | 0.0005 (7) |
C3 | 0.0141 (9) | 0.0149 (8) | 0.0146 (9) | −0.0020 (7) | 0.0009 (7) | 0.0026 (7) |
C4 | 0.0193 (10) | 0.0124 (8) | 0.0217 (10) | −0.0016 (7) | 0.0004 (8) | −0.0032 (7) |
C5 | 0.0177 (10) | 0.0176 (9) | 0.0162 (9) | 0.0016 (8) | 0.0030 (8) | −0.0049 (7) |
C6 | 0.0118 (9) | 0.0167 (9) | 0.0135 (9) | 0.0006 (7) | 0.0022 (7) | 0.0026 (7) |
C7 | 0.0103 (9) | 0.0127 (8) | 0.0135 (9) | 0.0016 (7) | 0.0018 (7) | 0.0014 (7) |
Cu1—Cl1 | 2.3983 (5) | C1—C2 | 1.403 (2) |
Cu1—Cl2 | 2.3043 (6) | C1—C6 | 1.389 (2) |
Cu1—O1 | 2.0988 (13) | C1—C7 | 1.500 (2) |
Cu1—N1 | 1.9923 (15) | C2—C3 | 1.394 (2) |
Cu1—Cl1i | 2.2990 (6) | C3—C4 | 1.385 (2) |
O1—C7 | 1.254 (2) | C4—C5 | 1.382 (3) |
N1—C2 | 1.433 (2) | C5—C6 | 1.392 (3) |
N2—C7 | 1.322 (2) | C3—H3 | 0.9500 |
N1—H1A | 0.9200 | C4—H4 | 0.9500 |
N1—H1B | 0.9200 | C5—H5 | 0.9500 |
N2—H2A | 0.8800 | C6—H6 | 0.9500 |
N2—H2B | 0.8800 | ||
Cl1—Cu1—Cl2 | 136.06 (2) | C2—C1—C6 | 118.81 (15) |
Cl1—Cu1—O1 | 115.54 (4) | C2—C1—C7 | 120.37 (14) |
Cl1—Cu1—N1 | 92.60 (5) | C6—C1—C7 | 120.74 (15) |
Cl1—Cu1—Cl1i | 86.23 (2) | N1—C2—C1 | 120.14 (15) |
Cl2—Cu1—O1 | 108.22 (4) | N1—C2—C3 | 119.81 (15) |
Cl2—Cu1—N1 | 88.98 (5) | C1—C2—C3 | 120.04 (15) |
Cl1i—Cu1—Cl2 | 95.55 (2) | C2—C3—C4 | 119.93 (16) |
O1—Cu1—N1 | 82.72 (6) | C3—C4—C5 | 120.73 (17) |
Cl1i—Cu1—O1 | 93.00 (4) | C4—C5—C6 | 119.28 (16) |
Cl1i—Cu1—N1 | 174.57 (5) | C1—C6—C5 | 121.19 (16) |
Cu1—Cl1—Cu1i | 93.77 (2) | O1—C7—C1 | 121.32 (15) |
Cu1—O1—C7 | 125.63 (11) | N2—C7—C1 | 117.78 (15) |
Cu1—N1—C2 | 112.82 (11) | O1—C7—N2 | 120.88 (16) |
C2—N1—H1A | 109.00 | C2—C3—H3 | 120.00 |
C2—N1—H1B | 109.00 | C4—C3—H3 | 120.00 |
H1A—N1—H1B | 108.00 | C3—C4—H4 | 120.00 |
Cu1—N1—H1A | 109.00 | C5—C4—H4 | 120.00 |
Cu1—N1—H1B | 109.00 | C4—C5—H5 | 120.00 |
H2A—N2—H2B | 120.00 | C6—C5—H5 | 120.00 |
C7—N2—H2A | 120.00 | C1—C6—H6 | 119.00 |
C7—N2—H2B | 120.00 | C5—C6—H6 | 119.00 |
Cl2—Cu1—Cl1—Cu1i | 94.09 (3) | Cu1—N1—C2—C1 | 55.55 (18) |
O1—Cu1—Cl1—Cu1i | −91.53 (5) | C6—C1—C2—N1 | −179.03 (15) |
N1—Cu1—Cl1—Cu1i | −174.69 (5) | C7—C1—C6—C5 | −175.43 (17) |
Cl1i—Cu1—Cl1—Cu1i | 0.00 (4) | C2—C1—C7—O1 | −29.6 (2) |
Cl1—Cu1—Cl1i—Cu1i | 0.00 (4) | C6—C1—C2—C3 | 0.0 (2) |
Cl2—Cu1—Cl1i—Cu1i | −135.94 (2) | C6—C1—C7—O1 | 147.06 (17) |
O1—Cu1—Cl1i—Cu1i | 115.41 (4) | C6—C1—C7—N2 | −31.2 (2) |
Cl1—Cu1—O1—C7 | −53.92 (15) | C2—C1—C7—N2 | 152.19 (16) |
Cl2—Cu1—O1—C7 | 121.99 (14) | C2—C1—C6—C5 | 1.3 (3) |
N1—Cu1—O1—C7 | 35.49 (15) | C7—C1—C2—C3 | 176.68 (15) |
Cl1i—Cu1—O1—C7 | −141.17 (14) | C7—C1—C2—N1 | −2.3 (2) |
Cl1—Cu1—N1—C2 | 55.31 (11) | C1—C2—C3—C4 | −1.2 (3) |
Cl2—Cu1—N1—C2 | −168.63 (11) | N1—C2—C3—C4 | 177.83 (17) |
O1—Cu1—N1—C2 | −60.11 (11) | C2—C3—C4—C5 | 1.2 (3) |
Cu1—O1—C7—C1 | 2.6 (2) | C3—C4—C5—C6 | 0.1 (3) |
Cu1—O1—C7—N2 | −179.23 (12) | C4—C5—C6—C1 | −1.3 (3) |
Cu1—N1—C2—C3 | −123.45 (14) |
Symmetry code: (i) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl2ii | 0.9200 | 2.4100 | 3.3113 (16) | 166.00 |
N2—H2A···Cl1iii | 0.8800 | 2.7800 | 3.6439 (16) | 169.00 |
N2—H2B···Cl2iv | 0.8800 | 2.5400 | 3.3493 (17) | 153.00 |
Symmetry codes: (ii) −x+1, −y, −z+1; (iii) −x, y−1/2, −z+3/2; (iv) x, y, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl2i | 0.9200 | 2.4100 | 3.3113 (16) | 166.00 |
N2—H2A···Cl1ii | 0.8800 | 2.7800 | 3.6439 (16) | 169.00 |
N2—H2B···Cl2iii | 0.8800 | 2.5400 | 3.3493 (17) | 153.00 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, y−1/2, −z+3/2; (iii) x, y, z+1. |
Acknowledgements
This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine1. 25000 Algeria, and the Laboratoire de Chimie de Coordination, 31077 Toulouse cedex, France. Thanks are due to the Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie (PNR project) for financial support.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Butsch, K., Klein, A. & Bauer, M. (2011). Inorg. Chim. Acta, 374, 350–354. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kapoor, P., Pannu, A. P. S., Sharma, M., Hundal, M. S., Kapoor, R., Corbella, M. & Aliaga-Alcalde, N. (2010). J. Mol. Struct. 981, 40–45. Web of Science CSD CrossRef CAS Google Scholar
Lah, N., Leban, I. & Clérac, R. (2006). Eur. J. Inorg. Chem. pp. 4888–4894. Web of Science CSD CrossRef Google Scholar
Nagaoka, Y., Maeda, T., Kawai, Y., Nakashima, D., Oikawa, T., Shimoke, K., Ikeuchi, T., Kuwajima, H. & Uesato, S. (2006). Eur. J. Med. Chem. 41, 697–708. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, F., Chui, W., Guo, W., Jing, H., Min, X. & Yi, F. (2012). Bioorg. Med. Chem. Lett. 22, 4703–4706. Web of Science PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2-aminobenzamide derivatives are well known compounds as anticancer agents (Nagaoka et al., 2006). In addition, it was reported that some 2-aminobenzamide derivatives possessed biological activities, such as Anti-herpes simplex virus activity (Yang et al., 2012). As part of our ongoing studies of complexes based on copper and derivates we report here synthesis and the crystal structure of the title compound, obtained by the reaction of 2-aminobenzamide ligand with copper(II) chloride. The molecular structure of (I), and the atomic numbering used, is illustrated in Fig. 1. The asymmetric unit of (I) consists of one-half of the molecule, with the other half generated by a crystallographic inversion center. All bond distances and angles are within the ranges of accepted values(CSD, Allen, 2002) The complex contain five-coordinate Cu atoms (Fig. 1) with may be described either as square pyramidal with C11 apically bound to a pseudoplanar Cu1—O1—C12—Cl1a—N1 (a:-x, -y,1 - z) fragment or as trigonal bipyramidal with N1 and Cl1a apical (Butsch et al., 2011; Kapoor et al., 2010). The Cu atoms are linked by double Cl atoms bridges, resulting in the formation of dimer. The two Cu atoms, separated by 3.430 (1) Å, are doubly bridged by two chlorido ligands. The bridge is far from symmetrical with Cu—Cl1 and Cu—Cl1a (with a: -x, -y,1 - z) distances of 2.3983 (5) and 2.2990 (6) Å, respectively, and a Cu—Cl1-Cua bridging angle of 93.77 (2)°. The 2-aminobenzamide ligand binds to a single Cu metal ion within the dimer in a chelating manner [Cu—N1: 1.9923 (15) Å and Cu–O1: 2.0988 (13) Å]. The fifth coordination site is occupied by a terminal chlorido ligand at a distance of 2.3043 (6) Å (Lah et al., 2006).
The crystal structure exhibit alternating layers parallel to (010) plane along the b axis (Fig. 2). In the crystal, the components of the structure are linked via intermolecular N—H···Cl hydrogen bonds to form a three-dimensional network (Table1 and Fig.2) These interaction bonds link the molecules within the layers and also link the layers together and reinforcing the cohesion of the structure.