metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chlorido-bis­­[(2-amino­benzamide-κ2N2,O)chlorido­copper(II)]

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000 , Algeria, bLaboratory of Solid State Chemistry and Mössbauer Spectroscopy, Laboratories for Inorganic Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H3G 1M8, Canada, cDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi 04000, Algeria, and dLaboratoire de Chimie de Coordination, UPR CNRS 8241, 205 route de Narbonne, 31077 Toulouse cedex, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 2 August 2013; accepted 5 August 2013; online 10 August 2013)

The title compound, [Cu2Cl4(C7H8N2O)2], crystallizes as discrete [CuLCl2]2 (L = 2-amino­benzamide) dimers with inversion symmetry. Each CuII ion is five-coordinated and is bound to two bridging chloride ligands, a terminal chloride ligand and a bidentate 2-amino­benzamide ligand. The crystal structure exhibits alternating layers parallel to (010) along the b-axis direction. In the crystal, the components are linked via N—H⋯Cl hydrogen bonds, forming a three-dimensional network. These inter­actions link the mol­ecules within the layers and also link the layers together and reinforce the cohesion of the structure.

Related literature

For general background to 2-amino­benzamide derivatives, see: Nagaoka et al. (2006[Nagaoka, Y., Maeda, T., Kawai, Y., Nakashima, D., Oikawa, T., Shimoke, K., Ikeuchi, T., Kuwajima, H. & Uesato, S. (2006). Eur. J. Med. Chem. 41, 697-708.]); Butsch et al. (2011[Butsch, K., Klein, A. & Bauer, M. (2011). Inorg. Chim. Acta, 374, 350-354.]); Kapoor et al. (2010[Kapoor, P., Pannu, A. P. S., Sharma, M., Hundal, M. S., Kapoor, R., Corbella, M. & Aliaga-Alcalde, N. (2010). J. Mol. Struct. 981, 40-45.]). For related structures, see: Yang et al. (2012[Yang, F., Chui, W., Guo, W., Jing, H., Min, X. & Yi, F. (2012). Bioorg. Med. Chem. Lett. 22, 4703-4706.]); Lah et al. (2006[Lah, N., Leban, I. & Clérac, R. (2006). Eur. J. Inorg. Chem. pp. 4888-4894.]). For standard bond lengths, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.])

[Scheme 1]

Experimental

Crystal data
  • [Cu2Cl4(C7H8N2O)2]

  • Mr = 541.21

  • Monoclinic, P 21 /c

  • a = 8.1888 (5) Å

  • b = 13.8545 (6) Å

  • c = 8.1592 (4) Å

  • β = 98.771 (5)°

  • V = 914.85 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.93 mm−1

  • T = 180 K

  • 0.15 × 0.13 × 0.12 mm

Data collection
  • Agilent Xcalibur (Sapphire1) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.699, Tmax = 1

  • 5578 measured reflections

  • 2058 independent reflections

  • 1897 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.058

  • S = 1.04

  • 2058 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl2i 0.9200 2.4100 3.3113 (16) 166.00
N2—H2A⋯Cl1ii 0.8800 2.7800 3.6439 (16) 169.00
N2—H2B⋯Cl2iii 0.8800 2.5400 3.3493 (17) 153.00
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y, z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

2-aminobenzamide derivatives are well known compounds as anticancer agents (Nagaoka et al., 2006). In addition, it was reported that some 2-aminobenzamide derivatives possessed biological activities, such as Anti-herpes simplex virus activity (Yang et al., 2012). As part of our ongoing studies of complexes based on copper and derivates we report here synthesis and the crystal structure of the title compound, obtained by the reaction of 2-aminobenzamide ligand with copper(II) chloride. The molecular structure of (I), and the atomic numbering used, is illustrated in Fig. 1. The asymmetric unit of (I) consists of one-half of the molecule, with the other half generated by a crystallographic inversion center. All bond distances and angles are within the ranges of accepted values(CSD, Allen, 2002) The complex contain five-coordinate Cu atoms (Fig. 1) with may be described either as square pyramidal with C11 apically bound to a pseudoplanar Cu1—O1—C12—Cl1a—N1 (a:-x, -y,1 - z) fragment or as trigonal bipyramidal with N1 and Cl1a apical (Butsch et al., 2011; Kapoor et al., 2010). The Cu atoms are linked by double Cl atoms bridges, resulting in the formation of dimer. The two Cu atoms, separated by 3.430 (1) Å, are doubly bridged by two chlorido ligands. The bridge is far from symmetrical with Cu—Cl1 and Cu—Cl1a (with a: -x, -y,1 - z) distances of 2.3983 (5) and 2.2990 (6) Å, respectively, and a Cu—Cl1-Cua bridging angle of 93.77 (2)°. The 2-aminobenzamide ligand binds to a single Cu metal ion within the dimer in a chelating manner [Cu—N1: 1.9923 (15) Å and Cu–O1: 2.0988 (13) Å]. The fifth coordination site is occupied by a terminal chlorido ligand at a distance of 2.3043 (6) Å (Lah et al., 2006).

The crystal structure exhibit alternating layers parallel to (010) plane along the b axis (Fig. 2). In the crystal, the components of the structure are linked via intermolecular N—H···Cl hydrogen bonds to form a three-dimensional network (Table1 and Fig.2) These interaction bonds link the molecules within the layers and also link the layers together and reinforcing the cohesion of the structure.

Related literature top

For general background to 2-aminobenzamide derivatives, see: Nagaoka et al. (2006), Butsch et al. (2011); Kapoor et al. (2010). For related structures, see: Yang et al. (2012); Lah et al. (2006). For standard bond lenghs see: Allen, (2002)

Experimental top

An aqueous acidic solution of copper(II) chloride was added to an aqueous solution of the 2-aminobenzamide ligand (L) (1:l mol ratio). The mixture was then stirred for several hours during which time darkish green crystals of [CuLCl2]2 were deposited. This crystalline product was collected and washed with ether and was carefully isolated under polarizing microscope for analysis by X-ray diffraction.

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. The remaining H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C and N) with C—H=0.95 Å and N—H=0.88 or 0.92 Å and Uiso(H)=1.2Ueq(C or N).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. (Farrugia, 2012) The molecule structure of the title dimer with the atomic labelling scheme·Displacement are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius. Only the contents of the asymmetric unit are numbered.
[Figure 2] Fig. 2. (Brandenburg & Berndt, 2001) A diagram of the layered crystal packing in (I), viewed down the b axis, showing layers parallel to (010) and hydrogen bond connections as dashed line.
Di-µ-chlorido-bis[(2-aminobenzamide-κ2N2,O)chloridocopper(II)] top
Crystal data top
[Cu2Cl4(C7H8N2O)2]F(000) = 540
Mr = 541.21Dx = 1.965 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3363 reflections
a = 8.1888 (5) Åθ = 2.9–28.2°
b = 13.8545 (6) ŵ = 2.93 mm1
c = 8.1592 (4) ÅT = 180 K
β = 98.771 (5)°Cube, green
V = 914.85 (8) Å30.15 × 0.13 × 0.12 mm
Z = 2
Data collection top
Agilent Xcalibur (Sapphire1)
diffractometer
2058 independent reflections
Radiation source: fine-focus sealed tube1897 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8.2632 pixels mm-1θmax = 28.3°, θmin = 2.9°
ω scansh = 910
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1718
Tmin = 0.699, Tmax = 1l = 1010
5578 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0307P)2 + 0.3739P]
where P = (Fo2 + 2Fc2)/3
2058 reflections(Δ/σ)max = 0.003
118 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Cu2Cl4(C7H8N2O)2]V = 914.85 (8) Å3
Mr = 541.21Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.1888 (5) ŵ = 2.93 mm1
b = 13.8545 (6) ÅT = 180 K
c = 8.1592 (4) Å0.15 × 0.13 × 0.12 mm
β = 98.771 (5)°
Data collection top
Agilent Xcalibur (Sapphire1)
diffractometer
2058 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1897 reflections with I > 2σ(I)
Tmin = 0.699, Tmax = 1Rint = 0.022
5578 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.04Δρmax = 0.41 e Å3
2058 reflectionsΔρmin = 0.41 e Å3
118 parameters
Special details top

Experimental. Absorption correction: empirical using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm CrysAlis PRO (Agilent, 2011).

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.18491 (3)0.04957 (2)0.58700 (3)0.0126 (1)
Cl10.05270 (6)0.10533 (3)0.57135 (6)0.0161 (1)
Cl20.36324 (6)0.12970 (3)0.44121 (6)0.0162 (1)
O10.15024 (17)0.13480 (9)0.79155 (16)0.0156 (4)
N10.37924 (19)0.00155 (11)0.74251 (18)0.0126 (4)
N20.1556 (2)0.16908 (11)1.0607 (2)0.0180 (5)
C10.2398 (2)0.00937 (12)0.9884 (2)0.0107 (5)
C20.3341 (2)0.04226 (12)0.8882 (2)0.0111 (5)
C30.3819 (2)0.13689 (13)0.9288 (2)0.0147 (5)
C40.3337 (3)0.18053 (13)1.0665 (2)0.0181 (5)
C50.2408 (3)0.13070 (13)1.1664 (2)0.0171 (5)
C60.1958 (2)0.03556 (13)1.1275 (2)0.0140 (5)
C70.1801 (2)0.10930 (12)0.9406 (2)0.0122 (5)
H1A0.435290.042860.688350.0152*
H1B0.449640.052310.773500.0152*
H2A0.117810.227651.036520.0216*
H2B0.176970.150311.164760.0216*
H30.447440.171430.862090.0176*
H40.364770.245461.092460.0217*
H50.208100.161011.260700.0206*
H60.133890.000731.197280.0168*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0105 (1)0.0152 (1)0.0119 (1)0.0003 (1)0.0005 (1)0.0027 (1)
Cl10.0141 (2)0.0125 (2)0.0198 (2)0.0006 (2)0.0036 (2)0.0023 (2)
Cl20.0160 (2)0.0175 (2)0.0162 (2)0.0013 (2)0.0059 (2)0.0026 (2)
O10.0214 (7)0.0129 (6)0.0121 (6)0.0036 (5)0.0016 (5)0.0002 (5)
N10.0118 (7)0.0148 (7)0.0119 (7)0.0002 (6)0.0038 (6)0.0005 (6)
N20.0280 (10)0.0118 (7)0.0140 (8)0.0036 (7)0.0026 (7)0.0001 (6)
C10.0100 (8)0.0100 (8)0.0113 (8)0.0013 (7)0.0007 (7)0.0004 (7)
C20.0084 (8)0.0147 (8)0.0094 (8)0.0021 (7)0.0011 (7)0.0005 (7)
C30.0141 (9)0.0149 (8)0.0146 (9)0.0020 (7)0.0009 (7)0.0026 (7)
C40.0193 (10)0.0124 (8)0.0217 (10)0.0016 (7)0.0004 (8)0.0032 (7)
C50.0177 (10)0.0176 (9)0.0162 (9)0.0016 (8)0.0030 (8)0.0049 (7)
C60.0118 (9)0.0167 (9)0.0135 (9)0.0006 (7)0.0022 (7)0.0026 (7)
C70.0103 (9)0.0127 (8)0.0135 (9)0.0016 (7)0.0018 (7)0.0014 (7)
Geometric parameters (Å, º) top
Cu1—Cl12.3983 (5)C1—C21.403 (2)
Cu1—Cl22.3043 (6)C1—C61.389 (2)
Cu1—O12.0988 (13)C1—C71.500 (2)
Cu1—N11.9923 (15)C2—C31.394 (2)
Cu1—Cl1i2.2990 (6)C3—C41.385 (2)
O1—C71.254 (2)C4—C51.382 (3)
N1—C21.433 (2)C5—C61.392 (3)
N2—C71.322 (2)C3—H30.9500
N1—H1A0.9200C4—H40.9500
N1—H1B0.9200C5—H50.9500
N2—H2A0.8800C6—H60.9500
N2—H2B0.8800
Cl1—Cu1—Cl2136.06 (2)C2—C1—C6118.81 (15)
Cl1—Cu1—O1115.54 (4)C2—C1—C7120.37 (14)
Cl1—Cu1—N192.60 (5)C6—C1—C7120.74 (15)
Cl1—Cu1—Cl1i86.23 (2)N1—C2—C1120.14 (15)
Cl2—Cu1—O1108.22 (4)N1—C2—C3119.81 (15)
Cl2—Cu1—N188.98 (5)C1—C2—C3120.04 (15)
Cl1i—Cu1—Cl295.55 (2)C2—C3—C4119.93 (16)
O1—Cu1—N182.72 (6)C3—C4—C5120.73 (17)
Cl1i—Cu1—O193.00 (4)C4—C5—C6119.28 (16)
Cl1i—Cu1—N1174.57 (5)C1—C6—C5121.19 (16)
Cu1—Cl1—Cu1i93.77 (2)O1—C7—C1121.32 (15)
Cu1—O1—C7125.63 (11)N2—C7—C1117.78 (15)
Cu1—N1—C2112.82 (11)O1—C7—N2120.88 (16)
C2—N1—H1A109.00C2—C3—H3120.00
C2—N1—H1B109.00C4—C3—H3120.00
H1A—N1—H1B108.00C3—C4—H4120.00
Cu1—N1—H1A109.00C5—C4—H4120.00
Cu1—N1—H1B109.00C4—C5—H5120.00
H2A—N2—H2B120.00C6—C5—H5120.00
C7—N2—H2A120.00C1—C6—H6119.00
C7—N2—H2B120.00C5—C6—H6119.00
Cl2—Cu1—Cl1—Cu1i94.09 (3)Cu1—N1—C2—C155.55 (18)
O1—Cu1—Cl1—Cu1i91.53 (5)C6—C1—C2—N1179.03 (15)
N1—Cu1—Cl1—Cu1i174.69 (5)C7—C1—C6—C5175.43 (17)
Cl1i—Cu1—Cl1—Cu1i0.00 (4)C2—C1—C7—O129.6 (2)
Cl1—Cu1—Cl1i—Cu1i0.00 (4)C6—C1—C2—C30.0 (2)
Cl2—Cu1—Cl1i—Cu1i135.94 (2)C6—C1—C7—O1147.06 (17)
O1—Cu1—Cl1i—Cu1i115.41 (4)C6—C1—C7—N231.2 (2)
Cl1—Cu1—O1—C753.92 (15)C2—C1—C7—N2152.19 (16)
Cl2—Cu1—O1—C7121.99 (14)C2—C1—C6—C51.3 (3)
N1—Cu1—O1—C735.49 (15)C7—C1—C2—C3176.68 (15)
Cl1i—Cu1—O1—C7141.17 (14)C7—C1—C2—N12.3 (2)
Cl1—Cu1—N1—C255.31 (11)C1—C2—C3—C41.2 (3)
Cl2—Cu1—N1—C2168.63 (11)N1—C2—C3—C4177.83 (17)
O1—Cu1—N1—C260.11 (11)C2—C3—C4—C51.2 (3)
Cu1—O1—C7—C12.6 (2)C3—C4—C5—C60.1 (3)
Cu1—O1—C7—N2179.23 (12)C4—C5—C6—C11.3 (3)
Cu1—N1—C2—C3123.45 (14)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2ii0.92002.41003.3113 (16)166.00
N2—H2A···Cl1iii0.88002.78003.6439 (16)169.00
N2—H2B···Cl2iv0.88002.54003.3493 (17)153.00
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y1/2, z+3/2; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2i0.92002.41003.3113 (16)166.00
N2—H2A···Cl1ii0.88002.78003.6439 (16)169.00
N2—H2B···Cl2iii0.88002.54003.3493 (17)153.00
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1/2, z+3/2; (iii) x, y, z+1.
 

Acknowledgements

This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine1. 25000 Algeria, and the Laboratoire de Chimie de Coordination, 31077 Toulouse cedex, France. Thanks are due to the Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie (PNR project) for financial support.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationButsch, K., Klein, A. & Bauer, M. (2011). Inorg. Chim. Acta, 374, 350–354.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKapoor, P., Pannu, A. P. S., Sharma, M., Hundal, M. S., Kapoor, R., Corbella, M. & Aliaga-Alcalde, N. (2010). J. Mol. Struct. 981, 40–45.  Web of Science CSD CrossRef CAS Google Scholar
First citationLah, N., Leban, I. & Clérac, R. (2006). Eur. J. Inorg. Chem. pp. 4888–4894.  Web of Science CSD CrossRef Google Scholar
First citationNagaoka, Y., Maeda, T., Kawai, Y., Nakashima, D., Oikawa, T., Shimoke, K., Ikeuchi, T., Kuwajima, H. & Uesato, S. (2006). Eur. J. Med. Chem. 41, 697–708.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, F., Chui, W., Guo, W., Jing, H., Min, X. & Yi, F. (2012). Bioorg. Med. Chem. Lett. 22, 4703–4706.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds