organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1458-o1459

8-Hy­dr­oxy­quinolin-1-ium hydrogen sulfate monohydrate

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000, Algeria, bLaboratory of Solid State Chemistry and Mössbauer Spectroscopy, Laboratories for Inorganic Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H3G 1M8, Canada, cDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi 04000, Algeria, and dLaboratoire de Chimie de Coordination, UPR CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 7 August 2013; accepted 8 August 2013; online 21 August 2013)

In the crystal structure of the title salt hydrate, C9H8NO+·HSO4·H2O, the quinoline N—H atoms are hydrogen bonded to the bis­ulfate anions. The bis­ulfate anions and water mol­ecules are linked together by O—H⋯O hydrogen-bonding inter­actions. The cations and anions form separate layers alternating along the c axis, which are linked by N—H⋯O and O—H⋯O hydrogen bonds into a two-dimensional network parallel to (100). Further O—H⋯O contacts connect these layers, forming a three-dimensional network, in which two R44(12) rings and C22(13) infinite chains can be identified.

Related literature

For background to and the biological activity of quinoline derivatives, see: Sasaki et al. (1998[Sasaki, K., Tsurumori, A. & Hirota, T. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 3851-3856.]); Reux et al. (2009[Reux, B., Nevalainen, T., Raitio, K. H. & Koskinen, A. M. P. (2009). Bioorg. Med. Chem. 17, 4441-4447.]); Morimoto et al. (1991[Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202-203.]); Markees et al. (1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]). For related structures, see: Loh et al. (2010a[Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2357.],b[Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2396.]). For a description of the Cambridge Structural Database, see: Allen, (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8NO+·HSO4·H2O

  • Mr = 261.25

  • Triclinic, [P \overline 1]

  • a = 6.5536 (4) Å

  • b = 8.0600 (5) Å

  • c = 11.3369 (6) Å

  • α = 100.068 (5)°

  • β = 106.344 (4)°

  • γ = 105.712 (5)°

  • V = 532.35 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 180 K

  • 0.43 × 0.16 × 0.08 mm

Data collection
  • Agilent Xcalibur (Sapphire1) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent, (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.874, Tmax = 0.975

  • 10891 measured reflections

  • 2171 independent reflections

  • 2000 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.079

  • S = 1.05

  • 2171 reflections

  • 163 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O14 0.88 2.00 2.7690 (18) 145
O1W—H1W⋯O11i 0.85 (1) 1.89 (1) 2.7369 (17) 178 (1)
O1W—H2W⋯O14ii 0.85 (1) 2.03 (1) 2.8818 (19) 175 (1)
O9—H9⋯O13iii 0.84 1.81 2.6470 (16) 174
O12—H12⋯O1W 0.84 1.72 2.5529 (17) 172
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent, (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Recently, hydrogen-bonding patterns involving quinoline and its derivatives with organic acid have been investigated (Loh et al., 2010a,b). Syntheses of the quinoline derivatives were discussed earlier (Sasaki et al., 1998; Reux et al., 2009). Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991) and biologically active compounds (Markees et al., 1970). Herein we report the synthesis and crystal structure of 8-hydroxy-quinolin-1-ium hydrogen sulfate monohydrate (I). The molecular structure of (I), and the atomic numbering used, is illustrated in Fig. 1. The asymmetric unit of (I) consists of consists of one 8-hydroxy-quinolin-1-ium cation, one hydrogen sulfate anion and one water molecule. One proton is transferred from the hydroxyl group of sulfuric acid to the atom N1 of 8-hydroxy-quinoline during the crystallization, resulting in the formation of salt. All bond distances and angles are within the ranges of accepted values (CSD, Allen, 2002).

In the crystal structure, cationic and anionic layers alternate along the c axis and are linked by intermolecular N—H···O and O—H···O hydrogen bonds resulting in a two-dimensional network parallel to (100) (Table 1; Fig.2). Further O—H···O contacts connect these layers, forming a three-dimensional network in which R44(12) rings and C22(13) infinite chains are generated.

Perhaps the most interesting aspect of the structure results from the hydrogen bonding between the bisulfate anions and the solvent water molecule. This results in the formation of a ladder motif that runs parallel to the a axis (Fig. 3). Each bisulfate ion serves as a hydrogen bond donor to one water molecule and a hydrogen bond acceptor from a second water molecule forming the rails of the ladder, of form C22(6). The rungs are formed via a second water-donor/bisulfate acceptor pair, which generates rings within the ladder structure (two rungs and two rail sections in each ring), R44(12). There are two chemically different rings formed in this case since one involves rail sections with water molecules serving as the hydrogen bond donor and the other involves the bisulfate ion serving as the hydrogen bond donor.

Related literature top

For background to and the biological activity of quinoline derivatives, see: Sasaki et al. (1998); Reux et al. (2009); Morimoto et al. (1991); Markees et al. (1970). For related structures, see: Loh et al. (2010a,b). For standard bond lengths, see: Allen, (2002).

Experimental top

Single crystals of the compound C9H7NO+. HSO-4. H2O were grown as follows: 1 mmol of the copper sulfate pentahydrate CuSO4. 5H2O; 1 mmol of 8-hydroxy-quinoline and 1 mmol of sulfuric acid H2SO4 were mixed together in a minimum amount of distilled water. The clear solutions were stirred for 15 min and allowed to stand at room temperature. After a few days, Yellow crystals were formed. The product was filtered off, washed with a small amount of distilled water and was carefully isolated under polarizing microscope for analysis by X-ray diffraction.

Refinement top

Hydrogen atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C, O and N) with C—H= 0.95 Å, N—H= 0.88 Å and O—H= 0.84 Å and Uiso(H)=1.2Ueq(C or N); Uiso(H)=1.5Ueq(O). Exept for H1W and H2W atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. (Farrugia, 2012) The molecule structure of the title Compound with the atomic labelling scheme·Displacement are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. (Brandenburg & Berndt, 2001) A diagram of the layered crystal packing in (I), viewed down the a axis showing hydrogen bond as dashed line.
[Figure 3] Fig. 3. (Brandenburg & Berndt, 2001) Hydrogen bond connections as dashed line between hydrogenesulfate and water molecule building chain along the a axis.
8-Hydroxyquinolin-1-ium hydrogen sulfate monohydrate top
Crystal data top
C9H8NO+·HSO4·H2OZ = 2
Mr = 261.25F(000) = 272
Triclinic, P1Dx = 1.63 Mg m3
a = 6.5536 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.0600 (5) ÅCell parameters from 8303 reflections
c = 11.3369 (6) Åθ = 3.3–28.4°
α = 100.068 (5)°µ = 0.32 mm1
β = 106.344 (4)°T = 180 K
γ = 105.712 (5)°Box, yellow
V = 532.35 (5) Å30.43 × 0.16 × 0.08 mm
Data collection top
Agilent Xcalibur (Sapphire1)
diffractometer
2171 independent reflections
Radiation source: fine-focus sealed tube2000 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.2632 pixels mm-1θmax = 26.4°, θmin = 3.3°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1010
Tmin = 0.874, Tmax = 0.975l = 1414
10891 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0355P)2 + 0.3301P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2171 reflectionsΔρmax = 0.41 e Å3
163 parametersΔρmin = 0.39 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.064 (4)
Crystal data top
C9H8NO+·HSO4·H2Oγ = 105.712 (5)°
Mr = 261.25V = 532.35 (5) Å3
Triclinic, P1Z = 2
a = 6.5536 (4) ÅMo Kα radiation
b = 8.0600 (5) ŵ = 0.32 mm1
c = 11.3369 (6) ÅT = 180 K
α = 100.068 (5)°0.43 × 0.16 × 0.08 mm
β = 106.344 (4)°
Data collection top
Agilent Xcalibur (Sapphire1)
diffractometer
2171 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2000 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.975Rint = 0.027
10891 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0303 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.41 e Å3
2171 reflectionsΔρmin = 0.39 e Å3
163 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent Technologies, 2011)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.0574 (3)0.1138 (2)0.22102 (15)0.0278 (3)
H20.01320.09410.13880.033*
C30.0242 (3)0.2869 (2)0.23249 (16)0.0322 (4)
H30.04260.38580.15840.039*
C40.0881 (3)0.3137 (2)0.35064 (17)0.0295 (4)
H40.06660.4320.35870.035*
C50.1857 (2)0.1681 (2)0.46135 (15)0.0227 (3)
C60.2554 (3)0.1860 (2)0.58640 (16)0.0284 (3)
H60.23660.30130.60010.034*
C70.3500 (3)0.0372 (2)0.68755 (15)0.0286 (4)
H70.39620.05030.77170.034*
C80.3810 (2)0.1351 (2)0.67071 (14)0.0248 (3)
H80.44690.23630.74320.03*
C90.3169 (2)0.15841 (19)0.55040 (14)0.0204 (3)
C100.2174 (2)0.00521 (19)0.44474 (13)0.0193 (3)
N10.1504 (2)0.02392 (17)0.32431 (11)0.0213 (3)
H10.16970.13240.31460.026*
O1W0.6635 (2)0.23721 (17)0.01309 (13)0.0362 (3)
H1W0.686 (4)0.329 (2)0.015 (2)0.054*
H2W0.788 (2)0.246 (3)0.0684 (18)0.054*
O90.34231 (19)0.31692 (14)0.52328 (10)0.0270 (3)
H90.4020.39980.59150.04*
O110.2516 (2)0.46432 (17)0.07413 (12)0.0396 (3)
O120.30658 (19)0.17896 (15)0.07153 (11)0.0303 (3)
H120.42870.20710.05720.045*
O130.4983 (2)0.42607 (17)0.26039 (11)0.0384 (3)
O140.0966 (2)0.27484 (17)0.19066 (13)0.0371 (3)
S10.28858 (6)0.34687 (5)0.15279 (3)0.02286 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0232 (7)0.0338 (8)0.0216 (7)0.0084 (6)0.0056 (6)0.0013 (6)
C30.0266 (8)0.0275 (8)0.0324 (9)0.0050 (6)0.0078 (7)0.0056 (7)
C40.0244 (8)0.0212 (7)0.0424 (10)0.0075 (6)0.0133 (7)0.0051 (7)
C50.0172 (7)0.0231 (7)0.0309 (8)0.0085 (6)0.0107 (6)0.0089 (6)
C60.0255 (8)0.0303 (8)0.0385 (9)0.0140 (6)0.0141 (7)0.0193 (7)
C70.0239 (8)0.0431 (9)0.0263 (8)0.0161 (7)0.0101 (6)0.0177 (7)
C80.0197 (7)0.0319 (8)0.0204 (7)0.0078 (6)0.0060 (6)0.0044 (6)
C90.0157 (7)0.0225 (7)0.0231 (7)0.0065 (5)0.0070 (5)0.0055 (6)
C100.0146 (6)0.0227 (7)0.0212 (7)0.0067 (5)0.0066 (5)0.0059 (6)
N10.0197 (6)0.0226 (6)0.0208 (6)0.0073 (5)0.0061 (5)0.0055 (5)
O1W0.0411 (7)0.0315 (7)0.0434 (8)0.0157 (6)0.0188 (6)0.0159 (6)
O90.0332 (6)0.0193 (5)0.0230 (5)0.0053 (4)0.0067 (5)0.0033 (4)
O110.0560 (8)0.0384 (7)0.0367 (7)0.0252 (6)0.0170 (6)0.0241 (6)
O120.0311 (6)0.0242 (6)0.0311 (6)0.0096 (5)0.0086 (5)0.0001 (5)
O130.0405 (7)0.0353 (7)0.0282 (6)0.0176 (6)0.0021 (5)0.0028 (5)
O140.0411 (7)0.0367 (7)0.0459 (7)0.0182 (6)0.0242 (6)0.0187 (6)
S10.0289 (2)0.0205 (2)0.0203 (2)0.01131 (15)0.00646 (15)0.00689 (14)
Geometric parameters (Å, º) top
C2—N11.324 (2)C8—H80.95
C2—C31.387 (2)C9—O91.3437 (18)
C2—H20.95C9—C101.411 (2)
C3—C41.360 (3)C10—N11.3602 (19)
C3—H30.95N1—H10.88
C4—C51.410 (2)O1W—H1W0.849 (9)
C4—H40.95O1W—H2W0.853 (9)
C5—C61.408 (2)O9—H90.84
C5—C101.410 (2)O11—S11.4310 (12)
C6—C71.362 (2)O12—S11.5511 (11)
C6—H60.95O12—H120.84
C7—C81.402 (2)O13—S11.4467 (12)
C7—H70.95O14—S11.4491 (12)
C8—C91.372 (2)
N1—C2—C3120.19 (15)C7—C8—H8119.7
N1—C2—H2119.9O9—C9—C8125.44 (14)
C3—C2—H2119.9O9—C9—C10116.15 (13)
C4—C3—C2119.46 (15)C8—C9—C10118.41 (14)
C4—C3—H3120.3N1—C10—C5118.99 (13)
C2—C3—H3120.3N1—C10—C9119.78 (13)
C3—C4—C5120.84 (15)C5—C10—C9121.23 (14)
C3—C4—H4119.6C2—N1—C10122.93 (14)
C5—C4—H4119.6C2—N1—H1118.5
C6—C5—C10118.55 (14)C10—N1—H1118.5
C6—C5—C4123.86 (15)H1W—O1W—H2W108.3 (17)
C10—C5—C4117.58 (14)C9—O9—H9109.5
C7—C6—C5119.63 (15)S1—O12—H12109.5
C7—C6—H6120.2O11—S1—O13112.76 (8)
C5—C6—H6120.2O11—S1—O14112.44 (8)
C6—C7—C8121.68 (14)O13—S1—O14112.45 (8)
C6—C7—H7119.2O11—S1—O12108.35 (7)
C8—C7—H7119.2O13—S1—O12106.44 (7)
C9—C8—C7120.50 (14)O14—S1—O12103.72 (7)
C9—C8—H8119.7
N1—C2—C3—C40.0 (2)C4—C5—C10—N10.9 (2)
C2—C3—C4—C50.5 (2)C6—C5—C10—C90.1 (2)
C3—C4—C5—C6179.92 (14)C4—C5—C10—C9179.10 (13)
C3—C4—C5—C100.9 (2)O9—C9—C10—N11.08 (19)
C10—C5—C6—C70.3 (2)C8—C9—C10—N1179.47 (12)
C4—C5—C6—C7179.42 (14)O9—C9—C10—C5178.89 (12)
C5—C6—C7—C80.2 (2)C8—C9—C10—C50.6 (2)
C6—C7—C8—C90.3 (2)C3—C2—N1—C100.0 (2)
C7—C8—C9—O9178.76 (14)C5—C10—N1—C20.4 (2)
C7—C8—C9—C100.6 (2)C9—C10—N1—C2179.54 (13)
C6—C5—C10—N1179.92 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O140.882.002.7690 (18)145
O1W—H1W···O11i0.85 (1)1.89 (1)2.7369 (17)178 (1)
O1W—H2W···O14ii0.85 (1)2.03 (1)2.8818 (19)175 (1)
O9—H9···O13iii0.841.812.6470 (16)174
O12—H12···O1W0.841.722.5529 (17)172
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O140.882.002.7690 (18)145
O1W—H1W···O11i0.849 (9)1.888 (10)2.7369 (17)178.0 (2)
O1W—H2W···O14ii0.853 (9)2.031 (10)2.8818 (19)175.0 (2)
O9—H9···O13iii0.841.812.6470 (16)174
O12—H12···O1W0.841.722.5529 (17)172
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, Algeria and Laboratoire de Chimie de Coordination Toulouse, France. Thanks are due to the Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie (via the PNR project) for financial support.

References

First citationAgilent, (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLoh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2396.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMorimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.  CrossRef Google Scholar
First citationReux, B., Nevalainen, T., Raitio, K. H. & Koskinen, A. M. P. (2009). Bioorg. Med. Chem. 17, 4441–4447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSasaki, K., Tsurumori, A. & Hirota, T. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 3851–3856.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1458-o1459
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds