organic compounds
Bis(4-methoxy-3,4-dihydroquinazolin-1-ium) chloranilate
aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp
In the title compound [systematic name: bis(4-methoxy-3,4-dihydroquinazolin-1-ium) 2,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,4-diolate], 2C9H11N2O+·C6Cl2O42−, the chloranilate anion lies about an inversion center. The 4-methoxy-3,4-dihydroquinazolin-1-ium cations are linked on both sides of the anion via bifurcated N—H⋯(O,O) and weak C—H⋯O hydrogen bonds, giving a centrosymmetric 2:1 aggregate. The 2:1 aggregates are linked by another N—H⋯O hydrogen bond into a tape running along [1-10]. The tapes are further linked by a C—H⋯O hydrogen bond into a layer parallel to the ab plane.
Related literature
For NMR and nuclear quadrupole resonance (NQR) studies on proton-transfer in the short hydrogen-bond of the diazine–chloranilic acid (2:1) system, see: Nihei et al. (2000); Seliger et al. (2009). For a related structure, see: Gotoh & Ishida (2011). For the double π system of the chloranilate anion, see: Andersen (1967); Benchekroun & Savariault (1995).
Experimental
Crystal data
|
Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536813023635/hg5342sup1.cif
contains datablocks General, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813023635/hg5342Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813023635/hg5342Isup3.cml
To a solution of chloranilic acid (183 mg) in acetonitrile (40 ml), a solution of quinazoline (228 mg) in acetonitrile (40 ml) was added at room temperature. A brown precipitate, which was immediately formed after mixing the solutions, was collected by filtration and then dissolved in methanol (40 ml). Single crystals of the title compound were obtained by slow evaporation from the methanol solution for ca three months at room temperature. During the slow evaporation process, quinazoline reacted with methanol under an acidic condition of chloranilic acid, yielding 4-methoxy-3,4-dihydroquinazoline.
C-bound H atoms were positioned geometrically (C—H = 0.95 or 0.98 Å) and refined as riding, allowing for
of the methyl group. Uiso(H) values were set at 1.2Ueq(C) or 1.5Ueq(methyl C). The N-bound H atom was found in a difference Fourier map and refined isotropically. The refined N—H distances are 0.90 (3) and 0.95 (3) Å. The quality of the crystals studied were low as indicated by Rint = 0.199. This is possibly due to a small amount of quinazoline which remained without reacting with methanol and incorporated in the crystallization of the title compound as an impurity.Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell
PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. The dashed lines indicate N—H···O and C—H···O hydrogen bonds. [Symmetry code: (i) -x + 1, -y, -z + 1.] | |
Fig. 2. A partial packing diagram of the title compound. The dashed lines indicate N—H···O and C—H···O hydrogen bonds. H atoms of the not involved in the hydrogen bonds have been omitted. [Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x - 1, y + 1, z.] |
2C9H11N2O+·C6Cl2O42− | Z = 1 |
Mr = 533.37 | F(000) = 276.00 |
Triclinic, P1 | Dx = 1.556 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71075 Å |
a = 4.9971 (4) Å | Cell parameters from 6359 reflections |
b = 8.6363 (4) Å | θ = 3.0–28.0° |
c = 13.5808 (9) Å | µ = 0.34 mm−1 |
α = 97.869 (4)° | T = 200 K |
β = 91.660 (6)° | Platelet, brown |
γ = 100.968 (5)° | 0.45 × 0.35 × 0.04 mm |
V = 569.06 (7) Å3 |
Rigaku R-AXIS RAPID II diffractometer | 1913 reflections with I > 2σ(I) |
Detector resolution: 10.00 pixels mm-1 | Rint = 0.199 |
ω scans | θmax = 27.9° |
Absorption correction: numerical (NUMABS; Higashi, 1999) | h = −6→6 |
Tmin = 0.887, Tmax = 0.987 | k = −11→11 |
7422 measured reflections | l = −17→17 |
2692 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.082 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.177 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.84 | w = 1/[σ2(Fo2) + (0.P)2] where P = (Fo2 + 2Fc2)/3 |
2692 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.89 e Å−3 |
0 restraints | Δρmin = −0.54 e Å−3 |
2C9H11N2O+·C6Cl2O42− | γ = 100.968 (5)° |
Mr = 533.37 | V = 569.06 (7) Å3 |
Triclinic, P1 | Z = 1 |
a = 4.9971 (4) Å | Mo Kα radiation |
b = 8.6363 (4) Å | µ = 0.34 mm−1 |
c = 13.5808 (9) Å | T = 200 K |
α = 97.869 (4)° | 0.45 × 0.35 × 0.04 mm |
β = 91.660 (6)° |
Rigaku R-AXIS RAPID II diffractometer | 2692 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 1913 reflections with I > 2σ(I) |
Tmin = 0.887, Tmax = 0.987 | Rint = 0.199 |
7422 measured reflections |
R[F2 > 2σ(F2)] = 0.082 | 0 restraints |
wR(F2) = 0.177 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.84 | Δρmax = 0.89 e Å−3 |
2692 reflections | Δρmin = −0.54 e Å−3 |
172 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.92850 (10) | −0.01581 (6) | 0.33371 (4) | 0.0289 (2) | |
O1 | 0.6877 (3) | 0.26227 (17) | 0.41520 (12) | 0.0253 (4) | |
O2 | 0.6806 (3) | −0.27488 (17) | 0.44963 (13) | 0.0273 (4) | |
O3 | 0.0538 (3) | 0.67492 (19) | 0.17432 (13) | 0.0325 (4) | |
N1 | 0.3013 (4) | 0.3978 (2) | 0.33662 (15) | 0.0238 (4) | |
N2 | 0.0001 (4) | 0.5674 (2) | 0.32482 (16) | 0.0264 (4) | |
C1 | 0.6067 (4) | 0.1368 (2) | 0.45169 (16) | 0.0202 (5) | |
C2 | 0.6949 (4) | −0.0070 (2) | 0.42490 (16) | 0.0216 (5) | |
C3 | 0.6061 (4) | −0.1443 (2) | 0.46922 (16) | 0.0208 (5) | |
C4 | 0.1661 (4) | 0.5056 (2) | 0.37648 (17) | 0.0239 (5) | |
H4 | 0.1907 | 0.5399 | 0.4462 | 0.029* | |
C5 | −0.0403 (4) | 0.5353 (3) | 0.21674 (18) | 0.0276 (5) | |
H5 | −0.2413 | 0.5032 | 0.2003 | 0.033* | |
C6 | 0.0872 (4) | 0.3967 (3) | 0.17605 (18) | 0.0252 (5) | |
C7 | 0.0414 (5) | 0.3326 (3) | 0.07619 (19) | 0.0329 (5) | |
H7 | −0.0787 | 0.3723 | 0.0350 | 0.039* | |
C8 | 0.1683 (6) | 0.2118 (3) | 0.0362 (2) | 0.0375 (6) | |
H8 | 0.1365 | 0.1689 | −0.0323 | 0.045* | |
C9 | 0.3429 (5) | 0.1532 (3) | 0.0965 (2) | 0.0367 (6) | |
H9 | 0.4315 | 0.0707 | 0.0688 | 0.044* | |
C10 | 0.3890 (5) | 0.2130 (3) | 0.19591 (19) | 0.0305 (5) | |
H10 | 0.5075 | 0.1721 | 0.2370 | 0.037* | |
C11 | 0.2585 (4) | 0.3353 (3) | 0.23554 (17) | 0.0234 (5) | |
C12 | 0.3396 (6) | 0.7357 (3) | 0.1882 (2) | 0.0405 (6) | |
H12A | 0.3821 | 0.8406 | 0.1661 | 0.061* | |
H12B | 0.4377 | 0.6626 | 0.1493 | 0.061* | |
H12C | 0.3958 | 0.7459 | 0.2589 | 0.061* | |
H1 | 0.413 (6) | 0.351 (3) | 0.377 (2) | 0.037 (7)* | |
H2 | −0.097 (6) | 0.628 (4) | 0.362 (2) | 0.043 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0312 (3) | 0.0265 (4) | 0.0301 (4) | 0.0090 (2) | 0.0144 (2) | 0.0008 (3) |
O1 | 0.0295 (8) | 0.0181 (7) | 0.0299 (9) | 0.0075 (6) | 0.0073 (6) | 0.0041 (7) |
O2 | 0.0324 (8) | 0.0188 (8) | 0.0327 (9) | 0.0111 (6) | 0.0113 (7) | 0.0006 (7) |
O3 | 0.0428 (10) | 0.0251 (8) | 0.0326 (10) | 0.0131 (7) | 0.0048 (7) | 0.0057 (8) |
N1 | 0.0288 (9) | 0.0188 (9) | 0.0246 (10) | 0.0091 (7) | 0.0052 (7) | −0.0013 (8) |
N2 | 0.0314 (10) | 0.0213 (9) | 0.0281 (11) | 0.0106 (8) | 0.0125 (8) | 0.0000 (9) |
C1 | 0.0219 (9) | 0.0162 (10) | 0.0217 (11) | 0.0032 (8) | 0.0015 (8) | 0.0005 (9) |
C2 | 0.0234 (10) | 0.0189 (10) | 0.0223 (11) | 0.0066 (8) | 0.0073 (8) | −0.0020 (9) |
C3 | 0.0219 (9) | 0.0189 (10) | 0.0217 (11) | 0.0073 (8) | 0.0033 (8) | −0.0019 (9) |
C4 | 0.0289 (10) | 0.0197 (10) | 0.0230 (12) | 0.0050 (8) | 0.0097 (8) | 0.0002 (10) |
C5 | 0.0269 (10) | 0.0238 (11) | 0.0327 (13) | 0.0090 (9) | 0.0040 (9) | −0.0004 (10) |
C6 | 0.0264 (10) | 0.0198 (10) | 0.0282 (12) | 0.0033 (8) | 0.0053 (8) | −0.0004 (10) |
C7 | 0.0397 (13) | 0.0296 (12) | 0.0275 (13) | 0.0038 (10) | 0.0021 (10) | 0.0015 (11) |
C8 | 0.0561 (16) | 0.0282 (13) | 0.0248 (13) | 0.0053 (11) | 0.0078 (11) | −0.0054 (11) |
C9 | 0.0522 (15) | 0.0258 (12) | 0.0325 (14) | 0.0127 (11) | 0.0153 (12) | −0.0040 (12) |
C10 | 0.0366 (12) | 0.0235 (11) | 0.0333 (14) | 0.0117 (10) | 0.0092 (10) | 0.0011 (11) |
C11 | 0.0259 (10) | 0.0195 (10) | 0.0236 (12) | 0.0035 (8) | 0.0074 (8) | −0.0003 (9) |
C12 | 0.0478 (15) | 0.0276 (13) | 0.0449 (16) | 0.0002 (11) | 0.0088 (12) | 0.0095 (12) |
Cl1—C2 | 1.730 (2) | C5—C6 | 1.508 (3) |
O1—C1 | 1.255 (3) | C5—H5 | 1.0000 |
O2—C3 | 1.251 (2) | C6—C11 | 1.384 (3) |
O3—C5 | 1.413 (3) | C6—C7 | 1.388 (4) |
O3—C12 | 1.422 (3) | C7—C8 | 1.379 (3) |
N1—C4 | 1.319 (2) | C7—H7 | 0.9500 |
N1—C11 | 1.399 (3) | C8—C9 | 1.389 (4) |
N1—H1 | 0.95 (3) | C8—H8 | 0.9500 |
N2—C4 | 1.305 (3) | C9—C10 | 1.374 (4) |
N2—C5 | 1.457 (3) | C9—H9 | 0.9500 |
N2—H2 | 0.90 (3) | C10—C11 | 1.398 (3) |
C1—C2 | 1.401 (3) | C10—H10 | 0.9500 |
C1—C3i | 1.537 (3) | C12—H12A | 0.9800 |
C2—C3 | 1.405 (3) | C12—H12B | 0.9800 |
C3—C1i | 1.537 (3) | C12—H12C | 0.9800 |
C4—H4 | 0.9500 | ||
C5—O3—C12 | 115.09 (18) | C11—C6—C7 | 118.93 (19) |
C4—N1—C11 | 120.69 (19) | C11—C6—C5 | 121.3 (2) |
C4—N1—H1 | 120.9 (17) | C7—C6—C5 | 119.7 (2) |
C11—N1—H1 | 118.0 (17) | C8—C7—C6 | 120.7 (2) |
C4—N2—C5 | 124.17 (18) | C8—C7—H7 | 119.7 |
C4—N2—H2 | 114.4 (19) | C6—C7—H7 | 119.7 |
C5—N2—H2 | 121.4 (19) | C7—C8—C9 | 119.7 (2) |
O1—C1—C2 | 124.72 (19) | C7—C8—H8 | 120.2 |
O1—C1—C3i | 116.54 (16) | C9—C8—H8 | 120.2 |
C2—C1—C3i | 118.73 (18) | C10—C9—C8 | 120.8 (2) |
C1—C2—C3 | 123.38 (19) | C10—C9—H9 | 119.6 |
C1—C2—Cl1 | 118.46 (16) | C8—C9—H9 | 119.6 |
C3—C2—Cl1 | 118.15 (14) | C9—C10—C11 | 118.9 (2) |
O2—C3—C2 | 126.28 (19) | C9—C10—H10 | 120.6 |
O2—C3—C1i | 115.86 (18) | C11—C10—H10 | 120.6 |
C2—C3—C1i | 117.85 (16) | C6—C11—C10 | 121.0 (2) |
N2—C4—N1 | 123.2 (2) | C6—C11—N1 | 119.03 (18) |
N2—C4—H4 | 118.4 | C10—C11—N1 | 120.0 (2) |
N1—C4—H4 | 118.4 | O3—C12—H12A | 109.5 |
O3—C5—N2 | 110.61 (19) | O3—C12—H12B | 109.5 |
O3—C5—C6 | 113.51 (18) | H12A—C12—H12B | 109.5 |
N2—C5—C6 | 110.36 (18) | O3—C12—H12C | 109.5 |
O3—C5—H5 | 107.4 | H12A—C12—H12C | 109.5 |
N2—C5—H5 | 107.4 | H12B—C12—H12C | 109.5 |
C6—C5—H5 | 107.4 | ||
O1—C1—C2—C3 | 178.1 (2) | O3—C5—C6—C7 | −63.7 (3) |
C3i—C1—C2—C3 | −2.3 (3) | N2—C5—C6—C7 | 171.5 (2) |
O1—C1—C2—Cl1 | −1.1 (3) | C11—C6—C7—C8 | −1.3 (4) |
C3i—C1—C2—Cl1 | 178.50 (14) | C5—C6—C7—C8 | 176.3 (2) |
C1—C2—C3—O2 | −178.8 (2) | C6—C7—C8—C9 | 0.3 (4) |
Cl1—C2—C3—O2 | 0.4 (3) | C7—C8—C9—C10 | 0.6 (4) |
C1—C2—C3—C1i | 2.3 (3) | C8—C9—C10—C11 | −0.5 (4) |
Cl1—C2—C3—C1i | −178.52 (14) | C7—C6—C11—C10 | 1.4 (3) |
C5—N2—C4—N1 | −5.1 (3) | C5—C6—C11—C10 | −176.1 (2) |
C11—N1—C4—N2 | −4.4 (3) | C7—C6—C11—N1 | −178.9 (2) |
C12—O3—C5—N2 | 64.7 (2) | C5—C6—C11—N1 | 3.6 (3) |
C12—O3—C5—C6 | −60.0 (3) | C9—C10—C11—C6 | −0.5 (3) |
C4—N2—C5—O3 | −114.4 (2) | C9—C10—C11—N1 | 179.8 (2) |
C4—N2—C5—C6 | 12.1 (3) | C4—N1—C11—C6 | 4.8 (3) |
O3—C5—C6—C11 | 113.8 (2) | C4—N1—C11—C10 | −175.5 (2) |
N2—C5—C6—C11 | −11.0 (3) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.95 (3) | 1.79 (3) | 2.706 (2) | 160 (3) |
N1—H1···O2i | 0.95 (3) | 2.56 (3) | 3.229 (3) | 127 (2) |
N2—H2···O2ii | 0.90 (3) | 1.87 (3) | 2.762 (3) | 171 (3) |
C4—H4···O1iii | 0.95 | 2.34 | 3.214 (3) | 152 |
C10—H10···O1 | 0.95 | 2.52 | 3.230 (3) | 131 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1, y+1, z; (iii) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.95 (3) | 1.79 (3) | 2.706 (2) | 160 (3) |
N1—H1···O2i | 0.95 (3) | 2.56 (3) | 3.229 (3) | 127 (2) |
N2—H2···O2ii | 0.90 (3) | 1.87 (3) | 2.762 (3) | 171 (3) |
C4—H4···O1iii | 0.95 | 2.34 | 3.214 (3) | 152 |
C10—H10···O1 | 0.95 | 2.52 | 3.230 (3) | 131 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1, y+1, z; (iii) −x+1, −y+1, −z+1. |
References
Andersen, E. K. (1967). Acta Cryst. 22, 196–201. CSD CrossRef IUCr Journals Web of Science Google Scholar
Benchekroun, R. & Savariault, J.-M. (1995). Acta Cryst. C51, 186–188. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gotoh, K. & Ishida, H. (2011). Acta Cryst. C67, o500–o504. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Nihei, T., Ishimaru, S., Ishida, H., Ishihara, H. & Ikeda, R. (2000). Chem. Phys. Lett. 329, 7–14. Web of Science CrossRef CAS Google Scholar
Rigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Seliger, J., Žagar, V., Gotoh, K., Ishida, H., Konnai, A., Amino, D. & Asaji, T. (2009). Phys. Chem. Chem. Phys. 11, 2281–2286. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound was accidentally obtained in the preparation process of bis(quinazolinium) chloranilate, which is an interesting candidate for the study on proton-transfer in short hydrogen-bonded systems (Nihei et al., 2000, Seliger et al., 2009) and also for the study on D—H···A hydrogen bonding (D = N, O, or C; A = N, O or Cl) in amine–chloranilic acid systems (Gotoh & Ishida, 2011).
In the crystal structure of the title compound, an acid-base interaction involving proton transfer is observed between chloranilic acid and 4-methoxy-3,4-dihydroquinazoline. The chloranilate ion shows a characteristic structure having four short C—C bonds and two extremely long C—C bonds, and C—O with similar bond lengths, which is explainable in terms of the double π system of the anion (Andersen, 1967; Benchekroun & Savariault, 1995). One chloranilate anion and two 4-methoxy-3,4-dihydroquinazolin-1-ium cations are linked by bifurcated N—H···(O,O) and weak C—H···O hydrogen bonds (N1—H1···O1, N1—H1···O2i and C10—H10···O1; symmetry code as in Table 1) to afford a centrosymmetric 2:1 aggregate (Fig. 1). The 2:1 aggregates are linked by another N—H···O hydrogen bond (N2—H2···O2ii; symmetry code as in Table 1), forming a tape along the [110] direction (Fig. 2). The tapes are further linked by a C—H···O hydrogen bond (C4—H4···O1iii; symmetry code as in Table 1) into a layer parallel to the ab plane.