organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1487-o1488

3,3-Di­methyl-cis-9a,13a-di­phenyl-2,3,9a,11,12,13a-hexa­hydro-1H-benzo[h][1,4]dioxino[2′,3′:5,6][1,4]dioxino[2,3-f]chromene

aDepartamento de Química, Universidade Federal Rural do Rio de Janeiro, 23851-970 Seropédica, RJ, Brazil, bInstituto de Tecnologia em Fármacos–Farmanguinhos, Fundação Oswaldo Cruz, 21041-250 Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Aberdeen, Old Aberdeen AB24 3UE, Scotland, dCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 21 August 2013; accepted 22 August 2013; online 31 August 2013)

In the title di­hydro­dioxin, C31H28O5, the dioxane ring has a chair conformation, whereas each of the pyran and dioxine rings has an envelope conformation with methyl­ene and quaternary C atoms, respectively, being the flap atoms. The phenyl rings are cis and form a dihedral angle of 82.11 (10)°. The molecular structure is stabilized by C—H⋯O contacts. In the crystal packing, supra­molecular layers parallel to (101) are sustained by C—H⋯π inter­actions.

Related literature

For the biological activity of lapachol and its isomers, see: de Almeida (2009[Almeida, E. R. de (2009). Open Nat. Prod. J. 2, 42-47.]); Ferreira et al. (2010[Ferreira, S. B., Gonzaga, D. T. G., Santos, W. C., Araújo, K. G. L. & Ferreira, V. F. (2010). Rev. Virtual Quím. 2, 140-169.]); Medeiros et al. (2010[Medeiros, C. S., Pontes-Filho, N. T., Camara, C. A., Lima-Filho, J. V., Oliveira, P. C., Lemos, S. A., Leal, A. F. G., Brandão, J. O. C. & Neves, R. P. (2010). Braz. J. Med. Biol. Res. 43, 345-349.]); Neves-Pinto et al. (2002[Neves-Pinto, C., Malta, V. R., Pinto, M., do, C., Santos, R. H., de Castro, S. L. & Pinto, A. V. (2002). J. Med. Chem. 45, 2112-2115.]). For reactions of the quinone O atoms in lapachol, see: da Silva et al. (2011[Silva, A. R. da, Herbst, M. H., Ferreira, A. B. B., da Silva, A. M. & Visentin, L. C. (2011). Molecules, 16, 1192-1200.]); Ferreira et al. (2006[Ferreira, V. F., Jorqueira, A., Leal, K. Z., Pimentel, H. R., Seidl, P. R., da Silva, M. N., da Souza, M. C., Pinto, A. V., Wardell, J. L. & Wardell, S. M. S. V. (2006). Magn. Reson. Chem. 44, 481-490.]); Neves-Pinto et al. (2002[Neves-Pinto, C., Malta, V. R., Pinto, M., do, C., Santos, R. H., de Castro, S. L. & Pinto, A. V. (2002). J. Med. Chem. 45, 2112-2115.]). For the preparation of di­hydro­dioxins, see: Schönberg & Mustafa (1944[Schönberg, A. & Mustafa, A. (1944). J. Chem. Soc. p. 387.]), and for their DNA photo-cleavage, see: Mack et al. (2004[Mack, E. T., Carle, A. B., Liang, J. T.-M., Coyle, W. & Wilson, R. M. (2004). J. Am. Chem. Soc. 126, 15324-15325.]). For the synthesis, see: Summerbell & Berger (1959[Summerbell, R. K. & Berger, D. R. (1959). J. Am. Chem. Soc. 81, 633-639.]). For the crystal structure of β-lapachone, see: Cunha-Filho et al. (2006[Cunha-Filho, M. S. S., Landin, M., Martinez-Pacheco, R. & Dacunha-Marinho, B. (2006). Acta Cryst. C62, o473-o475.]).

[Scheme 1]

Experimental

Crystal data
  • C31H28O5

  • Mr = 480.53

  • Monoclinic, P 21 /n

  • a = 15.1335 (6) Å

  • b = 9.6048 (2) Å

  • c = 16.9739 (6) Å

  • β = 97.384 (1)°

  • V = 2446.77 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 K

  • 0.36 × 0.28 × 0.07 mm

Data collection
  • Bruker-Nonius Roper CCD camera on a κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.831, Tmax = 1.000

  • 23103 measured reflections

  • 5549 independent reflections

  • 3390 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.139

  • S = 1.02

  • 5549 reflections

  • 355 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C4A,C5,C6,C6A,C10A,C10B benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O3 0.95 2.36 3.001 (3) 124
C22—H22⋯O4 0.95 2.32 2.683 (3) 102
C24—H24⋯O4 0.95 2.44 3.071 (2) 124
C8—H8⋯Cg1i 0.95 2.65 3.3134 (19) 128
C15—H15ACg1ii 0.99 2.39 3.336 (2) 161
Symmetry codes: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y, -z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Isomeric, lapachol, 2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone, β-lapachone, 2,2-dimethyl-3,4-dihydro-2H-benzo[h]chromene-5,6-dione, and α-lapachone, 2,2-dimethyl-3,4-dihydro-2H-benzo[g]chromene-5,10-dione, Fig. 1, are found in the wood of trees of the genus, Tabebuia (family Bignoniaceae), distributed throughout Central and South America. Since their discovery at the end of the 19th century, lapachol and its isomers have attracted much attention due to their biological activities (de Almeida, 2009; Ferreira et al., 2010). Studies have revealed the effectiveness of these compounds and their derivatives as anti-cancer and anti-neoplastic (de Almeida, 2009), anti-fungal (Medeiros et al., 2010) and anti-Trypanosoma cruzi agents (Neves-Pinto et al., 2002), among other activities.

The quinone O atoms in lapachol and the lapachones are active sites and reactions at these sites have led to various derivatives, including oximes (da Silva et al., 2011), α-diazocarbonyls (Ferreira et al., 2006), phenazines (Neves-Pinto et al., 2002) and as we report here, a dihydrodioxin, (I), which was obtained by photoaddition of β-lapachone to 5,6-diphenyl-2,3-dihydro-1,4-dioxine, Fig. 2. Dihydrodioxins, most readily formed by a photochemical reaction between ortho-quinones and alkenes (Schönberg & Mustafa, 1944), are able to perform efficient DNA photo-cleavage (Mack et al., 2004). The crystal structure of β-lapachone has been reported (Cunha-Filho et al., 2006).

In (I), Fig. 3, the pyran ring approximates an envelope conformation with the C3 atom being the flap atom. The dioxine ring also has an envelope conformation where the C16 atom is the flap. With respect to this ring, the C17- and C23-bound phenyl rings are in axial and equatorial positions, respectively, and make a dihedral angle of 82.11 (10)° with each other. The orientation of these rings is such to facilitate the formation of intramolecular C—H···O interactions, Table 1. Finally, a chair conformation is found for the dioxane ring.

The major feature of the crystal packing is the formation of supramolecular layers parallel to (1 0 1) and sustained by C—H···π interactions, Table 1. These stack with no specific intermolecular interactions between them, Fig. 4.

Related literature top

For the biological activity of lapachol and its isomers, see: de Almeida (2009); Ferreira et al. (2010); Medeiros et al. (2010); Neves-Pinto et al. (2002). For reactions of the quinone O atoms in lapachol, see: da Silva et al. (2011); Ferreira et al. (2006); Neves-Pinto et al. (2002). For the preparation of dihydrodioxins, see: Schönberg & Mustafa (1944), and for their DNA photo-cleavage, see: Mack et al. (2004). For the synthesis, see: Summerbell & Berger (1959). For the crystal structure of β-lapachone, see: Cunha-Filho et al. (2006).

Experimental top

β-Lapachone (0.242 g, 1 mmol) was added to a solution of 2,3-diphenyl-1,4-diox-2-ene (0.476 g, 2 mmol) in benzene (20 ml) (Summerbell & Berger, 1959). The solution was deaerated using oxygen-free nitrogen and irradiated using a medium-pressure Hg lamp (500 W; irradiation time = 15 h). The solvent was removed under reduced pressure to leave a residue, to which was added methanol (20 ml). This mixture was filtered under reduced pressure, the colourless solid was collected, and recrystallized from ethanol; M.pt: 482–484 K, yield 69%. Colourless blocks were obtained by slow evaporation of a 1:9 dichloromethane:acetonitrile solution at room temperature. UV (acetonitrile, λmax. (ε) - nm, L.mol-1.cm-1): 212 (3.9x104), 245.5 (3.08x104), 317 (5.8x103). IR (KBr) (cm-1): 3065.4, 2972.7, 2935.9, 1646.2, 1586.0, 1495.4, 1450.1, 1413.3, 1389.4, 1326.2, 1264.9, 1240.4, 1180.6, 1160.1, 1105.0, 1068.7, 1042.0, 1018.4, 953.3, 914.2, 854.2, 765.1, 725.9. GC—MS m/z (abundance): 480 (<1%), 238 (11%), 214 (1%), 199 (1%), 181 (1%), 159 (1%), 130 (1%), 105 (100%), 77 (17%), 51 (2%). HRMS: m/z 480.2020 (theoretical 480.2036) 1H NMR (CDCl3) δ (p.p.m.): 8.16 (1H, m); 8.12 (1H, m); 7.77–7.68 (4H, m); 7.44 (1H, dt, J = 7.02 and 1.36 Hz); 7.32 (1H, dt, J = 6.20 and 1.36 Hz); 7.24–7.18 (6H, m); 4.34–4.14 (2H, m); 3.96–3.89 (2H, m); 3.02–2.76 (2H, m), 1.87 (2H, J = 6.48 and 1.62 Hz); 1.42 (3H, s); 1.38 (3H, s). 13C NMR (CDCl3) δ (p.p.m.): 17.39; 26.63; 26.82; 32.09; 61.41; 61.78; 74.03; 94.43; 95.10; 106.6; 119.75; 121.54; 123.27; 123.99. 125.57; 127.27; 127.67; 128.52; 134.46. 137.46; 137.79; 144.10.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Chemical structures of lapachol, α-lapachone and β-lapachone
[Figure 2] Fig. 2. Reaction scheme for the synthesis of the title compound, (I).
[Figure 3] Fig. 3. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 4] Fig. 4. A view in projection down the b axis of the unit-cell contents of (I). The C—H···π interactions are shown as purple dashed lines respectively.
3,3-Dimethyl-cis-9a,13a-diphenyl-2,3,9a,11,12,13a-hexahydro-1H-benzo[h][1,4]dioxino[2',3':5,6][1,4]dioxino[2,3-f]chromene top
Crystal data top
C31H28O5F(000) = 1016
Mr = 480.53Dx = 1.304 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5547 reflections
a = 15.1335 (6) Åθ = 2.9–27.5°
b = 9.6048 (2) ŵ = 0.09 mm1
c = 16.9739 (6) ÅT = 120 K
β = 97.384 (1)°Slab, colourless
V = 2446.77 (14) Å30.36 × 0.28 × 0.07 mm
Z = 4
Data collection top
Bruker-Nonius Roper CCD camera on a κ-goniostat
diffractometer
5549 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode3390 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 9.091 pixels mm-1θmax = 27.4°, θmin = 3.2°
ϕ & ω scansh = 1519
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.831, Tmax = 1.000l = 2121
23103 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0726P)2]
where P = (Fo2 + 2Fc2)/3
5549 reflections(Δ/σ)max < 0.001
355 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C31H28O5V = 2446.77 (14) Å3
Mr = 480.53Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.1335 (6) ŵ = 0.09 mm1
b = 9.6048 (2) ÅT = 120 K
c = 16.9739 (6) Å0.36 × 0.28 × 0.07 mm
β = 97.384 (1)°
Data collection top
Bruker-Nonius Roper CCD camera on a κ-goniostat
diffractometer
5549 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3390 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 1.000Rint = 0.059
23103 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
5549 reflectionsΔρmin = 0.29 e Å3
355 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07265 (9)0.34146 (11)0.23877 (7)0.0227 (3)
O20.17388 (8)0.21646 (11)0.00687 (7)0.0212 (3)
O30.22585 (8)0.04598 (11)0.05583 (7)0.0197 (3)
O40.16943 (9)0.13692 (12)0.13294 (7)0.0241 (3)
O50.10415 (8)0.05976 (11)0.03375 (7)0.0220 (3)
C20.03141 (13)0.46851 (17)0.20263 (11)0.0249 (4)
C30.09216 (14)0.52936 (17)0.14656 (11)0.0272 (5)
H3A0.15070.55210.17690.031 (5)*
H3B0.06580.61680.12320.030 (5)*
C40.10551 (14)0.42770 (17)0.08004 (11)0.0246 (4)
H4A0.05100.42430.04100.025 (5)*
H4B0.15550.45950.05220.024 (5)*
C4A0.12557 (12)0.28463 (16)0.11431 (10)0.0188 (4)
C50.18803 (12)0.05363 (16)0.10082 (10)0.0172 (4)
C60.16391 (12)0.18128 (17)0.06989 (10)0.0184 (4)
C6A0.17505 (12)0.01886 (16)0.17947 (10)0.0171 (4)
C70.19548 (12)0.11445 (17)0.21269 (10)0.0200 (4)
H70.22070.18340.18230.013 (4)*
C80.17912 (12)0.14461 (18)0.28843 (10)0.0231 (4)
H80.19160.23510.30950.019 (5)*
C90.14399 (13)0.04266 (18)0.33515 (11)0.0253 (5)
H90.13420.06390.38800.036 (6)*
C100.12390 (13)0.08757 (17)0.30443 (10)0.0216 (4)
H100.10100.15620.33660.031 (5)*
C10A0.13687 (12)0.12094 (17)0.22567 (10)0.0181 (4)
C10B0.11111 (12)0.25221 (17)0.19031 (10)0.0184 (4)
C110.02511 (16)0.56118 (19)0.27419 (12)0.0355 (5)
H11A0.08490.57730.30230.046 (7)*
H11B0.01180.51560.31000.035 (6)*
H11C0.00180.65040.25640.046 (6)*
C120.06075 (14)0.4327 (2)0.16053 (13)0.0343 (5)
H12A0.05520.36440.11850.045 (6)*
H12B0.08930.51720.13710.040 (6)*
H12C0.09710.39330.19890.033 (6)*
C130.21410 (13)0.11661 (18)0.05551 (10)0.0207 (4)
C140.07502 (13)0.10801 (18)0.13920 (11)0.0267 (5)
H14A0.04770.12020.19500.026 (5)*
H14B0.04640.17450.10580.034 (5)*
C150.05956 (14)0.03797 (18)0.11270 (11)0.0256 (5)
H15A0.00510.05440.11360.031 (5)*
H15B0.08230.10490.14960.022 (5)*
C160.19741 (12)0.03490 (17)0.02661 (10)0.0193 (4)
C170.31092 (13)0.15683 (17)0.05503 (10)0.0220 (4)
C180.37148 (16)0.1396 (3)0.01208 (12)0.0485 (7)
H180.35300.09730.05780.069 (8)*
C190.45920 (16)0.1832 (3)0.01376 (13)0.0561 (7)
H190.50010.16970.06050.082 (9)*
C200.48716 (16)0.2452 (2)0.05084 (13)0.0407 (6)
H200.54710.27550.04940.053 (7)*
C210.42738 (15)0.2634 (2)0.11828 (14)0.0427 (6)
H210.44640.30580.16380.048 (6)*
C220.33982 (14)0.2206 (2)0.12029 (13)0.0341 (5)
H220.29910.23510.16700.050 (7)*
C230.24471 (13)0.15056 (17)0.06662 (10)0.0216 (4)
C240.27317 (14)0.13653 (19)0.14065 (11)0.0285 (5)
H240.26700.04960.16740.042 (6)*
C250.31066 (14)0.2488 (2)0.17594 (12)0.0321 (5)
H250.33010.23800.22660.045 (6)*
C260.31977 (15)0.3756 (2)0.13795 (12)0.0345 (5)
H260.34560.45200.16220.038 (6)*
C270.29106 (15)0.3912 (2)0.06409 (12)0.0351 (5)
H270.29710.47860.03770.037 (6)*
C280.25370 (13)0.28000 (18)0.02881 (12)0.0282 (5)
H280.23390.29160.02170.031 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0249 (8)0.0204 (6)0.0237 (7)0.0053 (5)0.0061 (6)0.0014 (5)
O20.0252 (8)0.0203 (6)0.0191 (7)0.0007 (5)0.0068 (6)0.0029 (5)
O30.0209 (8)0.0211 (6)0.0173 (6)0.0028 (5)0.0035 (5)0.0014 (5)
O40.0229 (8)0.0300 (7)0.0189 (7)0.0040 (5)0.0003 (6)0.0026 (5)
O50.0152 (7)0.0267 (6)0.0234 (7)0.0026 (5)0.0002 (6)0.0017 (5)
C20.0244 (12)0.0183 (9)0.0323 (11)0.0036 (8)0.0051 (9)0.0006 (8)
C30.0301 (12)0.0177 (9)0.0344 (11)0.0019 (8)0.0058 (10)0.0010 (8)
C40.0273 (12)0.0212 (9)0.0260 (10)0.0019 (8)0.0056 (9)0.0024 (8)
C4A0.0154 (10)0.0187 (9)0.0220 (10)0.0021 (7)0.0007 (8)0.0016 (7)
C50.0141 (10)0.0186 (9)0.0191 (9)0.0001 (7)0.0024 (8)0.0031 (7)
C60.0156 (10)0.0229 (9)0.0169 (9)0.0050 (7)0.0029 (8)0.0002 (7)
C6A0.0132 (10)0.0186 (8)0.0189 (9)0.0028 (7)0.0001 (8)0.0009 (7)
C70.0170 (11)0.0191 (9)0.0233 (10)0.0008 (7)0.0003 (8)0.0004 (7)
C80.0186 (11)0.0246 (10)0.0251 (10)0.0022 (8)0.0007 (8)0.0064 (8)
C90.0229 (12)0.0327 (11)0.0208 (10)0.0005 (8)0.0044 (9)0.0051 (8)
C100.0194 (11)0.0250 (9)0.0210 (10)0.0006 (8)0.0044 (8)0.0020 (8)
C10A0.0138 (10)0.0213 (9)0.0190 (9)0.0019 (7)0.0010 (8)0.0007 (7)
C10B0.0135 (10)0.0201 (8)0.0213 (10)0.0004 (7)0.0011 (8)0.0031 (7)
C110.0412 (15)0.0277 (11)0.0398 (13)0.0035 (10)0.0137 (11)0.0045 (9)
C120.0246 (13)0.0333 (11)0.0444 (13)0.0052 (9)0.0025 (10)0.0053 (10)
C130.0203 (11)0.0269 (9)0.0154 (9)0.0005 (8)0.0048 (8)0.0017 (7)
C140.0211 (12)0.0299 (10)0.0272 (11)0.0021 (8)0.0042 (9)0.0037 (8)
C150.0205 (12)0.0304 (10)0.0237 (10)0.0015 (8)0.0049 (9)0.0001 (8)
C160.0164 (11)0.0257 (9)0.0156 (9)0.0034 (7)0.0012 (8)0.0000 (7)
C170.0204 (11)0.0238 (9)0.0225 (10)0.0036 (8)0.0057 (9)0.0035 (7)
C180.0318 (15)0.0891 (18)0.0237 (12)0.0267 (13)0.0000 (11)0.0119 (11)
C190.0288 (15)0.110 (2)0.0274 (13)0.0285 (14)0.0049 (11)0.0131 (13)
C200.0234 (13)0.0611 (14)0.0387 (13)0.0159 (11)0.0079 (11)0.0002 (11)
C210.0281 (14)0.0603 (14)0.0405 (14)0.0078 (11)0.0072 (11)0.0179 (11)
C220.0230 (12)0.0445 (12)0.0344 (12)0.0028 (9)0.0027 (10)0.0121 (9)
C230.0171 (11)0.0250 (10)0.0222 (10)0.0012 (8)0.0005 (8)0.0057 (7)
C240.0295 (13)0.0298 (10)0.0262 (11)0.0041 (9)0.0033 (9)0.0061 (8)
C250.0295 (13)0.0384 (12)0.0295 (12)0.0050 (9)0.0081 (10)0.0128 (9)
C260.0334 (13)0.0337 (11)0.0358 (12)0.0060 (9)0.0021 (10)0.0154 (9)
C270.0420 (15)0.0278 (11)0.0347 (12)0.0109 (9)0.0014 (11)0.0049 (9)
C280.0290 (13)0.0303 (11)0.0250 (11)0.0032 (8)0.0028 (9)0.0037 (8)
Geometric parameters (Å, º) top
O1—C10B1.369 (2)C11—H11B0.9800
O1—C21.468 (2)C11—H11C0.9800
O2—C61.373 (2)C12—H12A0.9800
O2—C131.449 (2)C12—H12B0.9800
O3—C51.3923 (19)C12—H12C0.9800
O3—C161.414 (2)C13—C171.514 (3)
O4—C131.412 (2)C13—C161.567 (2)
O4—C141.446 (2)C14—C151.500 (2)
O5—C161.421 (2)C14—H14A0.9900
O5—C151.436 (2)C14—H14B0.9900
C2—C111.519 (3)C15—H15A0.9900
C2—C121.523 (3)C15—H15B0.9900
C2—C31.522 (3)C16—C231.527 (2)
C3—C41.526 (2)C17—C181.377 (3)
C3—H3A0.9900C17—C221.385 (3)
C3—H3B0.9900C18—C191.389 (3)
C4—C4A1.508 (2)C18—H180.9500
C4—H4A0.9900C19—C201.362 (3)
C4—H4B0.9900C19—H190.9500
C4A—C10B1.372 (2)C20—C211.376 (3)
C4A—C61.415 (2)C20—H200.9500
C5—C61.365 (2)C21—C221.384 (3)
C5—C6A1.414 (2)C21—H210.9500
C6A—C71.417 (2)C22—H220.9500
C6A—C10A1.424 (2)C23—C241.386 (3)
C7—C81.371 (2)C23—C281.398 (3)
C7—H70.9500C24—C251.390 (3)
C8—C91.407 (2)C24—H240.9500
C8—H80.9500C25—C261.376 (3)
C9—C101.374 (2)C25—H250.9500
C9—H90.9500C26—C271.387 (3)
C10—C10A1.413 (2)C26—H260.9500
C10—H100.9500C27—C281.381 (3)
C10A—C10B1.429 (2)C27—H270.9500
C11—H11A0.9800C28—H280.9500
C10B—O1—C2117.40 (13)H12A—C12—H12C109.5
C6—O2—C13118.89 (12)H12B—C12—H12C109.5
C5—O3—C16113.37 (12)O4—C13—O2104.65 (13)
C13—O4—C14113.10 (13)O4—C13—C17108.48 (14)
C16—O5—C15113.43 (13)O2—C13—C17107.76 (13)
O1—C2—C11102.70 (15)O4—C13—C16110.04 (13)
O1—C2—C12108.83 (14)O2—C13—C16109.86 (13)
C11—C2—C12111.10 (17)C17—C13—C16115.48 (15)
O1—C2—C3108.77 (15)O4—C14—C15110.38 (15)
C11—C2—C3112.34 (15)O4—C14—H14A109.6
C12—C2—C3112.56 (17)C15—C14—H14A109.6
C2—C3—C4111.41 (15)O4—C14—H14B109.6
C2—C3—H3A109.3C15—C14—H14B109.6
C4—C3—H3A109.3H14A—C14—H14B108.1
C2—C3—H3B109.3O5—C15—C14110.08 (14)
C4—C3—H3B109.3O5—C15—H15A109.6
H3A—C3—H3B108.0C14—C15—H15A109.6
C4A—C4—C3109.69 (15)O5—C15—H15B109.6
C4A—C4—H4A109.7C14—C15—H15B109.6
C3—C4—H4A109.7H15A—C15—H15B108.2
C4A—C4—H4B109.7O3—C16—O5104.15 (13)
C3—C4—H4B109.7O3—C16—C23106.55 (13)
H4A—C4—H4B108.2O5—C16—C23110.91 (13)
C10B—C4A—C6117.89 (15)O3—C16—C13109.81 (13)
C10B—C4A—C4121.41 (15)O5—C16—C13109.13 (14)
C6—C4A—C4120.64 (15)C23—C16—C13115.64 (14)
C6—C5—O3120.98 (15)C18—C17—C22118.01 (18)
C6—C5—C6A120.83 (15)C18—C17—C13120.96 (16)
O3—C5—C6A118.18 (14)C22—C17—C13120.89 (17)
C5—C6—O2121.97 (15)C17—C18—C19120.9 (2)
C5—C6—C4A122.20 (15)C17—C18—H18119.6
O2—C6—C4A115.82 (14)C19—C18—H18119.6
C5—C6A—C7122.64 (15)C20—C19—C18120.7 (2)
C5—C6A—C10A118.22 (15)C20—C19—H19119.7
C7—C6A—C10A119.10 (15)C18—C19—H19119.7
C8—C7—C6A120.50 (16)C19—C20—C21119.1 (2)
C8—C7—H7119.7C19—C20—H20120.5
C6A—C7—H7119.7C21—C20—H20120.5
C7—C8—C9120.56 (16)C20—C21—C22120.5 (2)
C7—C8—H8119.7C20—C21—H21119.7
C9—C8—H8119.7C22—C21—H21119.7
C10—C9—C8120.06 (16)C21—C22—C17120.8 (2)
C10—C9—H9120.0C21—C22—H22119.6
C8—C9—H9120.0C17—C22—H22119.6
C9—C10—C10A120.97 (16)C24—C23—C28118.65 (16)
C9—C10—H10119.5C24—C23—C16123.39 (16)
C10A—C10—H10119.5C28—C23—C16117.79 (16)
C10—C10A—C6A118.73 (15)C23—C24—C25120.46 (18)
C10—C10A—C10B122.27 (15)C23—C24—H24119.8
C6A—C10A—C10B118.98 (15)C25—C24—H24119.8
O1—C10B—C4A123.68 (15)C26—C25—C24120.42 (19)
O1—C10B—C10A114.48 (14)C26—C25—H25119.8
C4A—C10B—C10A121.83 (15)C24—C25—H25119.8
C2—C11—H11A109.5C25—C26—C27119.69 (18)
C2—C11—H11B109.5C25—C26—H26120.2
H11A—C11—H11B109.5C27—C26—H26120.2
C2—C11—H11C109.5C28—C27—C26120.10 (19)
H11A—C11—H11C109.5C28—C27—H27119.9
H11B—C11—H11C109.5C26—C27—H27119.9
C2—C12—H12A109.5C27—C28—C23120.67 (18)
C2—C12—H12B109.5C27—C28—H28119.7
H12A—C12—H12B109.5C23—C28—H28119.7
C2—C12—H12C109.5
C10B—O1—C2—C11161.60 (15)C6—O2—C13—O4145.39 (14)
C10B—O1—C2—C1280.58 (19)C6—O2—C13—C1799.29 (17)
C10B—O1—C2—C342.4 (2)C6—O2—C13—C1627.3 (2)
O1—C2—C3—C460.8 (2)C13—O4—C14—C1556.94 (18)
C11—C2—C3—C4173.82 (16)C16—O5—C15—C1457.79 (19)
C12—C2—C3—C459.9 (2)O4—C14—C15—O555.3 (2)
C2—C3—C4—C4A46.2 (2)C5—O3—C16—O562.68 (16)
C3—C4—C4A—C10B14.3 (2)C5—O3—C16—C23179.99 (13)
C3—C4—C4A—C6162.79 (17)C5—O3—C16—C1354.07 (18)
C16—O3—C5—C629.5 (2)C15—O5—C16—O3173.41 (12)
C16—O3—C5—C6A150.33 (15)C15—O5—C16—C2372.34 (16)
O3—C5—C6—O21.4 (3)C15—O5—C16—C1356.18 (16)
C6A—C5—C6—O2178.46 (16)O4—C13—C16—O3167.72 (13)
O3—C5—C6—C4A179.82 (16)O2—C13—C16—O353.02 (18)
C6A—C5—C6—C4A0.3 (3)C17—C13—C16—O369.09 (18)
C13—O2—C6—C52.2 (2)O4—C13—C16—O554.14 (17)
C13—O2—C6—C4A178.95 (15)O2—C13—C16—O560.56 (17)
C10B—C4A—C6—C51.3 (3)C17—C13—C16—O5177.33 (13)
C4—C4A—C6—C5175.85 (17)O4—C13—C16—C2371.70 (19)
C10B—C4A—C6—O2177.52 (16)O2—C13—C16—C23173.60 (14)
C4—C4A—C6—O25.3 (2)C17—C13—C16—C2351.5 (2)
C6—C5—C6A—C7177.14 (17)O4—C13—C17—C18176.17 (18)
O3—C5—C6A—C72.7 (3)O2—C13—C17—C1871.1 (2)
C6—C5—C6A—C10A0.5 (3)C16—C13—C17—C1852.2 (2)
O3—C5—C6A—C10A179.63 (15)O4—C13—C17—C228.2 (2)
C5—C6A—C7—C8177.93 (18)O2—C13—C17—C22104.54 (18)
C10A—C6A—C7—C80.3 (3)C16—C13—C17—C22132.24 (18)
C6A—C7—C8—C91.7 (3)C22—C17—C18—C190.9 (3)
C7—C8—C9—C101.5 (3)C13—C17—C18—C19176.6 (2)
C8—C9—C10—C10A0.8 (3)C17—C18—C19—C200.6 (4)
C9—C10—C10A—C6A2.8 (3)C18—C19—C20—C210.4 (4)
C9—C10—C10A—C10B175.73 (17)C19—C20—C21—C220.6 (4)
C5—C6A—C10A—C10179.76 (16)C20—C21—C22—C170.9 (3)
C7—C6A—C10A—C102.5 (3)C18—C17—C22—C211.1 (3)
C5—C6A—C10A—C10B1.7 (2)C13—C17—C22—C21176.80 (19)
C7—C6A—C10A—C10B176.06 (16)O3—C16—C23—C24145.17 (17)
C2—O1—C10B—C4A10.7 (2)O5—C16—C23—C24102.1 (2)
C2—O1—C10B—C10A170.26 (15)C13—C16—C23—C2422.8 (2)
C6—C4A—C10B—O1178.42 (16)O3—C16—C23—C2839.6 (2)
C4—C4A—C10B—O14.4 (3)O5—C16—C23—C2873.1 (2)
C6—C4A—C10B—C10A2.6 (3)C13—C16—C23—C28161.93 (16)
C4—C4A—C10B—C10A174.60 (16)C28—C23—C24—C250.6 (3)
C10—C10A—C10B—O10.4 (2)C16—C23—C24—C25175.84 (18)
C6A—C10A—C10B—O1178.11 (15)C23—C24—C25—C260.2 (3)
C10—C10A—C10B—C4A178.70 (17)C24—C25—C26—C270.2 (3)
C6A—C10A—C10B—C4A2.8 (3)C25—C26—C27—C280.1 (3)
C14—O4—C13—O262.31 (16)C26—C27—C28—C230.3 (3)
C14—O4—C13—C17177.13 (13)C24—C23—C28—C270.7 (3)
C14—O4—C13—C1655.67 (17)C16—C23—C28—C27176.17 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4A,C5,C6,C6A,C10A,C10B benzene ring.
D—H···AD—HH···AD···AD—H···A
C18—H18···O30.952.363.001 (3)124
C22—H22···O40.952.322.683 (3)102
C24—H24···O40.952.443.071 (2)124
C8—H8···Cg1i0.952.653.3134 (19)128
C15—H15A···Cg1ii0.992.393.336 (2)161
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4A,C5,C6,C6A,C10A,C10B benzene ring.
D—H···AD—HH···AD···AD—H···A
C18—H18···O30.952.363.001 (3)124
C22—H22···O40.952.322.683 (3)102
C24—H24···O40.952.443.071 (2)124
C8—H8···Cg1i0.952.653.3134 (19)128
C15—H15A···Cg1ii0.992.393.336 (2)161
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y, z.
 

Footnotes

Present address: UnED Nova Iguaçu, CEFET-RJ (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca), 26041-271 Nova Iguaçu, RJ, Brazil.

§Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. BB and JLW thank CAPES (Brazil) for support. Dr Maira Fasciotti, Inmetro (Brazil), is gratefuly acknowledged for the HRMS analysis. Support from the Ministry of Higher Education, Malaysia, High-Impact Research scheme (UM.C/HIR-MOHE/SC/12) is also gratefully acknowledged.

References

First citationAlmeida, E. R. de (2009). Open Nat. Prod. J. 2, 42–47.  CrossRef Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCunha-Filho, M. S. S., Landin, M., Martinez-Pacheco, R. & Dacunha-Marinho, B. (2006). Acta Cryst. C62, o473–o475.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerreira, S. B., Gonzaga, D. T. G., Santos, W. C., Araújo, K. G. L. & Ferreira, V. F. (2010). Rev. Virtual Quím. 2, 140–169.  CAS Google Scholar
First citationFerreira, V. F., Jorqueira, A., Leal, K. Z., Pimentel, H. R., Seidl, P. R., da Silva, M. N., da Souza, M. C., Pinto, A. V., Wardell, J. L. & Wardell, S. M. S. V. (2006). Magn. Reson. Chem. 44, 481–490.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMack, E. T., Carle, A. B., Liang, J. T.-M., Coyle, W. & Wilson, R. M. (2004). J. Am. Chem. Soc. 126, 15324–15325.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMedeiros, C. S., Pontes-Filho, N. T., Camara, C. A., Lima-Filho, J. V., Oliveira, P. C., Lemos, S. A., Leal, A. F. G., Brandão, J. O. C. & Neves, R. P. (2010). Braz. J. Med. Biol. Res. 43, 345–349.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNeves-Pinto, C., Malta, V. R., Pinto, M., do, C., Santos, R. H., de Castro, S. L. & Pinto, A. V. (2002). J. Med. Chem. 45, 2112–2115.  Web of Science PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSchönberg, A. & Mustafa, A. (1944). J. Chem. Soc. p. 387.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, A. R. da, Herbst, M. H., Ferreira, A. B. B., da Silva, A. M. & Visentin, L. C. (2011). Molecules, 16, 1192–1200.  Web of Science CrossRef PubMed Google Scholar
First citationSummerbell, R. K. & Berger, D. R. (1959). J. Am. Chem. Soc. 81, 633–639.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1487-o1488
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds