metal-organic compounds
Dichlorido[6,8,22,24,34,36-hexamethyl-33,35-diaza-3,11,19,27-tetraazoniapentacyclo[27.3.1.15,9.113,17.121,25]hexatriaconta-1(33),5,7,9(34),13,15,17(35),21,23,25(36),29,31-dodecaene-κ6N3,N11,N19,N27,N33,N35]dipalladium(II) bis(perchlorate) N,N-dimethylformamide disolvate methanol disolvate
aDepartment of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan, bDepartment of Chemistry, Graduate School of Science, Osaka University, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan, and cPRESTO, Japan Science and Technology Agency (JST), Japan
*Correspondence e-mail: masuda.hideki@nitech.ac.jp
In the 2(C36H42N6)Cl2](ClO4)2·2C3H7NO·2CH3OH, the dinuclear PdII complex cation lies on an inversion center. Each PdII ion has a distorted square-planar coordination sphere, defined by three N atoms of the macrocyclic ligand and a chloride ion. The PdII complex cations and the methanol molecules are linked through N—H⋯O and O—H⋯O hydrogen bonds, forming a zigzag chain along [101]. An intramolecular N—H⋯Cl hydrogen bond is also observed.
of the title compound, [PdRelated literature
For palladium(II) complexes with 2,6-bis(aminomethyl)pyridine, see: Arnáiz et al. (2002). For dipalladium(II) complexes having a PdII–Cl unit, see: Suess & Peters (2010); Goforth et al. (2013). For palladium(II) complexes containing a macrocyclic ligand, see: Parker (1985); Parker et al. (1985). For a similar macrocyclic ligand, see: Allmendinger et al. (2003). For a similar ligand, see: Higa et al. (2010).
Experimental
Crystal data
|
|
Data collection: CrystalClear (Rigaku, 2001); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2001); software used to prepare material for publication: CrystalStructure.
Supporting information
10.1107/S1600536813022666/is5294sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813022666/is5294Isup2.hkl
The macrocyclic ligand (C36H42N6.0.5H2O) was synthesized by the following method. 2,4-Bis(aminomethyl)-1,3,5-trimethylbenzene (2.67 g, 1.50 × 10 -2 mol) was dissolved in methanol (200 ml). To this solution, a methanol solution (200 ml) of 2,6-pyridinedicarboxaldehyde (2.05 g, 1.52 × 10 -2 mol) was added dropwise. The mixed solution immediately gave a white precipitate, which was collected by vacuum filtration, washed with water (100 ml), and dried under vacuum. The white precipitate was dissolved in dichloromethane (300 ml), and an ethanol solution (300 ml) of NaBH4 (2.59 g, 6.84 × 10 -2 mol) was added in portion. After the reaction mixture was stirred for 6 h, the solution was acidified with 0.1 N HCl aq. and alkalified with 1 N KOH aq. Evaporation of the resulting solution under reduced pressure gave a white precipitate of the macrocyclic ligand, which was filtered out, washed with water, and dried under vacuum (yield 3.74 g, 88%). Analysis, calculated for C36H42N6.0.5H2O: C 76.22, H 8.26, N 14.81; found: C 76.20, H 8.24, N 14.86. 1H NMR (300 MHz, CDCl3 versus TMS, δ, p.p.m.): 1.88 (s, 4H, NH), 2.36 (s, 12H, PhCH3), 2.37 (s, 6H, PhCH3), 3.74 (s, 8H, CH2), 3.95 (s, 8H, CH2), 6.86 (s, 2H, Ph), 7.14 (d, 4H, pyridine), 7.58 (t, 2H, pyridine).
The dipalladium(II) complex was synthesized by the following procedure. The macrocyclic ligand (56.7 mg, 1.00 × 10 -4 mol) was dissolved in methanol–chloroform (7 ml, 1:1 v/v). To this solution, a solution of (Et4N)2[PdIICl4] (105.4 mg, 2.00 × 10 -4 mol) in methanol–chloroform (7 ml, 1:1 v/v) was added. After the mixed solution was stirred for 6 h at room temperature, a saturated methanol solution (3 ml) of (n-Bu)4NClO4 was added to give a bright-yellow precipitate as a product. It was filtered out, washed with diethyl ether, and dried under vacuum condition. Single crystals suitable for X-ray crystallographic analysis were obtained by recrystallization from N,N-dimethylformamide–methanol–dimethyl ether.
H atoms attached to C atoms were positioned geometrically and treated as riding, with aromatic C—H = 0.95 Å, methyl C—H = 0.98 Å and methylenic C—H = 0.99 Å, and with Uiso(H) = 1.2Ueq(C). The hydroxyl H atom was positioned geometrically and treated as riding, with O—H = 0.84 Å and with Uiso(H) = 1.5Ueq(O). H atoms on N atoms were located in a difference Fourier map and isotropically refined.
Data collection: CrystalClear (Rigaku, 2001); cell
CrystalClear (Rigaku, 2001); data reduction: CrystalClear (Rigaku, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2001); software used to prepare material for publication: CrystalStructure (Rigaku, 2001).Fig. 1. The view of molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A partial packing diagram of the title compound. H atoms are omitted for clarity. |
[Pd2(C36H42N6)Cl2](ClO4)2·2C3H7NO·2CH4O | F(000) = 1288.00 |
Mr = 1255.68 | Dx = 1.625 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71070 Å |
Hall symbol: -P 2yn | Cell parameters from 6824 reflections |
a = 10.917 (2) Å | θ = 3.0–27.5° |
b = 19.083 (4) Å | µ = 0.98 mm−1 |
c = 12.705 (3) Å | T = 173 K |
β = 104.201 (2)° | Block, yellow |
V = 2566.0 (8) Å3 | 0.20 × 0.20 × 0.20 mm |
Z = 2 |
Rigaku Mercury70 diffractometer | 4980 reflections with F2 > 2σ(F2) |
Detector resolution: 7.314 pixels mm-1 | Rint = 0.029 |
ω scans | θmax = 27.5° |
Absorption correction: numerical (NUMABS; Rigaku, 1999) | h = −13→13 |
Tmin = 0.751, Tmax = 0.823 | k = −24→24 |
19797 measured reflections | l = −16→16 |
5826 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0439P)2 + 3.481P] where P = (Fo2 + 2Fc2)/3 |
5826 reflections | (Δ/σ)max = 0.001 |
324 parameters | Δρmax = 0.80 e Å−3 |
0 restraints | Δρmin = −0.81 e Å−3 |
Primary atom site location: structure-invariant direct methods |
[Pd2(C36H42N6)Cl2](ClO4)2·2C3H7NO·2CH4O | V = 2566.0 (8) Å3 |
Mr = 1255.68 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.917 (2) Å | µ = 0.98 mm−1 |
b = 19.083 (4) Å | T = 173 K |
c = 12.705 (3) Å | 0.20 × 0.20 × 0.20 mm |
β = 104.201 (2)° |
Rigaku Mercury70 diffractometer | 5826 independent reflections |
Absorption correction: numerical (NUMABS; Rigaku, 1999) | 4980 reflections with F2 > 2σ(F2) |
Tmin = 0.751, Tmax = 0.823 | Rint = 0.029 |
19797 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.097 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.80 e Å−3 |
5826 reflections | Δρmin = −0.81 e Å−3 |
324 parameters |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0.63072 (2) | 0.578980 (12) | 0.164247 (18) | 0.02062 (8) | |
Cl1 | 0.61781 (7) | 0.45840 (4) | 0.17120 (6) | 0.02688 (16) | |
Cl2 | 0.21267 (8) | 0.73945 (4) | 0.37351 (7) | 0.03456 (19) | |
O1 | 0.1928 (3) | 0.66584 (15) | 0.3537 (3) | 0.0598 (9) | |
O2 | 0.2752 (3) | 0.75349 (19) | 0.4847 (3) | 0.0614 (9) | |
O3 | 0.2891 (3) | 0.76593 (18) | 0.3048 (3) | 0.0579 (9) | |
O4 | 0.0927 (3) | 0.77435 (16) | 0.3469 (3) | 0.0582 (9) | |
O5 | 0.7672 (3) | 0.6378 (3) | 0.5140 (3) | 0.0713 (11) | |
O6 | 0.8813 (3) | 0.5059 (3) | 0.4312 (4) | 0.0974 (17) | |
N1 | 0.8226 (3) | 0.58758 (14) | 0.2298 (2) | 0.0236 (6) | |
N2 | 0.6424 (3) | 0.68049 (14) | 0.1703 (2) | 0.0244 (6) | |
N3 | 0.4436 (3) | 0.59993 (14) | 0.0836 (3) | 0.0233 (6) | |
N4 | 0.5730 (3) | 0.62401 (17) | 0.5422 (3) | 0.0401 (7) | |
C1 | 0.8448 (3) | 0.65695 (18) | 0.2889 (3) | 0.0324 (8) | |
C2 | 0.7484 (3) | 0.70951 (18) | 0.2337 (3) | 0.0284 (7) | |
C3 | 0.7542 (4) | 0.78140 (19) | 0.2459 (3) | 0.0370 (8) | |
C4 | 0.6500 (4) | 0.8209 (2) | 0.1954 (4) | 0.0432 (9) | |
C5 | 0.5432 (4) | 0.78952 (19) | 0.1295 (4) | 0.0394 (9) | |
C6 | 0.5423 (3) | 0.71802 (17) | 0.1165 (3) | 0.0287 (7) | |
C7 | 0.4453 (3) | 0.67333 (17) | 0.0408 (3) | 0.0287 (7) | |
C8 | 0.3352 (3) | 0.58744 (17) | 0.1373 (3) | 0.0254 (7) | |
C9 | 0.2169 (3) | 0.56955 (16) | 0.0501 (3) | 0.0239 (6) | |
C10 | 0.1281 (3) | 0.62113 (16) | 0.0033 (3) | 0.0266 (7) | |
C11 | 0.0349 (3) | 0.60461 (17) | −0.0898 (3) | 0.0290 (7) | |
C12 | 0.0270 (3) | 0.53965 (17) | −0.1397 (3) | 0.0253 (7) | |
C13 | 0.1117 (3) | 0.48650 (16) | −0.0896 (3) | 0.0227 (6) | |
C14 | 0.2032 (3) | 0.50048 (16) | 0.0067 (3) | 0.0223 (6) | |
C15 | 0.1251 (4) | 0.69419 (18) | 0.0475 (4) | 0.0397 (9) | |
C16 | −0.0711 (4) | 0.5274 (2) | −0.2446 (3) | 0.0351 (8) | |
C17 | 0.2865 (3) | 0.44240 (16) | 0.0660 (3) | 0.0263 (7) | |
C18 | 0.1021 (3) | 0.41548 (16) | −0.1441 (3) | 0.0250 (7) | |
C19 | 0.5132 (5) | 0.6064 (4) | 0.4304 (5) | 0.085 (2) | |
C20 | 0.4934 (5) | 0.6278 (3) | 0.6182 (4) | 0.0630 (13) | |
C21 | 0.6937 (4) | 0.6389 (2) | 0.5736 (4) | 0.0413 (9) | |
C22 | 0.8039 (7) | 0.4662 (4) | 0.4680 (5) | 0.093 (3) | |
H1A | 0.8393 | 0.6505 | 0.3649 | 0.0388* | |
H1B | 0.9306 | 0.6743 | 0.2899 | 0.0388* | |
H2 | 0.8282 | 0.8033 | 0.2881 | 0.0444* | |
H3 | 0.6514 | 0.8702 | 0.2059 | 0.0518* | |
H4 | 0.4724 | 0.8170 | 0.0942 | 0.0473* | |
H5A | 0.3607 | 0.6947 | 0.0317 | 0.0344* | |
H5B | 0.4646 | 0.6718 | −0.0313 | 0.0344* | |
H6A | 0.3565 | 0.5484 | 0.1899 | 0.0305* | |
H6B | 0.3205 | 0.6300 | 0.1769 | 0.0305* | |
H7A | 0.1585 | 0.7273 | 0.0025 | 0.0476* | |
H7B | 0.1770 | 0.6960 | 0.1223 | 0.0476* | |
H7C | 0.0379 | 0.7069 | 0.0465 | 0.0476* | |
H8 | −0.0256 | 0.6394 | −0.1204 | 0.0348* | |
H9A | −0.1268 | 0.4889 | −0.2349 | 0.0422* | |
H9B | −0.0290 | 0.5151 | −0.3019 | 0.0422* | |
H9C | −0.1211 | 0.5701 | −0.2650 | 0.0422* | |
H10A | 0.0123 | 0.4052 | −0.1784 | 0.0300* | |
H10B | 0.1337 | 0.3791 | −0.0886 | 0.0300* | |
H11A | 0.3743 | 0.4511 | 0.0637 | 0.0315* | |
H11B | 0.2586 | 0.3974 | 0.0311 | 0.0315* | |
H11C | 0.2808 | 0.4410 | 0.1418 | 0.0315* | |
H14A | 0.5533 | 0.5645 | 0.4093 | 0.1019* | |
H14B | 0.5227 | 0.6456 | 0.3831 | 0.1019* | |
H14C | 0.4232 | 0.5972 | 0.4232 | 0.1019* | |
H15A | 0.4566 | 0.5816 | 0.6244 | 0.0756* | |
H15B | 0.4255 | 0.6619 | 0.5920 | 0.0756* | |
H15C | 0.5442 | 0.6425 | 0.6895 | 0.0756* | |
H16 | 0.7268 | 0.6513 | 0.6475 | 0.0496* | |
H17A | 0.7712 | 0.4922 | 0.5217 | 0.1116* | |
H17B | 0.8488 | 0.4243 | 0.5020 | 0.1116* | |
H17C | 0.7334 | 0.4521 | 0.4077 | 0.1116* | |
H18 | 0.9179 | 0.5336 | 0.4803 | 0.1461* | |
H13 | 0.440 (4) | 0.5775 (19) | 0.038 (4) | 0.022 (10)* | |
H12 | 0.849 (4) | 0.5575 (19) | 0.271 (3) | 0.022 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.01775 (13) | 0.02451 (13) | 0.01903 (12) | −0.00282 (9) | 0.00344 (8) | −0.00189 (8) |
Cl1 | 0.0265 (4) | 0.0257 (4) | 0.0279 (4) | −0.0018 (3) | 0.0055 (3) | 0.0035 (3) |
Cl2 | 0.0329 (5) | 0.0345 (5) | 0.0355 (5) | −0.0029 (4) | 0.0068 (4) | 0.0010 (4) |
O1 | 0.066 (2) | 0.0311 (15) | 0.083 (3) | −0.0037 (14) | 0.0182 (18) | 0.0012 (15) |
O2 | 0.059 (2) | 0.086 (3) | 0.0343 (16) | −0.0044 (18) | 0.0023 (14) | −0.0027 (16) |
O3 | 0.0519 (18) | 0.077 (3) | 0.0452 (17) | −0.0205 (16) | 0.0132 (15) | 0.0059 (15) |
O4 | 0.0382 (16) | 0.0521 (18) | 0.079 (3) | 0.0083 (14) | 0.0032 (16) | −0.0072 (16) |
O5 | 0.0459 (19) | 0.112 (4) | 0.062 (3) | 0.0133 (19) | 0.0262 (17) | 0.007 (2) |
O6 | 0.0401 (18) | 0.163 (5) | 0.082 (3) | −0.009 (3) | 0.0015 (18) | 0.086 (3) |
N1 | 0.0194 (13) | 0.0306 (14) | 0.0187 (13) | −0.0018 (11) | 0.0007 (11) | 0.0003 (11) |
N2 | 0.0196 (13) | 0.0286 (13) | 0.0250 (13) | −0.0061 (11) | 0.0055 (11) | −0.0062 (11) |
N3 | 0.0190 (13) | 0.0278 (14) | 0.0232 (14) | −0.0022 (11) | 0.0052 (11) | −0.0038 (11) |
N4 | 0.0410 (18) | 0.0494 (19) | 0.0326 (16) | 0.0038 (15) | 0.0140 (14) | −0.0011 (14) |
C1 | 0.0262 (17) | 0.0418 (19) | 0.0271 (17) | −0.0081 (15) | 0.0025 (14) | −0.0123 (14) |
C2 | 0.0264 (17) | 0.0359 (18) | 0.0240 (15) | −0.0092 (13) | 0.0084 (13) | −0.0120 (13) |
C3 | 0.035 (2) | 0.040 (2) | 0.0367 (19) | −0.0128 (16) | 0.0101 (16) | −0.0175 (16) |
C4 | 0.044 (3) | 0.0300 (18) | 0.058 (3) | −0.0068 (16) | 0.0178 (19) | −0.0173 (17) |
C5 | 0.0286 (18) | 0.0324 (18) | 0.058 (3) | 0.0009 (15) | 0.0127 (17) | −0.0039 (17) |
C6 | 0.0236 (16) | 0.0298 (16) | 0.0342 (18) | −0.0023 (13) | 0.0099 (14) | −0.0017 (13) |
C7 | 0.0210 (15) | 0.0306 (16) | 0.0329 (17) | −0.0041 (13) | 0.0038 (13) | 0.0040 (13) |
C8 | 0.0212 (15) | 0.0314 (16) | 0.0252 (15) | −0.0038 (12) | 0.0085 (13) | −0.0047 (12) |
C9 | 0.0197 (15) | 0.0301 (16) | 0.0227 (15) | −0.0035 (12) | 0.0070 (12) | −0.0020 (12) |
C10 | 0.0209 (15) | 0.0258 (15) | 0.0353 (17) | −0.0023 (12) | 0.0108 (13) | −0.0021 (13) |
C11 | 0.0204 (16) | 0.0307 (16) | 0.0372 (18) | 0.0053 (13) | 0.0096 (14) | 0.0094 (14) |
C12 | 0.0188 (15) | 0.0367 (17) | 0.0213 (15) | −0.0003 (13) | 0.0065 (12) | 0.0055 (13) |
C13 | 0.0175 (14) | 0.0287 (15) | 0.0232 (15) | −0.0035 (12) | 0.0075 (12) | 0.0000 (12) |
C14 | 0.0174 (14) | 0.0285 (15) | 0.0214 (14) | −0.0007 (12) | 0.0055 (12) | 0.0014 (12) |
C15 | 0.0303 (19) | 0.0326 (19) | 0.056 (3) | 0.0001 (15) | 0.0108 (17) | −0.0067 (17) |
C16 | 0.0252 (17) | 0.048 (2) | 0.0294 (18) | 0.0047 (15) | 0.0010 (14) | 0.0056 (15) |
C17 | 0.0235 (16) | 0.0283 (16) | 0.0236 (15) | 0.0011 (13) | −0.0007 (13) | −0.0004 (12) |
C18 | 0.0191 (15) | 0.0309 (16) | 0.0255 (15) | −0.0040 (12) | 0.0066 (12) | −0.0022 (12) |
C19 | 0.051 (3) | 0.149 (6) | 0.051 (3) | 0.012 (4) | 0.006 (3) | −0.031 (4) |
C20 | 0.065 (3) | 0.079 (4) | 0.056 (3) | −0.005 (3) | 0.036 (3) | 0.004 (3) |
C21 | 0.043 (3) | 0.043 (2) | 0.038 (2) | 0.0097 (17) | 0.0100 (18) | 0.0043 (16) |
C22 | 0.132 (6) | 0.102 (5) | 0.047 (3) | −0.069 (5) | 0.026 (4) | −0.016 (3) |
Pd1—Cl1 | 2.3084 (9) | C14—C17 | 1.513 (4) |
Pd1—N1 | 2.062 (3) | O6—H18 | 0.840 |
Pd1—N2 | 1.942 (3) | N1—H12 | 0.78 (4) |
Pd1—N3 | 2.087 (3) | N3—H13 | 0.72 (4) |
Cl2—O1 | 1.434 (3) | C1—H1A | 0.990 |
Cl2—O2 | 1.435 (3) | C1—H1B | 0.990 |
Cl2—O3 | 1.440 (4) | C3—H2 | 0.950 |
Cl2—O4 | 1.433 (3) | C4—H3 | 0.950 |
O5—C21 | 1.231 (6) | C5—H4 | 0.950 |
O6—C22 | 1.304 (9) | C7—H5A | 0.990 |
N1—C1 | 1.512 (5) | C7—H5B | 0.990 |
N1—C18i | 1.517 (5) | C8—H6A | 0.990 |
N2—C2 | 1.356 (4) | C8—H6B | 0.990 |
N2—C6 | 1.344 (4) | C11—H8 | 0.950 |
N3—C7 | 1.504 (5) | C15—H7A | 0.980 |
N3—C8 | 1.522 (5) | C15—H7B | 0.980 |
N4—C19 | 1.449 (6) | C15—H7C | 0.980 |
N4—C20 | 1.451 (7) | C16—H9A | 0.980 |
N4—C21 | 1.311 (5) | C16—H9B | 0.980 |
C1—C2 | 1.497 (5) | C16—H9C | 0.980 |
C2—C3 | 1.380 (5) | C17—H11A | 0.980 |
C3—C4 | 1.384 (5) | C17—H11B | 0.980 |
C4—C5 | 1.394 (5) | C17—H11C | 0.980 |
C5—C6 | 1.374 (5) | C18—H10A | 0.990 |
C6—C7 | 1.508 (5) | C18—H10B | 0.990 |
C8—C9 | 1.519 (4) | C19—H14A | 0.980 |
C9—C10 | 1.407 (5) | C19—H14B | 0.980 |
C9—C14 | 1.422 (5) | C19—H14C | 0.980 |
C10—C11 | 1.394 (5) | C20—H15A | 0.980 |
C10—C15 | 1.506 (5) | C20—H15B | 0.980 |
C11—C12 | 1.385 (5) | C20—H15C | 0.980 |
C12—C13 | 1.415 (5) | C21—H16 | 0.950 |
C12—C16 | 1.509 (5) | C22—H17A | 0.980 |
C13—C14 | 1.402 (4) | C22—H17B | 0.980 |
C13—C18 | 1.514 (5) | C22—H17C | 0.980 |
Cl1—Pd1—N1 | 97.43 (8) | C2—C1—H1B | 109.609 |
Cl1—Pd1—N2 | 175.60 (8) | H1A—C1—H1B | 108.144 |
Cl1—Pd1—N3 | 98.52 (8) | C2—C3—H2 | 120.657 |
N1—Pd1—N2 | 81.63 (11) | C4—C3—H2 | 120.648 |
N1—Pd1—N3 | 163.33 (11) | C3—C4—H3 | 119.486 |
N2—Pd1—N3 | 82.82 (10) | C5—C4—H3 | 119.487 |
O1—Cl2—O2 | 111.8 (2) | C4—C5—H4 | 120.689 |
O1—Cl2—O3 | 108.8 (3) | C6—C5—H4 | 120.678 |
O1—Cl2—O4 | 108.88 (19) | N3—C7—H5A | 109.342 |
O2—Cl2—O3 | 108.95 (19) | N3—C7—H5B | 109.355 |
O2—Cl2—O4 | 109.4 (2) | C6—C7—H5A | 109.338 |
O3—Cl2—O4 | 109.0 (2) | C6—C7—H5B | 109.347 |
Pd1—N1—C1 | 107.07 (19) | H5A—C7—H5B | 107.982 |
Pd1—N1—C18i | 112.50 (17) | N3—C8—H6A | 109.912 |
C1—N1—C18i | 109.9 (3) | N3—C8—H6B | 109.900 |
Pd1—N2—C2 | 118.0 (2) | C9—C8—H6A | 109.914 |
Pd1—N2—C6 | 118.3 (2) | C9—C8—H6B | 109.908 |
C2—N2—C6 | 123.6 (3) | H6A—C8—H6B | 108.320 |
Pd1—N3—C7 | 104.97 (18) | C10—C11—H8 | 118.607 |
Pd1—N3—C8 | 121.7 (2) | C12—C11—H8 | 118.614 |
C7—N3—C8 | 112.8 (3) | C10—C15—H7A | 109.473 |
C19—N4—C20 | 117.7 (4) | C10—C15—H7B | 109.469 |
C19—N4—C21 | 121.8 (4) | C10—C15—H7C | 109.471 |
C20—N4—C21 | 120.5 (4) | H7A—C15—H7B | 109.470 |
N1—C1—C2 | 110.2 (3) | H7A—C15—H7C | 109.468 |
N2—C2—C1 | 113.8 (3) | H7B—C15—H7C | 109.477 |
N2—C2—C3 | 118.8 (3) | C12—C16—H9A | 109.470 |
C1—C2—C3 | 127.3 (3) | C12—C16—H9B | 109.474 |
C2—C3—C4 | 118.7 (4) | C12—C16—H9C | 109.465 |
C3—C4—C5 | 121.0 (4) | H9A—C16—H9B | 109.474 |
C4—C5—C6 | 118.6 (4) | H9A—C16—H9C | 109.469 |
N2—C6—C5 | 119.2 (3) | H9B—C16—H9C | 109.475 |
N2—C6—C7 | 112.3 (3) | C14—C17—H11A | 109.468 |
C5—C6—C7 | 128.4 (3) | C14—C17—H11B | 109.469 |
N3—C7—C6 | 111.4 (3) | C14—C17—H11C | 109.466 |
N3—C8—C9 | 108.9 (3) | H11A—C17—H11B | 109.474 |
C8—C9—C10 | 121.7 (3) | H11A—C17—H11C | 109.470 |
C8—C9—C14 | 118.7 (3) | H11B—C17—H11C | 109.480 |
C10—C9—C14 | 119.2 (3) | N1i—C18—H10A | 109.221 |
C9—C10—C11 | 118.9 (3) | N1i—C18—H10B | 109.225 |
C9—C10—C15 | 124.5 (3) | C13—C18—H10A | 109.220 |
C11—C10—C15 | 116.6 (3) | C13—C18—H10B | 109.225 |
C10—C11—C12 | 122.8 (3) | H10A—C18—H10B | 107.917 |
C11—C12—C13 | 118.4 (3) | N4—C19—H14A | 109.480 |
C11—C12—C16 | 119.6 (3) | N4—C19—H14B | 109.469 |
C13—C12—C16 | 122.0 (3) | N4—C19—H14C | 109.473 |
C12—C13—C14 | 120.2 (3) | H14A—C19—H14B | 109.474 |
C12—C13—C18 | 118.2 (3) | H14A—C19—H14C | 109.472 |
C14—C13—C18 | 121.6 (3) | H14B—C19—H14C | 109.459 |
C9—C14—C13 | 120.0 (3) | N4—C20—H15A | 109.469 |
C9—C14—C17 | 119.5 (3) | N4—C20—H15B | 109.467 |
C13—C14—C17 | 120.5 (3) | N4—C20—H15C | 109.470 |
N1i—C18—C13 | 111.9 (3) | H15A—C20—H15B | 109.476 |
O5—C21—N4 | 124.5 (4) | H15A—C20—H15C | 109.470 |
C22—O6—H18 | 109.469 | H15B—C20—H15C | 109.476 |
Pd1—N1—H12 | 112 (3) | O5—C21—H16 | 117.729 |
C1—N1—H12 | 109 (3) | N4—C21—H16 | 117.725 |
C18i—N1—H12 | 106 (3) | O6—C22—H17A | 109.471 |
Pd1—N3—H13 | 98 (3) | O6—C22—H17B | 109.478 |
C7—N3—H13 | 106 (3) | O6—C22—H17C | 109.472 |
C8—N3—H13 | 112 (4) | H17A—C22—H17B | 109.469 |
N1—C1—H1A | 109.621 | H17A—C22—H17C | 109.469 |
N1—C1—H1B | 109.615 | H17B—C22—H17C | 109.469 |
C2—C1—H1A | 109.615 | ||
Cl1—Pd1—N1—C1 | −149.86 (13) | N2—C2—C3—C4 | 1.9 (6) |
Cl1—Pd1—N1—C18i | 89.28 (15) | C1—C2—C3—C4 | −174.0 (4) |
Cl1—Pd1—N3—C7 | −162.28 (13) | C2—C3—C4—C5 | −2.9 (7) |
Cl1—Pd1—N3—C8 | 68.21 (18) | C3—C4—C5—C6 | 0.9 (7) |
N1—Pd1—N2—C2 | −16.25 (19) | C4—C5—C6—N2 | 2.1 (6) |
N1—Pd1—N2—C6 | 167.5 (2) | C4—C5—C6—C7 | −172.7 (4) |
N2—Pd1—N1—C1 | 25.80 (15) | N2—C6—C7—N3 | 31.1 (4) |
N2—Pd1—N1—C18i | −95.06 (17) | C5—C6—C7—N3 | −153.8 (4) |
N2—Pd1—N3—C7 | 21.95 (16) | N3—C8—C9—C10 | −94.4 (4) |
N2—Pd1—N3—C8 | −107.56 (19) | N3—C8—C9—C14 | 78.6 (4) |
N3—Pd1—N2—C2 | 169.8 (2) | C8—C9—C10—C11 | 167.8 (3) |
N3—Pd1—N2—C6 | −6.50 (19) | C8—C9—C10—C15 | −12.7 (6) |
Pd1—N1—C1—C2 | −31.6 (3) | C8—C9—C14—C13 | −165.3 (3) |
Pd1—N1—C18i—C13i | −66.0 (3) | C8—C9—C14—C17 | 15.6 (5) |
C1—N1—C18i—C13i | 174.8 (2) | C10—C9—C14—C13 | 7.9 (5) |
C18i—N1—C1—C2 | 90.9 (3) | C10—C9—C14—C17 | −171.2 (3) |
Pd1—N2—C2—C1 | 1.5 (4) | C14—C9—C10—C11 | −5.2 (5) |
Pd1—N2—C2—C3 | −174.9 (2) | C14—C9—C10—C15 | 174.3 (3) |
Pd1—N2—C6—C5 | 172.8 (2) | C9—C10—C11—C12 | −1.0 (6) |
Pd1—N2—C6—C7 | −11.6 (4) | C15—C10—C11—C12 | 179.5 (3) |
C2—N2—C6—C5 | −3.2 (5) | C10—C11—C12—C13 | 4.4 (6) |
C2—N2—C6—C7 | 172.3 (3) | C10—C11—C12—C16 | −175.8 (3) |
C6—N2—C2—C1 | 177.6 (3) | C11—C12—C13—C14 | −1.6 (5) |
C6—N2—C2—C3 | 1.2 (5) | C11—C12—C13—C18 | 179.7 (3) |
Pd1—N3—C7—C6 | −33.6 (3) | C16—C12—C13—C14 | 178.6 (3) |
Pd1—N3—C8—C9 | −150.26 (17) | C16—C12—C13—C18 | −0.1 (5) |
C7—N3—C8—C9 | 83.7 (3) | C12—C13—C14—C9 | −4.5 (5) |
C8—N3—C7—C6 | 101.0 (3) | C12—C13—C14—C17 | 174.6 (3) |
C19—N4—C21—O5 | −1.8 (7) | C12—C13—C18—N1i | 85.7 (4) |
C20—N4—C21—O5 | −179.0 (4) | C14—C13—C18—N1i | −93.0 (4) |
N1—C1—C2—N2 | 20.9 (4) | C18—C13—C14—C9 | 174.2 (3) |
N1—C1—C2—C3 | −163.0 (3) | C18—C13—C14—C17 | −6.7 (5) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H18···O6ii | 0.84 | 2.33 | 2.757 (5) | 112 |
N1—H12···O6 | 0.78 (4) | 2.21 (4) | 2.930 (5) | 153 (4) |
N3—H13···Cl1i | 0.71 (4) | 2.67 (5) | 3.332 (4) | 156 (4) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H18···O6i | 0.84 | 2.33 | 2.757 (5) | 112 |
N1—H12···O6 | 0.78 (4) | 2.21 (4) | 2.930 (5) | 153 (4) |
N3—H13···Cl1ii | 0.71 (4) | 2.67 (5) | 3.332 (4) | 156 (4) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z. |
Acknowledgements
This work was partially supported by Grants-in-Aid (No. 22550060 to YF and No. 22350028 to HM) for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan.
References
Allmendinger, M., Zell, P., Amin, A., Thewalt, U., Klinga, M. & Rieger, B. (2003). Heterocycles, 60, 1065–1081. CAS Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Arnáiz, A., Cuevas, J. V., Herbosa, G. G., Carbayo, A., Casares, J. A. & Puebla, E. G. (2002). J. Chem. Soc. Dalton Trans. pp. 2581–2586. Google Scholar
Goforth, S. K., Walroth, R. C. & White, L. M. E. (2013). Inorg. Chem. 52, 5692–5701. Web of Science CrossRef CAS PubMed Google Scholar
Higa, T., Fukui, M., Fukui, K., Naganuma, Y., Kajita, Y., Inomata, T., Ozawa, T., Funahashi, Y. & Masuda, H. (2010). J. Inclusion Phenom. Macrocycl. Chem. 66, 171–177. Web of Science CSD CrossRef CAS Google Scholar
Parker, D. (1985). J. Chem. Soc. Chem. Commun. pp. 1129–1131. CrossRef Web of Science Google Scholar
Parker, D., Lehn, J. M. & Rimmer, J. (1985). J. Chem. Soc. Dalton Trans. pp. 1517–1521. CrossRef Web of Science Google Scholar
Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suess, D. L. M. & Peters, J. C. (2010). Chem. Commun. 46, 6554–6556. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2,6-Pyridinedicarboxaldehyde and 2,4-bis-aminomethyl-1,3,5-trimethyl benzene were used for synthesis of an imine macrocycle, and the highly selective cyclization reaction resulted in a [2+2] stoichiometry, in a similar procedure to a previous study (Allmendinger et al., 2003). It can be facilely reduced by NaBH4 to give the corresponding amine analogue containing two 2,6-di(aminomethyl)pyridine units. The spacer unit can capture two transition metal ions inside the macrocyclic ligand molecule. Previously, similar macrocyclic ligands containing dinuclear palladium(II) complexes have been synthesized (Parker et al., 1985). Using the amine macrocyclic ligand, we have fortunately prepared a novel dinuclear palladium(II) complex, and succeeded in elucidating the crystal structure. The single-crystal X-ray diffraction analysis has revealed that the title compound, [PdII2(C36H42N6)Cl2](ClO4)2.2DMF.2CH3OH, has crystallized in the monoclinic space group P21/n, and the unit cell contains two palladium(II) ions and two chloride ions inside the macrocyclic ligand. The structure of the dinuclear palladium(II) complex with the macrocyclic ligand has a center of symmetry inside the ligand molecule. The two perchlorate anions, two crystalline DMF and two methanol molecules are located outside the ligand sphere (Fig. 2). The palladium(II) center has a four-coordinate square-planar geometry occupied by three N atoms of the macrocyclic ligand and one chloride ion (Fig. 1).