organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1394-o1395

1,2-Bis(2-hy­dr­oxy-5-methyl­benzyl­­idene)hydrazine

aCentre for Research and Development, PRIST University, Vallam, Thanjavur 613 403, India, bDepartment of Chemistry, DDE, Alagappa University, Karaikudi 630 003, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, crystallography2010@gmail.com

(Received 27 July 2013; accepted 1 August 2013; online 7 August 2013)

The mol­ecular structure of the title compound, C16H16N2O2, is stabilized by intra­molecular O—H⋯N hydrogen bonds with S(6) graph-set motifs, so that the mol­ecule is almost planar, with a C=N—N=C torsion angle of −179.7 (2)° and a dihedral angle of 1.82 (12)° between the aromatic rings. In the crystal, weak C—H⋯π inter­actions lead to the formation of a three-dimensional network.

Related literature

For the biological activity of Schiff base ligands, see: Kelley et al. (1995[Kelley, J. L., Linn, J. A., Bankston, D. D., Burchall, C. J., Soroko, F. E. & Cooper, B. R. (1995). J. Med. Chem. 38, 3676-3679.]); Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Pharm. Acta Helv. 74, 11-17.]); Singh & Dash (1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]); Tarafder et al. (2002[Tarafder, M. T. H., Kasbollah, A., Saravanan, N., Crouse, K. A., Ali, A. M. & Khor, T. O. (2002). J. Biochem. Mol. Biol. Biophys. 6, 85-91.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related strucutures, see: Chantrapromma et al. (2010[Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2010). Acta Cryst. E66, o2994-o2995.]); Fun et al. (2010[Fun, H.-K., Jansrisewangwong, P. & Chantrapromma, S. (2010). Acta Cryst. E66, o2401-o2402.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O2

  • Mr = 268.31

  • Orthorhombic, P 21 21 21

  • a = 6.0108 (5) Å

  • b = 7.3394 (5) Å

  • c = 31.674 (2) Å

  • V = 1397.32 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.22 × 0.18 × 0.16 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.982, Tmax = 0.987

  • 5699 measured reflections

  • 2952 independent reflections

  • 1780 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.154

  • S = 1.02

  • 2952 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N2 0.82 1.91 2.635 (3) 146
O1—H1⋯N1 0.82 1.93 2.646 (3) 145
C5—H5⋯Cg1i 0.93 2.84 3.519 (3) 130
C14—H14⋯Cg2ii 0.93 2.85 3.519 (3) 130
Symmetry codes: (i) [-x-1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base ligands exhibit anti-cancer, anti-fungal, anti-tumour and anti-HIV activities (Pandeya et al., 1999; Singh & Dash, 1988; Kelley et al., 1995; Tarafder et al., 2002). In the molecular structure of the title compound (Fig. 1), the bond distances are within the normal range (Allen et al., 1987) and are comparable with the related structures (Chantrapromma et al., 2010; Fun et al., 2010). In the molecule, two aromatic rings are almost co-planar, with a dihedral angle of 1.82 (12)°. The hydroxy groups form intramolecular O—H···N hydrogen bonds (O1—H1···N1 and O2—H2A···N2; Table 1) with S(6) graph-set motifs (Bernstein et al., 1995). The crystal structure also exhibits weak intermolecular C—H···π (Table 1) interactions which forms a three dimensional network.

Related literature top

For the biological activity of Schiff base ligands, see: Kelley et al. (1995); Pandeya et al. (1999); Singh & Dash (1988); Tarafder et al. (2002). For standard bond lengths, see: Allen et al. (1987). For related strucutures, see: Chantrapromma et al. (2010); Fun et al. (2010). For graph-set motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by mixing a solution (1:2 molar ratio) of hydrazine hydrate (0.20 ml, 4 mmol) and 2-hydroxy-5-methylbenzaldehyde (1.08 g, 8 mmol) in ethanol (30 ml). The resulting solution was refluxed for 4 h, yielding (65%) the pale yellow crystalline solid. The resultant solid was filtered off and washed with methanol. Pale Yellow single crystals of the title compound suitable for X-ray structure determination were recrystalized from dimethylformamide by slow evaporation at room temperature over several days.

Refinement top

H atoms were positioned geometrically with C—H = 0.93–0.96 Å and O—H = 0.82 Å and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
2-{[2-(2-Hydroxy-5-methylbenzylidene)hydrazin-1-ylidene]methyl}-4-methylphenol top
Crystal data top
C16H16N2O2F(000) = 568
Mr = 268.31Dx = 1.275 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2658 reflections
a = 6.0108 (5) Åθ = 2.4–27.2°
b = 7.3394 (5) ŵ = 0.09 mm1
c = 31.674 (2) ÅT = 295 K
V = 1397.32 (17) Å3Block, yellow
Z = 40.22 × 0.18 × 0.16 mm
Data collection top
Bruker Kappa APEXII
diffractometer
2952 independent reflections
Radiation source: fine-focus sealed tube1780 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and ϕ scansθmax = 27.2°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 67
Tmin = 0.982, Tmax = 0.987k = 99
5699 measured reflectionsl = 4039
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0788P)2]
where P = (Fo2 + 2Fc2)/3
2952 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C16H16N2O2V = 1397.32 (17) Å3
Mr = 268.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.0108 (5) ŵ = 0.09 mm1
b = 7.3394 (5) ÅT = 295 K
c = 31.674 (2) Å0.22 × 0.18 × 0.16 mm
Data collection top
Bruker Kappa APEXII
diffractometer
2952 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1780 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.987Rint = 0.023
5699 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.02Δρmax = 0.17 e Å3
2952 reflectionsΔρmin = 0.17 e Å3
185 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1393 (4)0.8872 (3)0.28106 (7)0.0424 (6)
C20.0535 (4)0.9211 (3)0.24097 (7)0.0467 (6)
H20.08740.97260.23870.056*
C30.1689 (5)0.8812 (4)0.20427 (8)0.0528 (7)
C40.3790 (5)0.8051 (4)0.20879 (8)0.0558 (7)
H40.46040.77650.18470.067*
C50.4700 (5)0.7708 (3)0.24753 (9)0.0540 (7)
H50.61060.71850.24930.065*
C60.3559 (4)0.8129 (4)0.28389 (8)0.0474 (7)
C70.0682 (6)0.9219 (4)0.16150 (7)0.0766 (10)
H7A0.09470.82120.14280.115*
H7B0.08910.94050.16450.115*
H7C0.13521.02990.15000.115*
C80.0071 (4)0.9275 (3)0.31799 (7)0.0454 (6)
H80.13630.97260.31450.055*
C90.0019 (4)0.9213 (3)0.42464 (7)0.0451 (6)
H90.14510.87580.42820.054*
C100.1302 (5)0.9612 (3)0.46142 (7)0.0429 (6)
C110.0395 (5)0.9322 (3)0.50158 (7)0.0478 (7)
H110.10160.88100.50350.057*
C120.1501 (5)0.9762 (3)0.53841 (8)0.0527 (7)
C130.3625 (6)1.0501 (4)0.53396 (8)0.0578 (8)
H130.44171.08140.55810.069*
C140.4593 (5)1.0786 (4)0.49519 (8)0.0556 (7)
H140.60191.12710.49350.067*
C150.3451 (5)1.0352 (3)0.45871 (8)0.0460 (6)
C160.0438 (6)0.9530 (4)0.58087 (8)0.0718 (9)
H16A0.04351.05880.58740.108*
H16B0.15730.93780.60190.108*
H16C0.05040.84740.58050.108*
N10.0818 (3)0.9027 (3)0.35543 (6)0.0498 (6)
N20.0716 (4)0.9465 (3)0.38727 (6)0.0498 (6)
O10.4551 (3)0.7801 (3)0.32150 (5)0.0680 (6)
H10.37510.81710.34060.102*
O20.4451 (3)1.0657 (3)0.42094 (6)0.0650 (6)
H2A0.36231.03280.40180.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0381 (15)0.0357 (12)0.0534 (14)0.0023 (12)0.0003 (12)0.0034 (10)
C20.0442 (15)0.0392 (13)0.0565 (16)0.0000 (13)0.0007 (12)0.0069 (11)
C30.0594 (19)0.0491 (15)0.0499 (15)0.0053 (16)0.0034 (13)0.0016 (12)
C40.0553 (19)0.0488 (15)0.0633 (17)0.0011 (16)0.0152 (15)0.0051 (13)
C50.0412 (15)0.0494 (14)0.0715 (17)0.0039 (14)0.0070 (15)0.0016 (14)
C60.0417 (16)0.0458 (14)0.0548 (15)0.0020 (14)0.0002 (13)0.0028 (11)
C70.102 (3)0.076 (2)0.0512 (16)0.006 (2)0.0028 (17)0.0065 (14)
C80.0386 (16)0.0415 (13)0.0562 (15)0.0024 (13)0.0057 (12)0.0003 (12)
C90.0395 (15)0.0413 (13)0.0546 (14)0.0010 (13)0.0000 (12)0.0035 (11)
C100.0412 (17)0.0358 (12)0.0518 (14)0.0041 (12)0.0031 (12)0.0002 (10)
C110.0465 (17)0.0399 (13)0.0570 (15)0.0003 (13)0.0003 (13)0.0042 (12)
C120.058 (2)0.0425 (14)0.0572 (16)0.0059 (15)0.0035 (14)0.0008 (12)
C130.061 (2)0.0471 (15)0.0656 (18)0.0036 (16)0.0186 (15)0.0005 (13)
C140.0401 (17)0.0508 (15)0.0759 (19)0.0037 (15)0.0086 (14)0.0047 (14)
C150.0379 (16)0.0436 (14)0.0564 (15)0.0008 (13)0.0007 (13)0.0036 (12)
C160.091 (3)0.0697 (18)0.0550 (16)0.005 (2)0.0022 (17)0.0006 (14)
N10.0458 (13)0.0551 (13)0.0485 (11)0.0018 (12)0.0044 (10)0.0023 (10)
N20.0476 (13)0.0490 (12)0.0527 (11)0.0004 (11)0.0053 (11)0.0021 (9)
O10.0460 (12)0.0922 (16)0.0658 (12)0.0134 (12)0.0067 (10)0.0055 (12)
O20.0490 (12)0.0778 (14)0.0683 (11)0.0112 (12)0.0037 (10)0.0053 (11)
Geometric parameters (Å, º) top
C1—C21.393 (3)C9—H90.9300
C1—C61.415 (3)C10—C111.400 (3)
C1—C81.445 (3)C10—C151.404 (3)
C2—C31.385 (3)C11—C121.381 (3)
C2—H20.9300C11—H110.9300
C3—C41.388 (4)C12—C131.395 (4)
C3—C71.514 (3)C12—C161.499 (3)
C4—C51.367 (4)C13—C141.375 (4)
C4—H40.9300C13—H130.9300
C5—C61.376 (3)C14—C151.381 (3)
C5—H50.9300C14—H140.9300
C6—O11.354 (3)C15—O21.357 (3)
C7—H7A0.9600C16—H16A0.9600
C7—H7B0.9600C16—H16B0.9600
C7—H7C0.9600C16—H16C0.9600
C8—N11.281 (3)N1—N21.404 (3)
C8—H80.9300O1—H10.8200
C9—N21.277 (3)O2—H2A0.8200
C9—C101.440 (3)
C2—C1—C6117.9 (2)C10—C9—H9119.0
C2—C1—C8119.9 (2)C11—C10—C15118.2 (2)
C6—C1—C8122.3 (2)C11—C10—C9119.3 (3)
C3—C2—C1122.8 (2)C15—C10—C9122.5 (2)
C3—C2—H2118.6C12—C11—C10123.0 (3)
C1—C2—H2118.6C12—C11—H11118.5
C2—C3—C4117.0 (2)C10—C11—H11118.5
C2—C3—C7120.6 (3)C11—C12—C13116.5 (3)
C4—C3—C7122.4 (3)C11—C12—C16121.8 (3)
C5—C4—C3122.0 (3)C13—C12—C16121.7 (3)
C5—C4—H4119.0C14—C13—C12122.5 (3)
C3—C4—H4119.0C14—C13—H13118.8
C4—C5—C6120.7 (3)C12—C13—H13118.8
C4—C5—H5119.6C13—C14—C15120.1 (3)
C6—C5—H5119.6C13—C14—H14119.9
O1—C6—C5118.5 (2)C15—C14—H14119.9
O1—C6—C1122.0 (2)O2—C15—C14118.6 (3)
C5—C6—C1119.5 (2)O2—C15—C10121.7 (2)
C3—C7—H7A109.5C14—C15—C10119.7 (2)
C3—C7—H7B109.5C12—C16—H16A109.5
H7A—C7—H7B109.5C12—C16—H16B109.5
C3—C7—H7C109.5H16A—C16—H16B109.5
H7A—C7—H7C109.5C12—C16—H16C109.5
H7B—C7—H7C109.5H16A—C16—H16C109.5
N1—C8—C1121.8 (2)H16B—C16—H16C109.5
N1—C8—H8119.1C8—N1—N2113.7 (2)
C1—C8—H8119.1C9—N2—N1113.9 (2)
N2—C9—C10122.0 (2)C6—O1—H1109.5
N2—C9—H9119.0C15—O2—H2A109.5
C6—C1—C2—C31.5 (4)C15—C10—C11—C121.3 (4)
C8—C1—C2—C3178.2 (2)C9—C10—C11—C12176.3 (2)
C1—C2—C3—C40.3 (4)C10—C11—C12—C130.9 (4)
C1—C2—C3—C7179.6 (2)C10—C11—C12—C16176.6 (2)
C2—C3—C4—C50.2 (4)C11—C12—C13—C140.0 (4)
C7—C3—C4—C5179.1 (3)C16—C12—C13—C14177.6 (2)
C3—C4—C5—C60.7 (4)C12—C13—C14—C150.6 (4)
C4—C5—C6—O1178.5 (2)C13—C14—C15—O2179.7 (2)
C4—C5—C6—C11.9 (4)C13—C14—C15—C100.3 (4)
C2—C1—C6—O1178.2 (2)C11—C10—C15—O2179.4 (2)
C8—C1—C6—O12.1 (4)C9—C10—C15—O23.1 (4)
C2—C1—C6—C52.3 (4)C11—C10—C15—C140.6 (3)
C8—C1—C6—C5177.4 (2)C9—C10—C15—C14176.9 (2)
C2—C1—C8—N1178.2 (2)C1—C8—N1—N2179.0 (2)
C6—C1—C8—N12.0 (4)C10—C9—N2—N1179.07 (19)
N2—C9—C10—C11179.4 (2)C8—N1—N2—C9179.7 (2)
N2—C9—C10—C152.0 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2A···N20.821.912.635 (3)146
O1—H1···N10.821.932.646 (3)145
C5—H5···Cg1i0.932.843.519 (3)130
C14—H14···Cg2ii0.932.853.519 (3)130
Symmetry codes: (i) x1, y1/2, z+1/2; (ii) x+1/2, y+5/2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2A···N20.821.912.635 (3)146
O1—H1···N10.821.932.646 (3)145
C5—H5···Cg1i0.932.843.519 (3)130
C14—H14···Cg2ii0.932.853.519 (3)130
Symmetry codes: (i) x1, y1/2, z+1/2; (ii) x+1/2, y+5/2, z+1.
 

Acknowledgements

The authors acknowledge the Department of Chemistry, IIT Madras, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2010). Acta Cryst. E66, o2994–o2995.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Jansrisewangwong, P. & Chantrapromma, S. (2010). Acta Cryst. E66, o2401–o2402.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKelley, J. L., Linn, J. A., Bankston, D. D., Burchall, C. J., Soroko, F. E. & Cooper, B. R. (1995). J. Med. Chem. 38, 3676–3679.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Pharm. Acta Helv. 74, 11–17.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Kasbollah, A., Saravanan, N., Crouse, K. A., Ali, A. M. & Khor, T. O. (2002). J. Biochem. Mol. Biol. Biophys. 6, 85–91.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1394-o1395
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds