organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Chloro-2-(4-meth­­oxy­phen­yl)-4-phenyl­quinoline

aCentre for Research and Development, PRIST University, Vallam, Thanjavur 613 403, India, bDepartment of Chemistry, DDE, Alagappa University, Karaikudi 630 003, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, crystallography2010@gmail.com

(Received 15 August 2013; accepted 19 August 2013; online 23 August 2013)

In the title compound, C22H16ClNO, the quinoline ring system makes dihedral angles of 56.30 (6) and 7.93 (6)°, respectively, with the adjacent phenyl and benzene rings. The dihedral angle between these phenyl and benzene rings is 56.97 (8)°. In the crystal, weak C—H⋯π and ππ [centroid–centroid distances of 3.7699 (9) and 3.8390 (9) Å] inter­actions link the mol­ecules into a layer parallel to the ab plane.

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Akkurt et al. (2004[Akkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1266-o1268.]).

[Scheme 1]

Experimental

Crystal data
  • C22H16ClNO

  • Mr = 345.81

  • Monoclinic, P 21 /n

  • a = 10.5922 (5) Å

  • b = 8.2883 (3) Å

  • c = 19.1885 (9) Å

  • β = 92.988 (3)°

  • V = 1682.29 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 295 K

  • 0.40 × 0.36 × 0.34 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.912, Tmax = 0.924

  • 12611 measured reflections

  • 4148 independent reflections

  • 3244 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.125

  • S = 1.03

  • 4148 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C10–C15 and C16–C19 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Cg4i 0.93 2.63 3.7695 (19) 151
C22—H22BCg3ii 0.96 2.84 3.613 (3) 138
Symmetry codes: (i) x-1, y, z; (ii) x+1, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The geometric parameters of the title compound (Fig. 1) are within the normal range (Allen et al., 1987) and are comparable with the similar reported structure (Akkurt et al., 2004). The quinoxaline ring system is almost planar [maximum deviation of C3 atom from the mean plane is 0.0345 (16)Å]. The dihedral angle between the phenyl ring (C10–C15) and methoxyphenyl ring (C16–C21) is 56.97 (8)°. The crystal structure exhibit weak C—H···π (Table 1) and ππ [Cg1···Cg2i distance 3.7699 (9) Å and Cg2···Cg4ii distance 3.8390 (9) Å; (i) -x, 1 - y, 2 - z; (ii) -x, 2 - y, 2 - z; Cg1, Cg2 and Cg4 are the centroids of the rings (C1/C2/C3/C4/C9/N1), (C4–C9) and (C16–C21), respectively] interactions which leads to the of packing of the molecules.

Related literature top

For standard bond lengths, see: Allen et al. (1987). For a related structure, see: Akkurt et al. (2004).

Experimental top

5-Chloro-2-aminobenzophenone (1.86 g, 8.05 mmol) and 4-methoxyacetophenone (1.21 g, 8.05 mmol) in the presence of acetic acid (30 ml) and con. H2SO4 (0.5 ml) were stirred under argon at 140 °C for 18 h. After cooling to room temperature, 10% NaOH (100 ml) and dichloromethane (100 ml) were added to the reaction mixture. The organic layer was separated and washed with distilled water (50 ml×5) until a neutral solution was obtained. Later, it was dried over a Na2SO4 and evaporated under the natural condition to yield yellow crystals, suitable for X-Ray diffraction. Yield: 55 %.

Refinement top

H atoms were positioned geometrically with C—H = 0.93 or 0.96 Å and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
6-Chloro-2-(4-methoxyphenyl)-4-phenylquinoline top
Crystal data top
C22H16ClNOF(000) = 720
Mr = 345.81Dx = 1.365 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5757 reflections
a = 10.5922 (5) Åθ = 2.2–27.2°
b = 8.2883 (3) ŵ = 0.24 mm1
c = 19.1885 (9) ÅT = 295 K
β = 92.988 (3)°Block, yellow
V = 1682.29 (13) Å30.40 × 0.36 × 0.34 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
4148 independent reflections
Radiation source: fine-focus sealed tube3244 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and ϕ scansθmax = 28.3°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1214
Tmin = 0.912, Tmax = 0.924k = 1010
12611 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.6619P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4148 reflectionsΔρmax = 0.29 e Å3
228 parametersΔρmin = 0.44 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.030 (2)
Crystal data top
C22H16ClNOV = 1682.29 (13) Å3
Mr = 345.81Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.5922 (5) ŵ = 0.24 mm1
b = 8.2883 (3) ÅT = 295 K
c = 19.1885 (9) Å0.40 × 0.36 × 0.34 mm
β = 92.988 (3)°
Data collection top
Bruker Kappa APEXII
diffractometer
4148 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3244 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.924Rint = 0.034
12611 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
4148 reflectionsΔρmin = 0.44 e Å3
228 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.10650 (13)0.86173 (17)0.92160 (8)0.0315 (3)
C20.00131 (14)0.82128 (18)0.87652 (8)0.0344 (3)
H20.00200.84750.82940.041*
C30.10138 (14)0.74421 (18)0.90118 (8)0.0325 (3)
C40.09729 (14)0.69944 (17)0.97278 (7)0.0317 (3)
C50.19335 (15)0.61042 (18)1.00396 (8)0.0364 (3)
H50.26410.57630.97720.044*
C60.18207 (15)0.57495 (19)1.07298 (9)0.0384 (3)
C70.07731 (16)0.6223 (2)1.11478 (8)0.0429 (4)
H70.07240.59791.16210.052*
C80.01818 (16)0.7050 (2)1.08569 (8)0.0418 (4)
H80.08880.73541.11340.050*
C90.01122 (14)0.74491 (18)1.01414 (7)0.0334 (3)
C100.21428 (14)0.71165 (18)0.85403 (8)0.0344 (3)
C110.20230 (16)0.6298 (2)0.79205 (8)0.0417 (4)
H110.12370.59110.78050.050*
C120.30662 (19)0.6052 (2)0.74711 (9)0.0527 (5)
H120.29810.54970.70550.063*
C130.42299 (18)0.6626 (2)0.76372 (10)0.0523 (5)
H130.49290.64590.73330.063*
C140.43653 (17)0.7446 (2)0.82506 (10)0.0495 (4)
H140.51540.78360.83610.059*
C150.33255 (16)0.7688 (2)0.87029 (9)0.0420 (4)
H150.34170.82380.91200.050*
C160.21525 (14)0.95295 (17)0.89617 (8)0.0323 (3)
C170.30751 (16)1.0092 (2)0.94365 (8)0.0403 (4)
H170.30170.98420.99060.048*
C180.40815 (16)1.1014 (2)0.92371 (9)0.0440 (4)
H180.46911.13660.95690.053*
C190.41774 (15)1.14080 (19)0.85434 (9)0.0391 (4)
C200.32825 (16)1.0835 (2)0.80568 (9)0.0423 (4)
H200.33491.10820.75870.051*
C210.22887 (15)0.9899 (2)0.82607 (8)0.0382 (3)
H210.17010.95090.79250.046*
C220.60395 (19)1.2957 (3)0.87780 (12)0.0627 (6)
H22A0.56381.35940.91210.094*
H22B0.66221.36180.85390.094*
H22C0.64871.20790.90040.094*
N10.11065 (12)0.82580 (16)0.98859 (6)0.0354 (3)
O10.51123 (12)1.23407 (17)0.82929 (7)0.0548 (3)
Cl10.30154 (4)0.46790 (6)1.11096 (3)0.05376 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0295 (7)0.0299 (7)0.0352 (7)0.0002 (6)0.0024 (6)0.0002 (6)
C20.0343 (7)0.0371 (8)0.0318 (7)0.0013 (6)0.0014 (6)0.0031 (6)
C30.0314 (7)0.0324 (7)0.0337 (7)0.0014 (6)0.0006 (6)0.0011 (6)
C40.0314 (7)0.0308 (7)0.0331 (7)0.0001 (6)0.0034 (6)0.0002 (6)
C50.0324 (7)0.0357 (8)0.0413 (8)0.0020 (6)0.0037 (6)0.0004 (6)
C60.0377 (8)0.0345 (8)0.0442 (8)0.0026 (6)0.0133 (7)0.0052 (6)
C70.0456 (9)0.0502 (10)0.0335 (8)0.0033 (8)0.0059 (7)0.0064 (7)
C80.0396 (8)0.0532 (10)0.0325 (7)0.0024 (7)0.0003 (6)0.0026 (7)
C90.0316 (7)0.0351 (7)0.0336 (7)0.0008 (6)0.0030 (6)0.0003 (6)
C100.0328 (8)0.0359 (8)0.0344 (7)0.0066 (6)0.0002 (6)0.0045 (6)
C110.0393 (9)0.0485 (9)0.0374 (8)0.0043 (7)0.0035 (7)0.0005 (7)
C120.0616 (12)0.0567 (11)0.0390 (9)0.0115 (9)0.0044 (8)0.0038 (8)
C130.0484 (10)0.0555 (11)0.0511 (10)0.0127 (9)0.0169 (8)0.0077 (8)
C140.0343 (9)0.0498 (10)0.0638 (11)0.0017 (7)0.0044 (8)0.0068 (9)
C150.0375 (8)0.0448 (9)0.0435 (9)0.0014 (7)0.0001 (7)0.0024 (7)
C160.0284 (7)0.0319 (7)0.0369 (7)0.0004 (6)0.0035 (6)0.0008 (6)
C170.0405 (9)0.0459 (9)0.0346 (7)0.0094 (7)0.0039 (6)0.0007 (7)
C180.0381 (8)0.0482 (9)0.0458 (9)0.0119 (7)0.0043 (7)0.0055 (7)
C190.0349 (8)0.0357 (8)0.0481 (9)0.0024 (6)0.0139 (7)0.0004 (7)
C200.0415 (9)0.0478 (9)0.0386 (8)0.0002 (7)0.0111 (7)0.0035 (7)
C210.0339 (8)0.0437 (9)0.0368 (8)0.0016 (6)0.0012 (6)0.0002 (6)
C220.0443 (10)0.0639 (13)0.0804 (14)0.0197 (9)0.0077 (10)0.0101 (11)
N10.0310 (6)0.0405 (7)0.0345 (6)0.0028 (5)0.0010 (5)0.0012 (5)
O10.0450 (7)0.0609 (8)0.0599 (8)0.0171 (6)0.0170 (6)0.0020 (6)
Cl10.0495 (3)0.0526 (3)0.0610 (3)0.00404 (19)0.0196 (2)0.0144 (2)
Geometric parameters (Å, º) top
C1—N11.3180 (19)C12—C131.374 (3)
C1—C21.415 (2)C12—H120.9300
C1—C161.482 (2)C13—C141.373 (3)
C2—C31.367 (2)C13—H130.9300
C2—H20.9300C14—C151.381 (2)
C3—C41.422 (2)C14—H140.9300
C3—C101.486 (2)C15—H150.9300
C4—C91.413 (2)C16—C171.382 (2)
C4—C51.415 (2)C16—C211.394 (2)
C5—C61.356 (2)C17—C181.382 (2)
C5—H50.9300C17—H170.9300
C6—C71.391 (2)C18—C191.379 (2)
C6—Cl11.7366 (16)C18—H180.9300
C7—C81.365 (2)C19—O11.3635 (18)
C7—H70.9300C19—C201.380 (2)
C8—C91.410 (2)C20—C211.381 (2)
C8—H80.9300C20—H200.9300
C9—N11.3612 (19)C21—H210.9300
C10—C111.381 (2)C22—O11.413 (2)
C10—C151.390 (2)C22—H22A0.9600
C11—C121.381 (2)C22—H22B0.9600
C11—H110.9300C22—H22C0.9600
N1—C1—C2121.87 (13)C14—C13—C12120.35 (16)
N1—C1—C16116.71 (13)C14—C13—H13119.8
C2—C1—C16121.37 (13)C12—C13—H13119.8
C3—C2—C1120.97 (13)C13—C14—C15119.68 (17)
C3—C2—H2119.5C13—C14—H14120.2
C1—C2—H2119.5C15—C14—H14120.2
C2—C3—C4118.15 (13)C14—C15—C10120.54 (16)
C2—C3—C10120.24 (13)C14—C15—H15119.7
C4—C3—C10121.60 (13)C10—C15—H15119.7
C9—C4—C5118.91 (13)C17—C16—C21117.17 (14)
C9—C4—C3117.13 (13)C17—C16—C1119.35 (14)
C5—C4—C3123.95 (14)C21—C16—C1123.45 (14)
C6—C5—C4119.84 (15)C18—C17—C16122.22 (15)
C6—C5—H5120.1C18—C17—H17118.9
C4—C5—H5120.1C16—C17—H17118.9
C5—C6—C7121.92 (15)C19—C18—C17119.66 (15)
C5—C6—Cl1119.45 (13)C19—C18—H18120.2
C7—C6—Cl1118.63 (13)C17—C18—H18120.2
C8—C7—C6119.46 (15)O1—C19—C18124.46 (16)
C8—C7—H7120.3O1—C19—C20116.26 (15)
C6—C7—H7120.3C18—C19—C20119.28 (14)
C7—C8—C9120.90 (15)C19—C20—C21120.57 (15)
C7—C8—H8119.6C19—C20—H20119.7
C9—C8—H8119.6C21—C20—H20119.7
N1—C9—C8117.64 (14)C20—C21—C16121.04 (15)
N1—C9—C4123.43 (13)C20—C21—H21119.5
C8—C9—C4118.93 (14)C16—C21—H21119.5
C11—C10—C15119.02 (15)O1—C22—H22A109.5
C11—C10—C3120.43 (14)O1—C22—H22B109.5
C15—C10—C3120.50 (14)H22A—C22—H22B109.5
C10—C11—C12120.26 (16)O1—C22—H22C109.5
C10—C11—H11119.9H22A—C22—H22C109.5
C12—C11—H11119.9H22B—C22—H22C109.5
C13—C12—C11120.15 (17)C1—N1—C9118.39 (13)
C13—C12—H12119.9C19—O1—C22117.74 (14)
C11—C12—H12119.9
N1—C1—C2—C30.7 (2)C10—C11—C12—C130.2 (3)
C16—C1—C2—C3176.68 (14)C11—C12—C13—C140.1 (3)
C1—C2—C3—C42.7 (2)C12—C13—C14—C150.2 (3)
C1—C2—C3—C10176.23 (14)C13—C14—C15—C100.3 (3)
C2—C3—C4—C92.8 (2)C11—C10—C15—C140.2 (2)
C10—C3—C4—C9176.10 (14)C3—C10—C15—C14177.21 (15)
C2—C3—C4—C5175.86 (14)N1—C1—C16—C176.4 (2)
C10—C3—C4—C55.2 (2)C2—C1—C16—C17171.08 (15)
C9—C4—C5—C62.2 (2)N1—C1—C16—C21175.34 (14)
C3—C4—C5—C6179.14 (15)C2—C1—C16—C217.2 (2)
C4—C5—C6—C70.6 (2)C21—C16—C17—C181.4 (2)
C4—C5—C6—Cl1179.16 (11)C1—C16—C17—C18176.93 (15)
C5—C6—C7—C81.0 (3)C16—C17—C18—C190.6 (3)
Cl1—C6—C7—C8179.27 (13)C17—C18—C19—O1178.35 (16)
C6—C7—C8—C90.9 (3)C17—C18—C19—C201.8 (3)
C7—C8—C9—N1179.24 (15)O1—C19—C20—C21179.09 (15)
C7—C8—C9—C40.7 (2)C18—C19—C20—C211.0 (3)
C5—C4—C9—N1177.71 (14)C19—C20—C21—C161.0 (3)
C3—C4—C9—N11.0 (2)C17—C16—C21—C202.2 (2)
C5—C4—C9—C82.2 (2)C1—C16—C21—C20176.10 (14)
C3—C4—C9—C8179.04 (14)C2—C1—N1—C91.2 (2)
C2—C3—C10—C1154.3 (2)C16—C1—N1—C9178.68 (12)
C4—C3—C10—C11126.74 (17)C8—C9—N1—C1178.93 (14)
C2—C3—C10—C15123.02 (17)C4—C9—N1—C11.0 (2)
C4—C3—C10—C1555.9 (2)C18—C19—O1—C220.6 (3)
C15—C10—C11—C120.1 (2)C20—C19—O1—C22179.54 (17)
C3—C10—C11—C12177.51 (15)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C10–C15 and C16–C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cg4i0.932.633.7695 (19)151
C22—H22B···Cg3ii0.962.843.613 (3)138
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C10–C15 and C16–C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cg4i0.932.633.7695 (19)151
C22—H22B···Cg3ii0.962.843.613 (3)138
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge the STIC, Cochin University of Technology, Cochin, for the data collection. VT and NS also acknowledge the UGC [project 40–46/2011 (SR)], New Delhi.

References

First citationAkkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1266–o1268.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds