metal-organic compounds
Dipotassium tetraaquabis(μ-citrato-κ4O:O′,O′′,O′′′)nickelate(II) tetrahydrate
aSchool of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangdong 528458, People's Republic of China
*Correspondence e-mail: yaohg518@126.com
The title complex, K2[Ni2(C6H5O7)2(H2O)4]·4H2O, is a dinuclear centrosymmetric anionic octahedral complex, involving citrates as tridentate and bridging ligands, and coordinating water molecules. An extensive network of hydrogen bonds connects the complex anions through the two unique uncoordinating water molecules. The K+ counter cation is surrounded by seven O atoms in the form of an irregular polyhedron and further stabilizes the crystal packing.
Related literature
For applications of structures with metal-organic frameworks, see: Chui et al. (1999); Kahn & Martinez (1998); Kiang et al. (1999); Lin et al. (1999). For metal coordination polymers with a variety of topologies, see: Kondo et al. (2000); Shin et al. (2003); Wu et al. (2003); Yao et al. (2007). For the nickel–citrate complex K2[Ni(C6H5O7)(H2O)2]2·4H2O, which crystallized in the triclinic P, see: Baker et al. (1983).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536813022630/kp2456sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813022630/kp2456Isup2.hkl
Citric acid monohydrate (0.048 g), NiCl2.6H2O (0.042 g) and KOH (0.027 g) were dissolved in 6 ml mixed solvent of DMF–H20 (2:1 v/v), which were placed in a small vial. The mixture was heated at 351 K for 3 d and then cooled to room temperature. Green block crystals of the product were collected by filtration and washed with ethanol several times (88% based on Ni). This synthetic route allowed us to obtain a pure phase. Elemental analysis, calculated (%) for title compound: C 20.06, H 3.62; found C 20.35, H 3.44.
H atoms were positioned geometrically, with C—H = 0.93 Å, and allowed to ride during subsequent
with Uiso(H) = 1.2Ueq(C).Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The structure of the dimeric complex anion, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. | |
Fig. 2. Dimeric complexes are consolidated into three-dimensional structures by hydrogen bonds. Symmetry code: -x, 1/2 + y, 1/2 - z |
K2[Ni2(C6H5O7)2(H2O)4]·4H2O | Z = 2 |
Mr = 717.94 | F(000) = 736 |
Monoclinic, P21/c | Dx = 1.911 Mg m−3 |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 10.616 (2) Å | µ = 1.94 mm−1 |
b = 13.006 (3) Å | T = 293 K |
c = 9.0513 (18) Å | Block, green |
β = 93.09 (3)° | 0.30 × 0.20 × 0.15 mm |
V = 1247.8 (4) Å3 |
Bruker SMART APEXII CCD diffractometer | 3128 independent reflections |
Radiation source: fine-focus sealed tube | 2916 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
ϕ and ω scans | θmax = 28.4°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) | h = −14→12 |
Tmin = 0.636, Tmax = 0.741 | k = −17→17 |
9515 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.063 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0378P)2 + 0.4504P] where P = (Fo2 + 2Fc2)/3 |
3128 reflections | (Δ/σ)max = 0.001 |
224 parameters | Δρmax = 0.43 e Å−3 |
2 restraints | Δρmin = −0.55 e Å−3 |
K2[Ni2(C6H5O7)2(H2O)4]·4H2O | V = 1247.8 (4) Å3 |
Mr = 717.94 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.616 (2) Å | µ = 1.94 mm−1 |
b = 13.006 (3) Å | T = 293 K |
c = 9.0513 (18) Å | 0.30 × 0.20 × 0.15 mm |
β = 93.09 (3)° |
Bruker SMART APEXII CCD diffractometer | 3128 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) | 2916 reflections with I > 2σ(I) |
Tmin = 0.636, Tmax = 0.741 | Rint = 0.017 |
9515 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 2 restraints |
wR(F2) = 0.063 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.43 e Å−3 |
3128 reflections | Δρmin = −0.55 e Å−3 |
224 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.243734 (14) | 0.519202 (13) | −0.006123 (17) | 0.01642 (7) | |
K1 | −0.13777 (3) | 0.90086 (3) | 0.14726 (4) | 0.03020 (9) | |
O1 | 0.07698 (9) | 0.76820 (8) | 0.19256 (13) | 0.0290 (2) | |
O2 | 0.12630 (9) | 0.63014 (8) | 0.06472 (12) | 0.0256 (2) | |
O3 | 0.38530 (9) | 0.63022 (8) | −0.02002 (10) | 0.01756 (18) | |
O4 | 0.32413 (10) | 0.51024 (8) | 0.20239 (12) | 0.0247 (2) | |
O5 | 0.43183 (11) | 0.60531 (8) | 0.37004 (11) | 0.0278 (2) | |
O6 | 0.37540 (9) | 0.41901 (8) | −0.07541 (12) | 0.0240 (2) | |
O7 | 0.25885 (11) | 0.27918 (10) | −0.11481 (19) | 0.0503 (4) | |
O1W | 0.11765 (10) | 0.40268 (8) | 0.03601 (12) | 0.0235 (2) | |
O2W | 0.16893 (11) | 0.54135 (9) | −0.21942 (12) | 0.0238 (2) | |
O3W | −0.00587 (17) | 0.89783 (14) | −0.11374 (17) | 0.0549 (4) | |
O4W | −0.32069 (13) | 0.97832 (11) | −0.06745 (14) | 0.0336 (3) | |
C1 | 0.15547 (12) | 0.71310 (10) | 0.13242 (14) | 0.0187 (2) | |
C2 | 0.29093 (12) | 0.75171 (10) | 0.13945 (16) | 0.0202 (3) | |
C3 | 0.39866 (11) | 0.67514 (10) | 0.12633 (13) | 0.0160 (2) | |
C4 | 0.38568 (12) | 0.58926 (10) | 0.24245 (14) | 0.0181 (2) | |
C5 | 0.47751 (12) | 0.26558 (11) | −0.14594 (16) | 0.0197 (3) | |
C6 | 0.36067 (12) | 0.32483 (11) | −0.11019 (15) | 0.0212 (3) | |
H1 | 0.444 (2) | 0.6015 (17) | −0.036 (2) | 0.040 (6)* | |
H2A | 0.2987 (17) | 0.8014 (15) | 0.067 (2) | 0.030 (5)* | |
H2B | 0.3039 (17) | 0.7872 (16) | 0.227 (2) | 0.031 (5)* | |
H5A | 0.4817 (18) | 0.2059 (16) | −0.090 (2) | 0.033 (5)* | |
H5B | 0.4680 (17) | 0.2407 (15) | −0.249 (2) | 0.029 (5)* | |
H1WB | 0.047 (2) | 0.4026 (18) | 0.003 (2) | 0.048 (6)* | |
H1WA | 0.152 (2) | 0.354 (2) | −0.006 (3) | 0.065 (8)* | |
H2WA | 0.220 (2) | 0.525 (2) | −0.290 (3) | 0.057 (7)* | |
H2WB | 0.140 (2) | 0.601 (2) | −0.235 (3) | 0.055 (7)* | |
H3WC | −0.003 (3) | 0.8359 (11) | −0.141 (4) | 0.096 (11)* | |
H3WA | −0.073 (3) | 0.906 (4) | −0.168 (5) | 0.18 (2)* | |
H4WA | −0.372 (2) | 0.948 (2) | −0.100 (3) | 0.041 (6)* | |
H4WB | −0.351 (2) | 1.0134 (19) | 0.001 (3) | 0.053 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01296 (10) | 0.01699 (11) | 0.01930 (10) | −0.00081 (6) | 0.00068 (6) | −0.00159 (6) |
K1 | 0.02800 (17) | 0.03044 (18) | 0.03236 (17) | 0.00154 (13) | 0.00338 (13) | −0.00315 (13) |
O4 | 0.0277 (5) | 0.0229 (5) | 0.0230 (5) | −0.0075 (4) | −0.0032 (4) | 0.0043 (4) |
O3 | 0.0162 (4) | 0.0189 (4) | 0.0176 (4) | 0.0000 (4) | 0.0014 (3) | −0.0016 (3) |
O6 | 0.0158 (4) | 0.0174 (5) | 0.0390 (6) | 0.0003 (4) | 0.0041 (4) | −0.0049 (4) |
O2 | 0.0151 (4) | 0.0257 (5) | 0.0358 (5) | 0.0002 (4) | 0.0014 (4) | −0.0107 (4) |
O5 | 0.0335 (6) | 0.0305 (6) | 0.0188 (5) | −0.0038 (4) | −0.0047 (4) | −0.0002 (4) |
O1 | 0.0182 (5) | 0.0257 (5) | 0.0438 (6) | 0.0019 (4) | 0.0077 (4) | −0.0090 (5) |
C5 | 0.0148 (6) | 0.0170 (6) | 0.0273 (7) | −0.0008 (5) | 0.0012 (5) | −0.0021 (5) |
C6 | 0.0155 (6) | 0.0201 (6) | 0.0281 (6) | −0.0004 (5) | 0.0018 (5) | −0.0029 (5) |
C2 | 0.0152 (6) | 0.0169 (6) | 0.0286 (7) | 0.0014 (5) | 0.0011 (5) | −0.0030 (5) |
O7 | 0.0178 (5) | 0.0321 (7) | 0.1024 (12) | −0.0080 (5) | 0.0151 (6) | −0.0266 (7) |
C1 | 0.0149 (6) | 0.0201 (6) | 0.0209 (6) | 0.0015 (5) | 0.0006 (4) | 0.0004 (5) |
C3 | 0.0136 (5) | 0.0167 (6) | 0.0175 (5) | 0.0004 (4) | 0.0004 (4) | −0.0021 (4) |
C4 | 0.0147 (6) | 0.0196 (6) | 0.0201 (6) | 0.0019 (5) | 0.0009 (4) | 0.0005 (5) |
O1W | 0.0150 (5) | 0.0245 (5) | 0.0308 (5) | −0.0034 (4) | 0.0016 (4) | −0.0013 (4) |
O2W | 0.0265 (5) | 0.0223 (5) | 0.0224 (5) | −0.0007 (4) | −0.0003 (4) | 0.0012 (4) |
O3W | 0.0621 (10) | 0.0611 (10) | 0.0421 (8) | 0.0235 (8) | 0.0082 (7) | −0.0023 (7) |
O4W | 0.0313 (6) | 0.0412 (7) | 0.0287 (6) | −0.0052 (5) | 0.0048 (5) | −0.0084 (5) |
Ni1—O4 | 2.0322 (12) | O1—C1 | 1.2462 (16) |
Ni1—O2 | 2.0330 (11) | C5—C6 | 1.5100 (18) |
Ni1—O6 | 2.0345 (10) | C5—C3v | 1.5259 (18) |
Ni1—O2W | 2.0677 (12) | C5—H5B | 0.984 (18) |
Ni1—O1W | 2.0709 (11) | C5—H5A | 0.93 (2) |
Ni1—O3 | 2.0927 (10) | C6—O7 | 1.2320 (17) |
K1—O7i | 2.6796 (13) | C2—C1 | 1.5213 (18) |
K1—O3W | 2.8108 (17) | C2—C3 | 1.5259 (17) |
K1—O4ii | 2.8425 (12) | C2—H2B | 0.925 (19) |
K1—O4W | 2.8557 (16) | C2—H2A | 0.926 (19) |
K1—O1Wii | 2.8633 (13) | O7—K1i | 2.6796 (13) |
K1—O1 | 2.8708 (12) | C3—C5v | 1.5259 (18) |
K1—O3Wiii | 3.053 (2) | C3—C4 | 1.5449 (18) |
O4—C4 | 1.2606 (17) | O1W—K1iv | 2.8633 (13) |
O4—K1iv | 2.8425 (12) | O1W—H1WB | 0.79 (3) |
O3—C3 | 1.4477 (15) | O1W—H1WA | 0.83 (3) |
O3—H1 | 0.75 (2) | O4W—H4WB | 0.85 (3) |
O6—C6 | 1.2723 (17) | O4W—H4WA | 0.72 (3) |
O2W—H2WB | 0.84 (3) | O3W—K1iii | 3.053 (2) |
O2W—H2WA | 0.88 (3) | O3W—H3WC | 0.842 (10) |
O2—C1 | 1.2707 (17) | O3W—H3WA | 0.845 (10) |
O5—C4 | 1.2475 (17) | ||
O4—Ni1—O2 | 88.95 (5) | C1—O2—Ni1 | 128.10 (9) |
O4—Ni1—O6 | 89.34 (5) | C1—O1—K1 | 145.86 (10) |
O2—Ni1—O6 | 174.20 (4) | C6—C5—C3v | 115.44 (11) |
O4—Ni1—O2W | 174.86 (4) | C6—C5—H5B | 109.1 (11) |
O2—Ni1—O2W | 89.11 (5) | C3v—C5—H5B | 108.7 (11) |
O6—Ni1—O2W | 92.12 (5) | C6—C5—H5A | 109.1 (12) |
O4—Ni1—O1W | 91.73 (5) | C3v—C5—H5A | 110.1 (12) |
O2—Ni1—O1W | 92.74 (5) | H5B—C5—H5A | 103.7 (16) |
O6—Ni1—O1W | 92.85 (5) | O7—C6—O6 | 124.63 (13) |
O2W—Ni1—O1W | 93.12 (5) | O7—C6—C5 | 118.43 (13) |
O4—Ni1—O3 | 80.12 (4) | O6—C6—C5 | 116.93 (12) |
O2—Ni1—O3 | 89.07 (5) | C1—C2—C3 | 119.47 (11) |
O6—Ni1—O3 | 85.17 (4) | C1—C2—H2B | 107.3 (12) |
O2W—Ni1—O3 | 95.08 (4) | C3—C2—H2B | 108.4 (12) |
O1W—Ni1—O3 | 171.62 (4) | C1—C2—H2A | 108.7 (11) |
O7i—K1—O3W | 98.82 (5) | C3—C2—H2A | 107.8 (11) |
O7i—K1—O4ii | 98.49 (4) | H2B—C2—H2A | 104.2 (16) |
O3W—K1—O4ii | 143.18 (4) | C6—O7—K1i | 147.10 (10) |
O7i—K1—O4W | 85.94 (5) | O1—C1—O2 | 123.20 (12) |
O3W—K1—O4W | 77.54 (5) | O1—C1—C2 | 116.40 (12) |
O4ii—K1—O4W | 71.58 (4) | O2—C1—C2 | 120.38 (11) |
O7i—K1—O1Wii | 97.26 (5) | O3—C3—C2 | 107.32 (10) |
O3W—K1—O1Wii | 145.89 (5) | O3—C3—C5v | 110.58 (10) |
O4ii—K1—O1Wii | 62.15 (4) | C2—C3—C5v | 107.80 (11) |
O4W—K1—O1Wii | 133.61 (4) | O3—C3—C4 | 108.84 (10) |
O7i—K1—O1 | 82.13 (4) | C2—C3—C4 | 108.91 (10) |
O3W—K1—O1 | 71.57 (5) | C5v—C3—C4 | 113.21 (11) |
O4ii—K1—O1 | 143.15 (3) | O5—C4—O4 | 125.05 (13) |
O4W—K1—O1 | 144.57 (4) | O5—C4—C3 | 117.64 (12) |
O1Wii—K1—O1 | 81.15 (4) | O4—C4—C3 | 117.23 (11) |
O7i—K1—O3Wiii | 167.85 (5) | Ni1—O1W—K1iv | 100.16 (5) |
O3W—K1—O3Wiii | 69.78 (6) | Ni1—O1W—H1WB | 122.5 (17) |
O4ii—K1—O3Wiii | 89.00 (4) | K1iv—O1W—H1WB | 113.6 (16) |
O4W—K1—O3Wiii | 87.41 (5) | Ni1—O1W—H1WA | 99.7 (18) |
O1Wii—K1—O3Wiii | 94.69 (4) | K1iv—O1W—H1WA | 116.3 (18) |
O1—K1—O3Wiii | 97.62 (4) | H1WB—O1W—H1WA | 104 (2) |
C4—O4—Ni1 | 113.92 (9) | K1—O4W—H4WB | 87.9 (17) |
C4—O4—K1iv | 129.32 (9) | K1—O4W—H4WA | 123.4 (19) |
Ni1—O4—K1iv | 101.83 (4) | H4WB—O4W—H4WA | 107 (2) |
C3—O3—Ni1 | 104.99 (7) | K1—O3W—K1iii | 110.22 (6) |
C3—O3—H1 | 109.4 (17) | K1—O3W—H3WC | 107 (2) |
Ni1—O3—H1 | 106.2 (17) | K1iii—O3W—H3WC | 140 (2) |
C6—O6—Ni1 | 128.00 (9) | K1—O3W—H3WA | 92 (3) |
Ni1—O2W—H2WB | 114.0 (16) | K1iii—O3W—H3WA | 104 (4) |
Ni1—O2W—H2WA | 115.0 (16) | H3WC—O3W—H3WA | 90 (4) |
H2WB—O2W—H2WA | 109 (2) |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x, y+1/2, −z+1/2; (iii) −x, −y+2, −z; (iv) −x, y−1/2, −z+1/2; (v) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WB···O2i | 0.79 (3) | 1.96 (3) | 2.7322 (16) | 167 (2) |
O2W—H2WB···O1vi | 0.84 (3) | 1.93 (3) | 2.7638 (16) | 170 (2) |
O4W—H4WB···O5ii | 0.85 (3) | 1.91 (3) | 2.7459 (17) | 171 (2) |
O2W—H2WA···O4Wvii | 0.88 (3) | 1.83 (3) | 2.7064 (18) | 174 (2) |
O4W—H4WA···O5viii | 0.72 (3) | 2.20 (2) | 2.8714 (19) | 155 (2) |
O3—H1···O6v | 0.75 (2) | 2.13 (2) | 2.7152 (15) | 135 (2) |
O3W—H3WA···O2Wix | 0.85 (1) | 2.25 (4) | 2.912 (2) | 135 (5) |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x, y+1/2, −z+1/2; (v) −x+1, −y+1, −z; (vi) x, −y+3/2, z−1/2; (vii) −x, y−1/2, −z−1/2; (viii) x−1, −y+3/2, z−1/2; (ix) −x, y+1/2, −z−1/2. |
Ni1—O4 | 2.0322 (12) | Ni1—O2W | 2.0677 (12) |
Ni1—O2 | 2.0330 (11) | Ni1—O1W | 2.0709 (11) |
Ni1—O6 | 2.0345 (10) | Ni1—O3 | 2.0927 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WB···O2i | 0.79 (3) | 1.96 (3) | 2.7322 (16) | 167 (2) |
O2W—H2WB···O1ii | 0.84 (3) | 1.93 (3) | 2.7638 (16) | 170 (2) |
O4W—H4WB···O5iii | 0.85 (3) | 1.91 (3) | 2.7459 (17) | 171 (2) |
O2W—H2WA···O4Wiv | 0.88 (3) | 1.83 (3) | 2.7064 (18) | 174 (2) |
O4W—H4WA···O5v | 0.72 (3) | 2.20 (2) | 2.8714 (19) | 155 (2) |
O3—H1···O6vi | 0.75 (2) | 2.13 (2) | 2.7152 (15) | 135 (2) |
O3W—H3WA···O2Wvii | 0.845 (10) | 2.25 (4) | 2.912 (2) | 135 (5) |
Symmetry codes: (i) −x, −y+1, −z; (ii) x, −y+3/2, z−1/2; (iii) −x, y+1/2, −z+1/2; (iv) −x, y−1/2, −z−1/2; (v) x−1, −y+3/2, z−1/2; (vi) −x+1, −y+1, −z; (vii) −x, y+1/2, −z−1/2. |
References
Baker, E. N., Baker, H. N., Anderson, B. F. & Reevs, R. D. (1983). Inorg. Chim. Acta, 78, 281–285. CSD CrossRef CAS Web of Science Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. (1999). Science, 283, 1148–1150. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kahn, O. & Martinez, C. J. (1998). Science, 279, 44–46. Web of Science CrossRef CAS Google Scholar
Kiang, Y.-H., Gardner, G. B., Lee, S., Xu, Z. & Lobkovsky, E. B. (1999). J. Am. Chem. Soc. 121, 8204–8206. Web of Science CSD CrossRef CAS Google Scholar
Kondo, M., Shimamura, M., Noro, S. I., Minakoshi, S., Asami, A., Seki, K. & Kitagawa, S. (2000). Chem. Mater. 12, 1288–1295. Web of Science CSD CrossRef CAS Google Scholar
Lin, W., Wang, Z. & Ma, L.-J. (1999). J. Am. Chem. Soc. 121, 11249–11251. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2001). SADABS. University of Gottingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shin, D.-M., Lee, I.-S., Lee, Y.-A. & Chung, Y.-K. (2003). Inorg. Chem. 42, 2977–2981. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wu, C.-D., Lu, C.-Z., Lin, X., Wu, D.-M., Lu, S.-F., Zhang, H.-H. & Huang, J.-S. (2003). Chem. Commun. pp. 1254–1255. Google Scholar
Yao, H.-G., Ji, M., Ji, S.-H., Jiang, Y.-S., Li, L. & An, Y.-L. (2007). Inorg. Chem. Commun. 10, 440–442. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The construction of metal–organic frameworks (MOFs) is an area of intense research activity due to their intriguing structural diversity and potential applications as zeolitic, optoelectronic, magnetic and conducting materials (Chui et al., 1999; Kiang et al., 1999; Kahn & Martinez, 1998; Lin et al., 1999). Depending on the conformation of carbon chains, the functional group of organic ligands and the type of metal ions, a variety of metal coordination polymers with different topological structures, such as one-dimensional chains (Shin et al., 2003), two-dimensional grids (Kondo et al., 2000), three-dimensional porous motifs (Yao et al., 2007) and helical strands (Wu et al., 2003) were observed. In this paper, we report the synthesis of a dimeric nickel(II) citrate complex by self-assembly under hydrothermal conditions.
In the crystal the centrosymmetric structural unit is a dinuclear NiII anion (Fig. 1) and the two potassium cations, and crystalline water molecules. The crystallographic unit is a half of the structural unit. The NiII ion adopts an octahedral coordination mode. One citrate ligand is bound with an hydroxyl and two carboxylate groups to the NiII ion, whereas one O atom (O6) from a carboxylate group of a symmetry-related citrate ligand occupies another apex, and two water molecules complete the octahedral environment. The Ni—O distances range from 2.0322 (12) Å to 2.0927 (10) Å (Table 1). Neighbouring dimeric complexes are consolidated into a three-dimensional structure by hydrogen bonds (Table 2, Fig. 2). The crystallographically independent potassium cation, K1, is seven-coordinated by O atoms, with an average contact distance of 2.852 Å.
The corresponding nickel–citrate complex with the triclinic space group P1, K2[Ni(C6H5O7)(H2O)2]2.4H2O, has been reported (Baker et al., 1983). The complex exists as centrosymmetric dimers, which has identical structure with the title complex, but a difference is that the potassium ions and water molecules of crystallization occupy the spaces between the nickel–citrate dimers in the two cases, resulting in the different formation of the geometry of potassium ion and hydrogen bonds.