organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,8-Di­chloro-4-oxochromene-3-carbalde­hyde

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

(Received 19 July 2013; accepted 8 August 2013; online 14 August 2013)

The asymmetric unit of the title compound, C10H4Cl2O3, contain two essentially planar independent mol­ecules (mean atomic deviations from the corresponding least-square planes are 0.041 and 0.045 Å for mol­ecules 1 and 2, respectively). In the crystal, mol­ecules are linked through a pair of halogen bonds [Cl⋯O separations are 3.044 (5) and 3.033 (6) Å, C—Cl⋯O angles are 160.4 (3) and 162.8 (3)°, and C=O⋯Cl angles are 138.7 (4) and 139.6 (4)°, respectively, in mol­ecules 1 and 2] and C—H⋯O hydrogen bonds into slightly folded bands [the dihedral angle between the planes of neighboring mol­ecules is 8.6 (2)°] along the c-axis direction.

Related literature

For the biological activity of the title and related compounds, see: Shim et al. (2003[Shim, Y. S., Kim, K. C., Chi, D. Y., Lee, K. H. & Cho, H. (2003). Bioorg. Med. Chem. Lett. 13, 2561-2563.]); Kawase et al. (2007[Kawase, M., Tanaka, T., Kan, H., Tani, S., Nakashima, H. & Sakagami, H. (2007). In Vivo, 21, 829-834.]); Dückert et al. (2012[Dückert, H., Pries, V., Khedkar, V., Menninger, S., Bruss, H., Bird, A. W., Maliga, Z., Brockmeyer, A., Janning, P., Hyman, A., Grimme, S., Schürmann, M., Preut, H., Hübel, K., Ziegler, S., Kumar, K. & Waldmann, H. (2012). Nat. Chem. Biol. 8, 179-184.]). For related structures, see: Ishikawa et al. (2013a[Ishikawa, Y. & Motohashi, Y. (2013a). Acta Cryst. E69, o1225.],b[Ishikawa, Y. & Motohashi, Y. (2013b). Acta Cryst. E69, o1226.]). For halogen bonding, see: Auffinger et al. (2004[Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789-16794.]); Metrangolo et al. (2005[Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386-395.]); Wilcken et al. (2013[Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363-1388.]).

[Scheme 1]

Experimental

Crystal data
  • C10H4Cl2O3

  • Mr = 243.05

  • Triclinic, [P \overline 1]

  • a = 8.288 (8) Å

  • b = 8.325 (7) Å

  • c = 13.706 (7) Å

  • α = 96.55 (6)°

  • β = 92.23 (7)°

  • γ = 101.98 (7)°

  • V = 917.2 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 100 K

  • 0.42 × 0.22 × 0.08 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.841, Tmax = 0.947

  • 5130 measured reflections

  • 4203 independent reflections

  • 2596 reflections with F2 > 2σ(F2)

  • Rint = 0.057

  • 3 standard reflections every 150 reflections intensity decay: 4.9%

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.212

  • S = 1.10

  • 4203 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4bi—H2bi⋯O2a 0.95 2.35 3.246 (8) 157
C4a—H2a⋯O2bi 0.95 2.35 3.259 (8) 160
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: WinAFC (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC; data reduction: WinAFC; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

6,8-Dichloro-3-formylchromone shows many biological functions such as protein tyrosine phosphatase inhibitory (Shim et al. 2003), tumor cell-cytotoxic, anti-HIV, anti-Helicobacter pylori, and urease inhibitory activities (Kawase et al. 2007). In addition, it is used as a starting material for the synthesis of biologically relevant molecules (Dückert et al. 2012).

The title compound, C10H4Cl2O3, crystallizes with two independent molecules in the asymmetric unit (Fig. 1). The mean deviations from the least-square planes for all atoms of molecule 1 and 2 are 0.0410 Å and 0.0449 Å, respectively. In addition, the largest deviations of molecule 1 and 2 are 0.1512 (17) Å for Cl1a and -0.0973 Å for H4b, respectively. This means that all atoms of each molecule are essentially coplanar.

In the crystal, the molecules 1 and 2 are linked to each other through intermolecular interactions of the Cl atoms at the 8-position with the O atoms of the formyl groups [Cl2a···O3bi; 3.033 (6) Å, Cl2bi···O3a; 3.044 (5) Å, C7a–Cl2a···O3bi = 160.4 (3)°, C7bi–Cl2bi···O3a =162.8 (3)°, C10a–O3a···Cl2bi = 138.7 (4)°, C10bi–O3bi···Cl2a = 139.6 (4)° (i): -x + 1, -y + 1, -z + 1], and the carbonyl O atoms at the 4-position with the C–H atoms at the 5-position. The short contacts and the geometries involved in the Cl atoms fall into halogen bonding (Auffinger et al. 2004). Due to these halogen and hydrogen bonds, the molecules form wavy bands along c axis, as shown in Fig. 2.

Halogen bonds have been found to occur in organic, inorganic, and biological systems, and have recently attracted much attention in medicinal chemistry, chemical biology, and supramolecular chemistry (Auffinger et al. 2004, Metrangolo et al. 2005, Wilcken et al. 2013). Our analysis suggests that the strong inhibitory activity of the title compound against urease may be attributable to the halogen bond observed in the crystal, because 3-formylchromones without any halogen atom at the 8-position in the literature do not show the urease inhibitory activity (Kawase et al. 2007).

Related literature top

For the biological activity of the title and related compounds, see: Shim et al. (2003); Kawase et al. (2007); Dückert et al. (2012). For related structures, see: Ishikawa et al. (2013a,b). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013).

Experimental top

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a 2-butanone solution of commercially available 6,8-dichloro-3-formylchromone at room temperature.

Refinement top

The C(sp2)-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model.

Computing details top

Data collection: WinAFC (Rigaku, 1999); cell refinement: WinAFC (Rigaku, 1999); data reduction: WinAFC (Rigaku, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the intermolecular interactions of the title compound, represented as dashed green lines for Cl···O and dashed magenta lines for C–H···O interactions.
6,8-Dichloro-4-oxochromene-3-carbaldehyde top
Crystal data top
C10H4Cl2O3Z = 4
Mr = 243.05F(000) = 488.00
Triclinic, P1Dx = 1.760 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.288 (8) ÅCell parameters from 23 reflections
b = 8.325 (7) Åθ = 15.2–17.4°
c = 13.706 (7) ŵ = 0.68 mm1
α = 96.55 (6)°T = 100 K
β = 92.23 (7)°Prismatic, colourless
γ = 101.98 (7)°0.42 × 0.22 × 0.08 mm
V = 917.2 (13) Å3
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.057
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 106
Tmin = 0.841, Tmax = 0.947k = 1010
5130 measured reflectionsl = 1717
4203 independent reflections3 standard reflections every 150 reflections
2596 reflections with F2 > 2σ(F2) intensity decay: 4.9%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.212H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0531P)2 + 6.620P]
where P = (Fo2 + 2Fc2)/3
4203 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.79 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C10H4Cl2O3γ = 101.98 (7)°
Mr = 243.05V = 917.2 (13) Å3
Triclinic, P1Z = 4
a = 8.288 (8) ÅMo Kα radiation
b = 8.325 (7) ŵ = 0.68 mm1
c = 13.706 (7) ÅT = 100 K
α = 96.55 (6)°0.42 × 0.22 × 0.08 mm
β = 92.23 (7)°
Data collection top
Rigaku AFC-7R
diffractometer
2596 reflections with F2 > 2σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.057
Tmin = 0.841, Tmax = 0.9473 standard reflections every 150 reflections
5130 measured reflections intensity decay: 4.9%
4203 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.212H-atom parameters constrained
S = 1.10Δρmax = 0.70 e Å3
4203 reflectionsΔρmin = 0.79 e Å3
271 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1a0.9284 (2)0.7180 (2)0.05206 (12)0.0275 (4)
Cl2a0.8997 (2)0.60177 (19)0.32529 (11)0.0243 (4)
Cl1b0.8654 (3)1.0637 (2)0.20783 (12)0.0293 (4)
Cl2b0.7665 (2)1.01839 (19)0.59010 (11)0.0246 (4)
O1a0.6255 (6)0.3339 (5)0.2521 (3)0.0218 (10)
O2a0.4506 (6)0.1743 (6)0.0336 (4)0.0277 (11)
O3a0.2398 (7)0.0767 (6)0.1869 (4)0.0319 (12)
O1b0.4940 (6)0.7493 (6)0.5162 (3)0.0219 (10)
O2b0.3559 (6)0.5491 (6)0.2305 (3)0.0291 (11)
O3b0.1021 (7)0.3424 (6)0.4522 (4)0.0326 (12)
C1a0.4980 (8)0.2042 (8)0.2288 (5)0.0221 (13)
C2a0.4342 (8)0.1454 (8)0.1358 (5)0.0197 (13)
C3a0.5023 (8)0.2255 (8)0.0520 (5)0.0217 (13)
C4a0.7126 (9)0.4638 (8)0.0063 (5)0.0242 (14)
C5a0.8382 (8)0.5956 (8)0.0344 (5)0.0201 (13)
C6a0.9020 (8)0.6399 (8)0.1321 (5)0.0202 (13)
C7a0.8290 (8)0.5497 (8)0.2026 (5)0.0197 (13)
C8a0.6945 (8)0.4171 (8)0.1770 (5)0.0202 (13)
C9a0.6370 (9)0.3695 (8)0.0784 (5)0.0207 (13)
C10a0.2954 (9)0.0026 (8)0.1204 (5)0.0250 (14)
C1b0.3630 (8)0.6197 (8)0.4918 (5)0.0220 (13)
C2b0.3130 (8)0.5479 (8)0.4003 (5)0.0217 (13)
C3b0.3958 (8)0.6127 (8)0.3161 (5)0.0214 (13)
C4b0.6216 (8)0.8361 (8)0.2689 (5)0.0220 (13)
C5b0.7526 (8)0.9654 (8)0.2961 (5)0.0227 (14)
C6b0.8016 (9)1.0234 (8)0.3958 (5)0.0234 (14)
C7b0.7127 (8)0.9495 (8)0.4674 (5)0.0217 (13)
C8b0.5792 (8)0.8170 (8)0.4411 (5)0.0188 (13)
C9b0.5333 (8)0.7557 (8)0.3414 (5)0.0190 (13)
C10b0.1768 (9)0.4034 (8)0.3852 (5)0.0238 (14)
H1a0.44910.14990.28110.0265*
H2a0.67550.43490.06110.0290*
H3a0.99330.73020.14930.0243*
H4a0.24840.04060.05550.0300*
H1b0.30240.57690.54400.0264*
H2b0.59040.80060.20120.0264*
H3b0.89451.11200.41310.0281*
H4b0.14400.35360.31960.0286*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1a0.0338 (9)0.0277 (9)0.0216 (8)0.0044 (7)0.0053 (7)0.0088 (6)
Cl2a0.0312 (9)0.0231 (8)0.0166 (7)0.0037 (7)0.0028 (6)0.0007 (6)
Cl1b0.0345 (10)0.0287 (9)0.0246 (8)0.0034 (8)0.0082 (7)0.0071 (7)
Cl2b0.0311 (9)0.0232 (8)0.0171 (7)0.0031 (7)0.0008 (6)0.0016 (6)
O1a0.034 (3)0.019 (3)0.012 (2)0.0034 (19)0.0043 (18)0.0014 (16)
O2a0.035 (3)0.032 (3)0.014 (3)0.005 (3)0.0023 (19)0.0005 (18)
O3a0.037 (3)0.030 (3)0.023 (3)0.005 (3)0.006 (2)0.002 (2)
O1b0.029 (3)0.021 (3)0.014 (2)0.0013 (19)0.0014 (18)0.0028 (17)
O2b0.035 (3)0.035 (3)0.014 (3)0.003 (3)0.0017 (19)0.0023 (19)
O3b0.036 (3)0.032 (3)0.025 (3)0.007 (3)0.002 (3)0.005 (2)
C1a0.025 (4)0.022 (4)0.020 (3)0.006 (3)0.001 (3)0.004 (3)
C2a0.020 (4)0.021 (3)0.018 (3)0.005 (3)0.003 (3)0.001 (3)
C3a0.026 (4)0.020 (3)0.019 (3)0.007 (3)0.001 (3)0.001 (3)
C4a0.033 (4)0.025 (4)0.013 (3)0.003 (3)0.003 (3)0.004 (3)
C5a0.028 (4)0.019 (3)0.017 (3)0.010 (3)0.007 (3)0.006 (3)
C6a0.025 (4)0.017 (3)0.019 (3)0.004 (3)0.003 (3)0.002 (3)
C7a0.025 (4)0.020 (3)0.014 (3)0.006 (3)0.001 (3)0.001 (3)
C8a0.024 (4)0.019 (3)0.017 (3)0.004 (3)0.002 (3)0.004 (3)
C9a0.030 (4)0.018 (3)0.015 (3)0.009 (3)0.002 (3)0.001 (3)
C10a0.030 (4)0.019 (3)0.024 (4)0.004 (3)0.002 (3)0.001 (3)
C1b0.027 (4)0.019 (3)0.021 (3)0.006 (3)0.004 (3)0.002 (3)
C2b0.023 (4)0.025 (4)0.018 (3)0.007 (3)0.001 (3)0.002 (3)
C3b0.028 (4)0.022 (4)0.017 (3)0.011 (3)0.000 (3)0.002 (3)
C4b0.027 (4)0.021 (3)0.018 (3)0.004 (3)0.004 (3)0.002 (3)
C5b0.028 (4)0.023 (4)0.022 (4)0.012 (3)0.006 (3)0.008 (3)
C6b0.027 (4)0.020 (4)0.022 (4)0.004 (3)0.003 (3)0.001 (3)
C7b0.026 (4)0.024 (4)0.016 (3)0.010 (3)0.000 (3)0.001 (3)
C8b0.023 (4)0.024 (4)0.014 (3)0.013 (3)0.005 (3)0.006 (3)
C9b0.020 (3)0.023 (3)0.017 (3)0.013 (3)0.000 (3)0.003 (3)
C10b0.031 (4)0.019 (3)0.020 (3)0.004 (3)0.004 (3)0.000 (3)
Geometric parameters (Å, º) top
Cl1a—C5a1.740 (7)C7a—C8a1.398 (8)
Cl2a—C7a1.735 (6)C8a—C9a1.401 (9)
Cl1b—C5b1.733 (7)C1b—C2b1.338 (9)
Cl2b—C7b1.723 (6)C2b—C3b1.464 (9)
O1a—C1a1.344 (7)C2b—C10b1.458 (9)
O1a—C8a1.381 (8)C3b—C9b1.465 (8)
O2a—C3a1.229 (8)C4b—C5b1.367 (9)
O3a—C10a1.210 (9)C4b—C9b1.405 (9)
O1b—C1b1.363 (7)C5b—C6b1.411 (9)
O1b—C8b1.379 (8)C6b—C7b1.376 (10)
O2b—C3b1.233 (7)C7b—C8b1.393 (8)
O3b—C10b1.227 (9)C8b—C9b1.412 (8)
C1a—C2a1.356 (9)C1a—H1a0.950
C2a—C3a1.467 (9)C4a—H2a0.950
C2a—C10a1.490 (9)C6a—H3a0.950
C3a—C9a1.459 (9)C10a—H4a0.950
C4a—C5a1.355 (9)C1b—H1b0.950
C4a—C9a1.416 (9)C4b—H2b0.950
C5a—C6a1.401 (9)C6b—H3b0.950
C6a—C7a1.373 (9)C10b—H4b0.950
C1a—O1a—C8a118.3 (5)C5b—C4b—C9b119.9 (6)
C1b—O1b—C8b118.1 (5)Cl1b—C5b—C4b120.6 (5)
O1a—C1a—C2a124.6 (6)Cl1b—C5b—C6b117.6 (5)
C1a—C2a—C3a120.4 (6)C4b—C5b—C6b121.9 (6)
C1a—C2a—C10a118.9 (6)C5b—C6b—C7b118.9 (6)
C3a—C2a—C10a120.7 (6)Cl2b—C7b—C6b120.4 (5)
O2a—C3a—C2a122.6 (6)Cl2b—C7b—C8b119.6 (5)
O2a—C3a—C9a122.9 (6)C6b—C7b—C8b120.0 (6)
C2a—C3a—C9a114.5 (5)O1b—C8b—C7b117.3 (5)
C5a—C4a—C9a119.4 (6)O1b—C8b—C9b121.6 (5)
Cl1a—C5a—C4a120.3 (5)C7b—C8b—C9b121.1 (6)
Cl1a—C5a—C6a117.0 (5)C3b—C9b—C4b121.9 (6)
C4a—C5a—C6a122.7 (6)C3b—C9b—C8b119.8 (6)
C5a—C6a—C7a118.3 (6)C4b—C9b—C8b118.2 (5)
Cl2a—C7a—C6a120.3 (5)O3b—C10b—C2b123.8 (6)
Cl2a—C7a—C8a119.0 (5)O1a—C1a—H1a117.700
C6a—C7a—C8a120.6 (6)C2a—C1a—H1a117.702
O1a—C8a—C7a117.4 (5)C5a—C4a—H2a120.314
O1a—C8a—C9a122.2 (5)C9a—C4a—H2a120.307
C7a—C8a—C9a120.4 (6)C5a—C6a—H3a120.850
C3a—C9a—C4a121.6 (6)C7a—C6a—H3a120.844
C3a—C9a—C8a119.9 (6)O3a—C10a—H4a118.481
C4a—C9a—C8a118.5 (6)C2a—C10a—H4a118.489
O3a—C10a—C2a123.0 (6)O1b—C1b—H1b117.382
O1b—C1b—C2b125.2 (6)C2b—C1b—H1b117.374
C1b—C2b—C3b120.2 (6)C5b—C4b—H2b120.070
C1b—C2b—C10b119.4 (6)C9b—C4b—H2b120.068
C3b—C2b—C10b120.3 (6)C5b—C6b—H3b120.568
O2b—C3b—C2b122.6 (6)C7b—C6b—H3b120.567
O2b—C3b—C9b122.5 (6)O3b—C10b—H4b118.104
C2b—C3b—C9b114.9 (5)C2b—C10b—H4b118.102
C1a—O1a—C8a—C7a178.8 (6)O1a—C8a—C9a—C3a1.4 (10)
C1a—O1a—C8a—C9a0.7 (9)O1a—C8a—C9a—C4a178.7 (6)
C8a—O1a—C1a—C2a1.9 (10)C7a—C8a—C9a—C3a176.7 (6)
C8a—O1a—C1a—H1a178.1C7a—C8a—C9a—C4a3.2 (10)
C1b—O1b—C8b—C7b180.0 (6)O1b—C1b—C2b—C3b2.9 (11)
C1b—O1b—C8b—C9b0.3 (9)O1b—C1b—C2b—C10b176.3 (6)
C8b—O1b—C1b—C2b2.5 (10)H1b—C1b—C2b—C3b177.1
C8b—O1b—C1b—H1b177.5H1b—C1b—C2b—C10b3.7
O1a—C1a—C2a—C3a1.0 (11)C1b—C2b—C3b—O2b178.7 (7)
O1a—C1a—C2a—C10a178.3 (6)C1b—C2b—C3b—C9b0.7 (10)
H1a—C1a—C2a—C3a179.0C1b—C2b—C10b—O3b0.7 (11)
H1a—C1a—C2a—C10a1.7C1b—C2b—C10b—H4b179.3
C1a—C2a—C3a—O2a178.4 (7)C3b—C2b—C10b—O3b179.9 (7)
C1a—C2a—C3a—C9a1.1 (10)C3b—C2b—C10b—H4b0.1
C1a—C2a—C10a—O3a2.4 (11)C10b—C2b—C3b—O2b0.4 (11)
C1a—C2a—C10a—H4a177.6C10b—C2b—C3b—C9b178.5 (6)
C3a—C2a—C10a—O3a176.9 (7)O2b—C3b—C9b—C4b4.2 (11)
C3a—C2a—C10a—H4a3.1O2b—C3b—C9b—C8b176.2 (6)
C10a—C2a—C3a—O2a0.9 (11)C2b—C3b—C9b—C4b177.7 (6)
C10a—C2a—C3a—C9a179.7 (6)C2b—C3b—C9b—C8b1.8 (9)
O2a—C3a—C9a—C4a2.6 (11)C5b—C4b—C9b—C3b177.7 (6)
O2a—C3a—C9a—C8a177.3 (6)C5b—C4b—C9b—C8b2.7 (10)
C2a—C3a—C9a—C4a178.0 (6)C9b—C4b—C5b—Cl1b178.8 (6)
C2a—C3a—C9a—C8a2.2 (10)C9b—C4b—C5b—C6b0.9 (11)
C5a—C4a—C9a—C3a179.4 (6)H2b—C4b—C5b—Cl1b1.2
C5a—C4a—C9a—C8a0.5 (11)H2b—C4b—C5b—C6b179.1
C9a—C4a—C5a—Cl1a177.7 (6)H2b—C4b—C9b—C3b2.3
C9a—C4a—C5a—C6a2.5 (11)H2b—C4b—C9b—C8b177.3
H2a—C4a—C5a—Cl1a2.3Cl1b—C5b—C6b—C7b179.0 (5)
H2a—C4a—C5a—C6a177.5Cl1b—C5b—C6b—H3b1.0
H2a—C4a—C9a—C3a0.6C4b—C5b—C6b—C7b1.3 (11)
H2a—C4a—C9a—C8a179.5C4b—C5b—C6b—H3b178.6
Cl1a—C5a—C6a—C7a177.5 (5)C5b—C6b—C7b—Cl2b179.1 (6)
Cl1a—C5a—C6a—H3a2.5C5b—C6b—C7b—C8b1.6 (11)
C4a—C5a—C6a—C7a2.7 (11)H3b—C6b—C7b—Cl2b0.9
C4a—C5a—C6a—H3a177.3H3b—C6b—C7b—C8b178.4
C5a—C6a—C7a—Cl2a178.6 (6)Cl2b—C7b—C8b—O1b1.3 (9)
C5a—C6a—C7a—C8a0.1 (10)Cl2b—C7b—C8b—C9b179.0 (5)
H3a—C6a—C7a—Cl2a1.4C6b—C7b—C8b—O1b179.3 (6)
H3a—C6a—C7a—C8a179.9C6b—C7b—C8b—C9b0.3 (11)
Cl2a—C7a—C8a—O1a0.3 (9)O1b—C8b—C9b—C3b2.4 (10)
Cl2a—C7a—C8a—C9a178.5 (5)O1b—C8b—C9b—C4b177.2 (6)
C6a—C7a—C8a—O1a178.8 (6)C7b—C8b—C9b—C3b178.0 (6)
C6a—C7a—C8a—C9a3.0 (10)C7b—C8b—C9b—C4b2.5 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4bi—H2bi···O2a0.952.353.246 (8)157
C4a—H2a···O2bi0.952.353.259 (8)160
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4bi—H2bi···O2a0.952.3493.246 (8)157
C4a—H2a···O2bi0.952.3493.259 (8)160
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

We acknowledge the University of Shizuoka for instrumental support.

References

First citationAuffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDückert, H., Pries, V., Khedkar, V., Menninger, S., Bruss, H., Bird, A. W., Maliga, Z., Brockmeyer, A., Janning, P., Hyman, A., Grimme, S., Schürmann, M., Preut, H., Hübel, K., Ziegler, S., Kumar, K. & Waldmann, H. (2012). Nat. Chem. Biol. 8, 179–184.  Google Scholar
First citationIshikawa, Y. & Motohashi, Y. (2013a). Acta Cryst. E69, o1225.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Motohashi, Y. (2013b). Acta Cryst. E69, o1226.  CSD CrossRef IUCr Journals Google Scholar
First citationKawase, M., Tanaka, T., Kan, H., Tani, S., Nakashima, H. & Sakagami, H. (2007). In Vivo, 21, 829–834.  Web of Science PubMed CAS Google Scholar
First citationMetrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShim, Y. S., Kim, K. C., Chi, D. Y., Lee, K. H. & Cho, H. (2003). Bioorg. Med. Chem. Lett. 13, 2561–2563.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds