organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-[(tert-but­­oxy­carbon­yl)amino]-3-(4-hy­dr­oxy­phen­yl)propano­ate

aCollege of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, People's Republic of China
*Correspondence e-mail: li96052122@126.com

(Received 6 July 2013; accepted 17 July 2013; online 3 August 2013)

In the title mol­ecule, C15H21NO5, the dihedral angle between the mean plane of the –N—C(=O)—O– group [maximum deviation = 0.002 (1) Å for the C atom] and the benzene ring is 82.2 (2)°. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds connect the mol­ecules, forming a two-dimensional network parallel to (001).

Related literature

For the biological activity of related compounds, see: Sykes et al. (1999[Sykes, B. M., Atwell, G. J., Hogg, A., Wilson, W. R., O'Connor, C. J. & Denny, W. A. (1999). J. Med. Chem. 42, 346-355.]).

[Scheme 1]

Experimental

Crystal data
  • C15H21NO5

  • Mr = 295.33

  • Orthorhombic, P 21 21 21

  • a = 8.7879 (8) Å

  • b = 9.4844 (9) Å

  • c = 18.9207 (18) Å

  • V = 1577.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.55 × 0.49 × 0.45 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.962, Tmax = 0.989

  • 9339 measured reflections

  • 3636 independent reflections

  • 3469 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.102

  • S = 1.03

  • 3636 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O3i 0.86 2.27 3.0583 (16) 153
O1—H1C⋯O5ii 0.82 1.92 2.7356 (15) 180
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])'; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Amide, ester and hydroxyl groups widely exist in many biologically active compounds or can be utilized in prodrugs (Sykes et al., 1999). Herein we report the crystal structure of the title compound. The dihedral angle between the mean-plane of the amide group (N1/C9/O5/O4) [a maximum deviation of 0.002 (1)° for C9) and the benzene ring (C1–C6) is 82.2 (2)°. In the crystal, O—H···O and N—H···O hydrogen bonds connect molecules forming a two-dimensional network parallel to (001) (Fig. 2).

Related literature top

For the biological activity of related compounds, see: Sykes et al. (1999).

Experimental top

The title compound (0.3 mmol, 88.5 mg) was dissolved in 10 ml of methanol solution. Colorless block-shaped crystals separated after 5 d.

Refinement top

H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.98 Å for CH(aromatic), CH3 and CH(methine) H atoms, respectively, or N—H = 0.86 Å and O—H = 0.82 Å with Uiso(H)= kUeq(parent C-atom, N), where k = 1.5 for CH3 and hydroxyl H atoms and k = 1.2 for all other H atoms. The absolute congiuration could not be determined from the X-ray data. In the absence of anamolous dispersion effects Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007)'; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular strcuture of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines. H atoms bonded to C atoms are not shown.
Methyl 2-[(tert-butoxycarbonyl)amino]-3-(4-hydroxyphenyl)propanoate top
Crystal data top
C15H21NO5F(000) = 632
Mr = 295.33Dx = 1.244 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9371 reflections
a = 8.7879 (8) Åθ = 1.0–27.6°
b = 9.4844 (9) ŵ = 0.09 mm1
c = 18.9207 (18) ÅT = 100 K
V = 1577.0 (3) Å3Block, colourless
Z = 40.55 × 0.49 × 0.45 mm
Data collection top
Bruker APEXII CCD
diffractometer
3636 independent reflections
Radiation source: fine-focus sealed tube3469 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ and ω scansθmax = 27.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 119
Tmin = 0.962, Tmax = 0.989k = 128
9339 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.1712P]
where P = (Fo2 + 2Fc2)/3
3636 reflections(Δ/σ)max = 0.008
190 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H21NO5V = 1577.0 (3) Å3
Mr = 295.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.7879 (8) ŵ = 0.09 mm1
b = 9.4844 (9) ÅT = 100 K
c = 18.9207 (18) Å0.55 × 0.49 × 0.45 mm
Data collection top
Bruker APEXII CCD
diffractometer
3636 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3469 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.989Rint = 0.072
9339 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.03Δρmax = 0.32 e Å3
3636 reflectionsΔρmin = 0.20 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.04196 (17)1.13511 (15)0.18071 (7)0.0216 (3)
H1A0.11231.14340.21720.026*
C20.03335 (16)1.01206 (15)0.14197 (7)0.0205 (3)
H2A0.09780.93760.15310.025*
C30.07017 (15)0.99675 (14)0.08627 (7)0.0172 (3)
C40.16908 (15)1.10800 (15)0.07254 (7)0.0192 (3)
H4A0.24091.09910.03670.023*
C50.16250 (16)1.23229 (15)0.11142 (7)0.0200 (3)
H5A0.22971.30550.10160.024*
C60.05528 (16)1.24689 (14)0.16488 (7)0.0184 (3)
C70.06700 (17)0.86702 (15)0.04022 (7)0.0188 (3)
H7A0.13360.88230.00010.023*
H7B0.03540.85470.02210.023*
C80.11575 (14)0.73007 (14)0.07772 (7)0.0166 (3)
H8A0.05730.72170.12160.020*
C90.33960 (15)0.64306 (14)0.13963 (7)0.0159 (3)
C100.59030 (15)0.56854 (15)0.18449 (7)0.0199 (3)
C110.5429 (2)0.5555 (2)0.26171 (8)0.0302 (3)
H11A0.54340.64710.28330.045*
H11B0.61310.49500.28610.045*
H11C0.44240.51610.26440.045*
C120.59178 (18)0.42703 (17)0.14678 (8)0.0280 (3)
H12A0.62250.44030.09850.042*
H12B0.49170.38660.14800.042*
H12C0.66210.36490.16990.042*
C130.74355 (17)0.64103 (19)0.17817 (9)0.0305 (3)
H13A0.77140.64800.12920.046*
H13B0.81900.58720.20300.046*
H13C0.73730.73380.19820.046*
C140.1469 (2)0.42237 (17)0.04498 (8)0.0292 (3)
H14A0.23700.37490.06090.044*
H14B0.09430.46180.08480.044*
H14C0.08160.35630.02130.044*
C150.07176 (16)0.60783 (14)0.02939 (7)0.0180 (3)
N10.27499 (13)0.73700 (12)0.09567 (6)0.0170 (2)
H1B0.33010.80290.07780.020*
O10.04029 (13)1.36708 (11)0.20398 (5)0.0247 (2)
H1C0.10901.42200.19390.037*
O20.18880 (11)0.53485 (11)0.00379 (5)0.0221 (2)
O30.05943 (13)0.58394 (11)0.01458 (6)0.0254 (2)
O40.48955 (11)0.66726 (10)0.14566 (5)0.0186 (2)
O50.27010 (12)0.54940 (10)0.16994 (5)0.0204 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0215 (7)0.0263 (7)0.0171 (6)0.0023 (6)0.0044 (5)0.0007 (5)
C20.0205 (6)0.0205 (6)0.0206 (6)0.0054 (5)0.0015 (5)0.0015 (5)
C30.0161 (6)0.0182 (6)0.0172 (6)0.0019 (5)0.0039 (5)0.0011 (5)
C40.0145 (6)0.0235 (7)0.0195 (6)0.0009 (5)0.0020 (5)0.0009 (5)
C50.0176 (6)0.0208 (6)0.0217 (6)0.0034 (5)0.0006 (5)0.0018 (5)
C60.0200 (6)0.0185 (6)0.0167 (5)0.0002 (5)0.0023 (5)0.0006 (5)
C70.0179 (6)0.0208 (6)0.0178 (6)0.0018 (5)0.0025 (5)0.0009 (5)
C80.0116 (6)0.0203 (6)0.0178 (6)0.0004 (5)0.0014 (5)0.0005 (5)
C90.0152 (6)0.0171 (6)0.0155 (5)0.0002 (5)0.0007 (5)0.0038 (5)
C100.0145 (6)0.0248 (7)0.0206 (6)0.0027 (5)0.0050 (5)0.0017 (5)
C110.0281 (8)0.0429 (9)0.0196 (6)0.0005 (7)0.0040 (6)0.0012 (6)
C120.0281 (8)0.0264 (7)0.0296 (7)0.0064 (6)0.0033 (6)0.0000 (6)
C130.0146 (7)0.0421 (9)0.0348 (8)0.0032 (6)0.0069 (6)0.0052 (7)
C140.0364 (9)0.0281 (7)0.0232 (7)0.0031 (7)0.0026 (6)0.0084 (6)
C150.0164 (6)0.0189 (6)0.0188 (6)0.0003 (5)0.0011 (5)0.0037 (5)
N10.0129 (5)0.0185 (5)0.0196 (5)0.0023 (4)0.0008 (4)0.0012 (4)
O10.0269 (5)0.0215 (5)0.0256 (5)0.0057 (4)0.0063 (4)0.0059 (4)
O20.0191 (5)0.0249 (5)0.0224 (5)0.0012 (4)0.0020 (4)0.0060 (4)
O30.0179 (5)0.0250 (5)0.0333 (5)0.0016 (4)0.0080 (4)0.0020 (4)
O40.0123 (4)0.0210 (5)0.0223 (4)0.0010 (3)0.0038 (4)0.0031 (4)
O50.0175 (5)0.0214 (5)0.0221 (4)0.0027 (4)0.0013 (4)0.0028 (4)
Geometric parameters (Å, º) top
C1—C21.380 (2)C10—O41.4834 (16)
C1—C61.3942 (19)C10—C131.517 (2)
C1—H1A0.9300C10—C121.520 (2)
C2—C31.3997 (19)C10—C111.524 (2)
C2—H2A0.9300C11—H11A0.9600
C3—C41.3915 (19)C11—H11B0.9600
C3—C71.5079 (18)C11—H11C0.9600
C4—C51.391 (2)C12—H12A0.9600
C4—H4A0.9300C12—H12B0.9600
C5—C61.3893 (19)C12—H12C0.9600
C5—H5A0.9300C13—H13A0.9600
C6—O11.3653 (16)C13—H13B0.9600
C7—C81.5408 (19)C13—H13C0.9600
C7—H7A0.9700C14—O21.4578 (17)
C7—H7B0.9700C14—H14A0.9600
C8—N11.4415 (16)C14—H14B0.9600
C8—C151.5265 (18)C14—H14C0.9600
C8—H8A0.9800C15—O31.2079 (18)
C9—O51.2210 (17)C15—O21.3309 (17)
C9—O41.3424 (16)N1—H1B0.8600
C9—N11.3447 (17)O1—H1C0.8200
C2—C1—C6119.69 (13)O4—C10—C11111.29 (12)
C2—C1—H1A120.2C13—C10—C11110.79 (12)
C6—C1—H1A120.2C12—C10—C11112.37 (13)
C1—C2—C3121.55 (13)C10—C11—H11A109.5
C1—C2—H2A119.2C10—C11—H11B109.5
C3—C2—H2A119.2H11A—C11—H11B109.5
C4—C3—C2117.90 (12)C10—C11—H11C109.5
C4—C3—C7121.49 (12)H11A—C11—H11C109.5
C2—C3—C7120.51 (12)H11B—C11—H11C109.5
C5—C4—C3121.20 (12)C10—C12—H12A109.5
C5—C4—H4A119.4C10—C12—H12B109.5
C3—C4—H4A119.4H12A—C12—H12B109.5
C6—C5—C4119.85 (12)C10—C12—H12C109.5
C6—C5—H5A120.1H12A—C12—H12C109.5
C4—C5—H5A120.1H12B—C12—H12C109.5
O1—C6—C5122.90 (12)C10—C13—H13A109.5
O1—C6—C1117.34 (12)C10—C13—H13B109.5
C5—C6—C1119.75 (12)H13A—C13—H13B109.5
C3—C7—C8114.62 (10)C10—C13—H13C109.5
C3—C7—H7A108.6H13A—C13—H13C109.5
C8—C7—H7A108.6H13B—C13—H13C109.5
C3—C7—H7B108.6O2—C14—H14A109.5
C8—C7—H7B108.6O2—C14—H14B109.5
H7A—C7—H7B107.6H14A—C14—H14B109.5
N1—C8—C15114.93 (11)O2—C14—H14C109.5
N1—C8—C7109.87 (11)H14A—C14—H14C109.5
C15—C8—C7107.10 (10)H14B—C14—H14C109.5
N1—C8—H8A108.2O3—C15—O2123.75 (13)
C15—C8—H8A108.2O3—C15—C8121.54 (12)
C7—C8—H8A108.2O2—C15—C8114.67 (11)
O5—C9—O4125.14 (13)C9—N1—C8121.70 (11)
O5—C9—N1124.15 (13)C9—N1—H1B119.2
O4—C9—N1110.71 (12)C8—N1—H1B119.2
O4—C10—C13101.82 (11)C6—O1—H1C109.5
O4—C10—C12109.26 (11)C15—O2—C14114.55 (12)
C13—C10—C12110.83 (13)C9—O4—C10121.33 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O3i0.862.273.0583 (16)153
O1—H1C···O5ii0.821.922.7356 (15)180
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O3i0.862.273.0583 (16)153
O1—H1C···O5ii0.821.922.7356 (15)180
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y+1, z.
 

Acknowledgements

The author thanks Henan University of Traditional Chinese Medicine for supporting this study.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSykes, B. M., Atwell, G. J., Hogg, A., Wilson, W. R., O'Connor, C. J. & Denny, W. A. (1999). J. Med. Chem. 42, 346-355.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds