organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bi­phenyl-2,4,4′,6-tetra­carb­­oxy­lic acid monohydrate

aCollege of Mechanical and Material Engineering, China Three Gorges University, Yichang 443002' , People's Republic of China
*Correspondence e-mail: junzhao08@126.com

(Received 11 July 2013; accepted 16 July 2013; online 3 August 2013)

In the title compound, C16H10O8·H2O, the dihedral angle between the benzene rings is 71.59 (8)°. The COOH groups make dihedral angles of 10.3 (2), 30.8 (2), 11.3 (2) and 42.3 (2)° with their attached rings. In the crystal, O—H⋯O hydrogen bonds link the components forming a three-dimensional supra­molecular network.

Related literature

For general background to the use of aromatic carboxyl­ates as building blocks for the construction of various architectures, see: Yaghi et al. (2003[Yaghi, O. M., O'Keeffe, M., Ockwing, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature, 423, 705-714.]); Zhao et al. (2012[Zhao, J., Li, D. S., Ke, X. J., Liu, B., Zou, K. & Hu, H. M. (2012). Dalton Trans. 41, 2560-2563.]).

[Scheme 1]

Experimental

Crystal data
  • C16H10O8·H2O

  • Mr = 348.26

  • Monoclinic, P 21 /c

  • a = 5.638 (4) Å

  • b = 16.160 (11) Å

  • c = 16.798 (12) Å

  • β = 92.524 (12)°

  • V = 1528.9 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 K

  • 0.21 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.974, Tmax = 0.979

  • 15936 measured reflections

  • 3516 independent reflections

  • 3070 reflections with I > 2σ(I)

  • Rint = 0.124

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.152

  • S = 1.02

  • 3516 reflections

  • 232 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.82 1.87 2.688 (2) 179
O4—H4B⋯O1Wii 0.82 1.91 2.725 (2) 177
O6—H6B⋯O8iii 0.82 1.82 2.636 (2) 178
O7—H7B⋯O1Wiv 0.82 1.87 2.688 (2) 176
O1W—H1WB⋯O1 0.85 (1) 2.09 (1) 2.818 (2) 143 (2)
O1W—H1WA⋯O5v 0.86 (1) 1.98 (1) 2.787 (2) 157 (2)
Symmetry codes: (i) -x, -y+2, -z; (ii) -x+1, -y+2, -z; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) x, y, z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Aromatic carboxylates have been proven to be effective building blocks for the design and construction of coordination polymers exhibiting remarkable polymeric structural motifs due to their rich coordination modes (Yaghi et al.,2003; Zhao et al., 2012). Recently, we attempted to synthesize an SmIII complex with the ligand in hydrothermal synthesis conditions. However the title organic salt was obtained, its structure is reported here.

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit comprises one bipheny1,2,4,4'6-tetracarboxylic acid and one solvent water molecule. The dihedral angle between the two benzene rings of the bipheny-1,2,4,4'6-tetracarboxylic acid is 71.59 (8)°. This may be the result of intermolecular O—H···O interactions and steric effects. In the crystal, extensive O—H···O hydrogen bonds invoving bipheny-1,2,4,4'6-tetracarboxylic acid molecules and water molecules link the components into a three-dimensional supramolecular network (Fig. 2).

Related literature top

For general background to the use of aromatic carboxylates as building blocks for the construction of various architectures, see: Yaghi et al. (2003); Zhao et al. (2012).

Experimental top

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. A mixture of bipheny1,2,4,4'6-tetracarboxylic acid (0.0370 g, 0.1 mmol), Sm(NO3)3.6H2O (0.0444 g, 0.1 mmol) and water (12 ml) were placed in a 23 ml Teflon-lined stainless steel reactor and heated at 393 K for 2 days, and then cooled to room temperature at 10 K h-1 to obtain colorless prism-shaped crystals suitable for X-ray analysis.

Refinement top

The H atoms bonded to C and carboxylate O atoms were positioned geometrically (C—H = 0.93, O—H = 0.82 Å) and allowed to ride on their parent atoms, with Uiso(H) value equal to 1.2Ueq(C) or 1.5Ueq(O). The H atoms bonded to water were located in a difference Fourier map and refined with O—H distance restraint of 0.85±0.01 Å, Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
Biphenyl-2,4,4',6-tetracarboxylic acid monohydrate top
Crystal data top
C16H10O8·H2OF(000) = 720
Mr = 348.26Dx = 1.513 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybcCell parameters from 4298 reflections
a = 5.638 (4) Åθ = 3.5–27.6°
b = 16.160 (11) ŵ = 0.13 mm1
c = 16.798 (12) ÅT = 296 K
β = 92.524 (12)°Prism, colorless
V = 1528.9 (19) Å30.21 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3516 independent reflections
Radiation source: fine-focus sealed tube3070 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.124
ϕ and ω scansθmax = 27.6°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.974, Tmax = 0.979k = 2020
15936 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0821P)2 + 0.3015P]
where P = (Fo2 + 2Fc2)/3
3516 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 0.30 e Å3
3 restraintsΔρmin = 0.26 e Å3
Crystal data top
C16H10O8·H2OV = 1528.9 (19) Å3
Mr = 348.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.638 (4) ŵ = 0.13 mm1
b = 16.160 (11) ÅT = 296 K
c = 16.798 (12) Å0.21 × 0.18 × 0.17 mm
β = 92.524 (12)°
Data collection top
Bruker SMART CCD
diffractometer
3516 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3070 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.979Rint = 0.124
15936 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0523 restraints
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.30 e Å3
3516 reflectionsΔρmin = 0.26 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0695 (3)0.89761 (9)0.06051 (8)0.0368 (3)
C20.0558 (3)0.89091 (9)0.02802 (8)0.0319 (3)
C30.1413 (3)0.85407 (10)0.06078 (8)0.0369 (3)
H3A0.26330.83330.02740.044*
C40.1565 (3)0.84821 (10)0.14271 (8)0.0368 (3)
H4A0.28850.82360.16410.044*
C50.0247 (2)0.87892 (8)0.19285 (7)0.0298 (3)
C60.2205 (3)0.91575 (10)0.15985 (8)0.0367 (3)
H6A0.34240.93650.19320.044*
C70.2365 (3)0.92190 (10)0.07773 (8)0.0366 (3)
H7A0.36820.94680.05630.044*
C80.0256 (2)0.87106 (8)0.28226 (7)0.0291 (3)
C90.1157 (2)0.92037 (8)0.33066 (7)0.0303 (3)
C100.1001 (3)0.91203 (9)0.41364 (8)0.0336 (3)
H10A0.20180.94200.44480.040*
C110.0664 (3)0.85925 (9)0.44958 (7)0.0336 (3)
C120.2109 (3)0.81166 (9)0.40302 (8)0.0332 (3)
H12A0.32540.77730.42700.040*
C130.1844 (2)0.81537 (8)0.32018 (7)0.0305 (3)
C140.2767 (2)0.98523 (9)0.29572 (8)0.0316 (3)
C150.0870 (3)0.85389 (10)0.53843 (8)0.0375 (3)
C160.3229 (3)0.75439 (9)0.27373 (8)0.0325 (3)
O1W0.24574 (18)0.88370 (7)0.26856 (6)0.0378 (3)
H1WB0.159 (3)0.8987 (13)0.2288 (8)0.057*
O10.0881 (3)0.87787 (9)0.10711 (6)0.0544 (4)
O20.2753 (2)0.92774 (10)0.08217 (7)0.0603 (4)
H2A0.26250.94340.12860.090*
O30.2393 (2)1.02125 (8)0.23453 (6)0.0467 (3)
O40.4623 (2)1.00041 (8)0.33852 (7)0.0479 (3)
H4B0.54661.03530.31590.072*
O50.0525 (3)0.88594 (9)0.58157 (6)0.0556 (4)
O60.2751 (3)0.81178 (9)0.56371 (6)0.0564 (4)
H6B0.26630.80190.61140.085*
O70.5391 (2)0.74324 (9)0.30234 (8)0.0545 (4)
H7B0.59910.70400.27960.082*
O80.2375 (2)0.71750 (8)0.21700 (7)0.0511 (3)
H1WA0.158 (3)0.8750 (16)0.3080 (9)0.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0543 (8)0.0375 (7)0.0190 (6)0.0055 (6)0.0060 (5)0.0034 (5)
C20.0443 (7)0.0347 (7)0.0171 (6)0.0052 (6)0.0058 (5)0.0024 (5)
C30.0435 (7)0.0483 (8)0.0189 (6)0.0039 (6)0.0000 (5)0.0002 (5)
C40.0403 (7)0.0500 (8)0.0205 (6)0.0055 (6)0.0056 (5)0.0026 (6)
C50.0403 (7)0.0347 (7)0.0147 (6)0.0033 (5)0.0041 (5)0.0009 (5)
C60.0408 (7)0.0492 (8)0.0201 (6)0.0070 (6)0.0010 (5)0.0016 (5)
C70.0421 (7)0.0463 (8)0.0219 (6)0.0034 (6)0.0065 (5)0.0053 (5)
C80.0387 (6)0.0347 (7)0.0142 (5)0.0040 (5)0.0038 (5)0.0009 (5)
C90.0413 (7)0.0324 (7)0.0173 (6)0.0012 (5)0.0031 (5)0.0014 (5)
C100.0469 (7)0.0364 (7)0.0179 (6)0.0033 (6)0.0069 (5)0.0003 (5)
C110.0519 (8)0.0349 (7)0.0144 (6)0.0012 (6)0.0042 (5)0.0004 (5)
C120.0479 (7)0.0346 (7)0.0173 (6)0.0039 (6)0.0019 (5)0.0018 (5)
C130.0423 (7)0.0328 (7)0.0167 (6)0.0003 (5)0.0048 (5)0.0009 (5)
C140.0396 (7)0.0357 (7)0.0196 (6)0.0014 (5)0.0019 (5)0.0008 (5)
C150.0583 (9)0.0386 (8)0.0157 (6)0.0041 (6)0.0040 (5)0.0024 (5)
C160.0468 (7)0.0336 (7)0.0177 (6)0.0005 (6)0.0059 (5)0.0008 (5)
O1W0.0384 (5)0.0507 (6)0.0245 (5)0.0005 (4)0.0056 (4)0.0009 (4)
O10.0762 (8)0.0685 (9)0.0182 (5)0.0146 (7)0.0019 (5)0.0023 (5)
O20.0637 (7)0.0971 (11)0.0207 (5)0.0110 (7)0.0100 (5)0.0130 (6)
O30.0637 (7)0.0513 (7)0.0259 (5)0.0128 (5)0.0106 (5)0.0143 (4)
O40.0489 (6)0.0598 (7)0.0362 (6)0.0160 (5)0.0131 (5)0.0146 (5)
O50.0808 (9)0.0689 (8)0.0179 (5)0.0253 (7)0.0126 (5)0.0035 (5)
O60.0769 (9)0.0744 (9)0.0178 (5)0.0256 (7)0.0019 (5)0.0063 (5)
O70.0483 (6)0.0621 (8)0.0528 (8)0.0122 (6)0.0002 (5)0.0241 (6)
O80.0701 (8)0.0563 (7)0.0265 (5)0.0137 (6)0.0031 (5)0.0156 (5)
Geometric parameters (Å, º) top
C1—O11.201 (2)C10—H10A0.9300
C1—O21.324 (2)C11—C121.387 (2)
C1—C21.496 (2)C11—C151.494 (2)
C2—C71.382 (2)C12—C131.394 (2)
C2—C31.395 (2)C12—H12A0.9300
C3—C41.386 (2)C13—C161.498 (2)
C3—H3A0.9300C14—O31.2079 (19)
C4—C51.387 (2)C14—O41.3181 (19)
C4—H4A0.9300C15—O51.210 (2)
C5—C61.391 (2)C15—O61.314 (2)
C5—C81.507 (2)C16—O81.2061 (19)
C6—C71.390 (2)C16—O71.303 (2)
C6—H6A0.9300O1W—H1WB0.845 (9)
C7—H7A0.9300O1W—H1WA0.856 (9)
C8—C131.403 (2)O2—H2A0.8200
C8—C91.4099 (19)O4—H4B0.8200
C9—C101.399 (2)O6—H6B0.8200
C9—C141.490 (2)O7—H7B0.8200
C10—C111.387 (2)
O1—C1—O2123.42 (14)C11—C10—C9120.31 (13)
O1—C1—C2124.02 (15)C11—C10—H10A119.8
O2—C1—C2112.56 (13)C9—C10—H10A119.8
C7—C2—C3119.67 (13)C12—C11—C10119.92 (13)
C7—C2—C1120.35 (13)C12—C11—C15120.62 (13)
C3—C2—C1119.97 (13)C10—C11—C15119.46 (13)
C4—C3—C2120.40 (13)C11—C12—C13119.94 (13)
C4—C3—H3A119.8C11—C12—H12A120.0
C2—C3—H3A119.8C13—C12—H12A120.0
C3—C4—C5120.16 (13)C12—C13—C8121.27 (12)
C3—C4—H4A119.9C12—C13—C16117.14 (12)
C5—C4—H4A119.9C8—C13—C16121.51 (12)
C4—C5—C6119.18 (13)O3—C14—O4123.16 (14)
C4—C5—C8123.02 (12)O3—C14—C9123.23 (13)
C6—C5—C8117.74 (12)O4—C14—C9113.60 (12)
C7—C6—C5120.91 (13)O5—C15—O6124.40 (14)
C7—C6—H6A119.5O5—C15—C11123.34 (14)
C5—C6—H6A119.5O6—C15—C11112.26 (13)
C2—C7—C6119.68 (13)O8—C16—O7123.88 (14)
C2—C7—H7A120.2O8—C16—C13122.53 (14)
C6—C7—H7A120.2O7—C16—C13113.54 (12)
C13—C8—C9117.81 (12)H1WB—O1W—H1WA108.9 (14)
C13—C8—C5118.72 (12)C1—O2—H2A109.5
C9—C8—C5123.37 (12)C14—O4—H4B109.5
C10—C9—C8120.50 (13)C15—O6—H6B109.5
C10—C9—C14118.09 (12)C16—O7—H7B109.5
C8—C9—C14121.35 (12)
O1—C1—C2—C7174.12 (16)C14—C9—C10—C11172.69 (13)
O2—C1—C2—C75.9 (2)C9—C10—C11—C122.9 (2)
O1—C1—C2—C35.1 (2)C9—C10—C11—C15177.47 (13)
O2—C1—C2—C3174.80 (15)C10—C11—C12—C131.6 (2)
C7—C2—C3—C40.2 (2)C15—C11—C12—C13177.95 (13)
C1—C2—C3—C4179.45 (14)C11—C12—C13—C84.8 (2)
C2—C3—C4—C50.1 (2)C11—C12—C13—C16172.06 (13)
C3—C4—C5—C60.2 (2)C9—C8—C13—C123.2 (2)
C3—C4—C5—C8177.01 (14)C5—C8—C13—C12173.20 (13)
C4—C5—C6—C70.1 (2)C9—C8—C13—C16173.50 (12)
C8—C5—C6—C7177.24 (13)C5—C8—C13—C1610.09 (19)
C3—C2—C7—C60.3 (2)C10—C9—C14—O3148.67 (15)
C1—C2—C7—C6179.54 (14)C8—C9—C14—O328.5 (2)
C5—C6—C7—C20.1 (2)C10—C9—C14—O430.44 (18)
C4—C5—C8—C13107.63 (17)C8—C9—C14—O4152.42 (13)
C6—C5—C8—C1369.63 (18)C12—C11—C15—O5170.64 (17)
C4—C5—C8—C976.17 (19)C10—C11—C15—O59.0 (2)
C6—C5—C8—C9106.56 (17)C12—C11—C15—O610.4 (2)
C13—C8—C9—C101.40 (19)C10—C11—C15—O6170.01 (15)
C5—C8—C9—C10177.63 (12)C12—C13—C16—O8136.42 (16)
C13—C8—C9—C14175.67 (12)C8—C13—C16—O840.4 (2)
C5—C8—C9—C140.6 (2)C12—C13—C16—O741.20 (19)
C8—C9—C10—C114.5 (2)C8—C13—C16—O7141.96 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.821.872.688 (2)179
O4—H4B···O1Wii0.821.912.725 (2)177
O6—H6B···O8iii0.821.822.636 (2)178
O7—H7B···O1Wiv0.821.872.688 (2)176
O1W—H1WB···O10.85 (1)2.09 (1)2.818 (2)143 (2)
O1W—H1WA···O5v0.86 (1)1.98 (1)2.787 (2)157 (2)
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+2, z; (iii) x, y+3/2, z1/2; (iv) x1, y+3/2, z1/2; (v) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.821.872.688 (2)178.9
O4—H4B···O1Wii0.821.912.725 (2)176.6
O6—H6B···O8iii0.821.822.636 (2)177.9
O7—H7B···O1Wiv0.821.872.688 (2)176.3
O1W—H1WB···O10.845 (9)2.093 (14)2.818 (2)143 (2)
O1W—H1WA···O5v0.856 (9)1.981 (12)2.787 (2)157 (2)
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+2, z; (iii) x, y+3/2, z1/2; (iv) x1, y+3/2, z1/2; (v) x, y, z+1.
 

Acknowledgements

The authors are grateful to the Natural Science Foundation of Hubei Province of China (grant No. 2010CDB10707) and the Project of Hubei Provincial Education Office (grant No. Q20101203).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., O'Keeffe, M., Ockwing, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature, 423, 705–714.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhao, J., Li, D. S., Ke, X. J., Liu, B., Zou, K. & Hu, H. M. (2012). Dalton Trans. 41, 2560–2563.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds