organic compounds
3-Amino-1H-pyrazol-2-ium trifluoroacetate
aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu
The 3H6N3+·C2F3O2−, contains two independent 3-aminopyrazolium cations and two independent trifluoroacetate anions. The F atoms of both anions were refined as disordered over two sets of sites, with common occupancy ratios of 0.639 (12):0.361 (12). In the crystal, the cations and anions are linked via N—H⋯O hydrogen bonds, forming chains along [100] and [010].
of the title salt, CRelated literature
For biological properties of pyrazole derivatives, see: Hall et al. (2008); Isloor et al. (2009); Patel et al. (2010); Samshuddin et al. (2010). For the chemistry of aminopyrazoles, see: Giuseppe et al. (1991). For the medicinal activity of pyrazoles, see: Vinogradov et al. (1994). For related structures, see: Dobson & Gerkin (1998); Foces-Foces et al. (1996); Hemamalini & Fun (2010); Thanigaimani et al. (2012). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995). For standard bond lengths, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
10.1107/S1600536813022204/lh5637sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813022204/lh5637Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813022204/lh5637Isup3.cml
A mixture of commercially available 3-aminopyrazole and trifluoroacetic acid (1:3 v/v) were stirred for 15 minutes at room temperature. X-ray quality crystals were formed on slow evaporation. (m.p.: 463-468 K).
All H atoms were located in a difference Fourier map and refined independently with isotropic displacement parameters [N—H = 0.84 (3)–0.95 (3) Å and C—H = 0.89 (3)–0.96 (3)Å].
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. All disorder components are shown. | |
Fig. 2. The crystal packing of the title compound, showing the hydrogen bonds (dashed lines) forming chains along [100] and [010]. H atoms not involved in hydrogen bonding and the minor component of disorder have been removed for clarity. |
C3H6N3+·C2F3O2− | F(000) = 800 |
Mr = 197.13 | Dx = 1.681 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.5418 Å |
a = 10.9292 (8) Å | Cell parameters from 2544 reflections |
b = 10.9332 (6) Å | θ = 3.4–72.4° |
c = 13.7002 (13) Å | µ = 1.58 mm−1 |
β = 107.939 (9)° | T = 173 K |
V = 1557.5 (2) Å3 | Irregular, colourless |
Z = 8 | 0.16 × 0.14 × 0.06 mm |
Agilent Xcalibur (Eos, Gemini) diffractometer | 3031 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 2343 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
Detector resolution: 16.0416 pixels mm-1 | θmax = 72.5°, θmin = 4.6° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) | k = −13→9 |
Tmin = 0.662, Tmax = 1.000 | l = −15→16 |
9227 measured reflections |
Refinement on F2 | Primary atom site location: inferred from neighbouring sites |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | All H-atom parameters refined |
wR(F2) = 0.136 | w = 1/[σ2(Fo2) + (0.0697P)2 + 0.4559P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
3031 reflections | Δρmax = 0.24 e Å−3 |
338 parameters | Δρmin = −0.23 e Å−3 |
0 restraints |
C3H6N3+·C2F3O2− | V = 1557.5 (2) Å3 |
Mr = 197.13 | Z = 8 |
Monoclinic, P21/n | Cu Kα radiation |
a = 10.9292 (8) Å | µ = 1.58 mm−1 |
b = 10.9332 (6) Å | T = 173 K |
c = 13.7002 (13) Å | 0.16 × 0.14 × 0.06 mm |
β = 107.939 (9)° |
Agilent Xcalibur (Eos, Gemini) diffractometer | 3031 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) | 2343 reflections with I > 2σ(I) |
Tmin = 0.662, Tmax = 1.000 | Rint = 0.030 |
9227 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.136 | All H-atom parameters refined |
S = 1.05 | Δρmax = 0.24 e Å−3 |
3031 reflections | Δρmin = −0.23 e Å−3 |
338 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1A | 0.56299 (19) | 0.93721 (18) | 0.25897 (17) | 0.0384 (5) | |
C2A | 0.4240 (2) | 0.7896 (2) | 0.25222 (19) | 0.0453 (5) | |
H2A | 0.351 (2) | 0.741 (2) | 0.2498 (18) | 0.050 (7)* | |
C3A | 0.4396 (2) | 0.9121 (2) | 0.26406 (18) | 0.0428 (5) | |
H3A | 0.379 (2) | 0.968 (2) | 0.2737 (18) | 0.050 (7)* | |
N1A | 0.6272 (2) | 1.04305 (18) | 0.2644 (2) | 0.0588 (6) | |
H1AA | 0.593 (3) | 1.108 (3) | 0.278 (2) | 0.057 (8)* | |
H1AB | 0.713 (3) | 1.041 (3) | 0.272 (2) | 0.064 (8)* | |
N2A | 0.61502 (17) | 0.83064 (15) | 0.24439 (15) | 0.0396 (4) | |
H2AA | 0.697 (3) | 0.815 (3) | 0.240 (2) | 0.062 (8)* | |
N3A | 0.52875 (17) | 0.73971 (17) | 0.23916 (16) | 0.0440 (5) | |
H3AA | 0.549 (3) | 0.657 (3) | 0.236 (2) | 0.067 (8)* | |
C1B | 0.28710 (18) | 0.17323 (18) | 0.48905 (16) | 0.0351 (4) | |
C2B | 0.1618 (2) | 0.3114 (2) | 0.5268 (2) | 0.0451 (5) | |
H2B | 0.122 (2) | 0.382 (2) | 0.5441 (19) | 0.050 (7)* | |
C3B | 0.2771 (2) | 0.2975 (2) | 0.50783 (18) | 0.0410 (5) | |
H3B | 0.336 (3) | 0.354 (3) | 0.508 (2) | 0.061 (8)* | |
N1B | 0.37852 (18) | 0.11030 (18) | 0.46300 (18) | 0.0472 (5) | |
H1BA | 0.450 (3) | 0.147 (2) | 0.476 (2) | 0.053 (7)* | |
H1BB | 0.375 (3) | 0.029 (3) | 0.472 (2) | 0.060 (8)* | |
N2B | 0.18060 (15) | 0.11865 (16) | 0.49623 (14) | 0.0372 (4) | |
H2BA | 0.164 (2) | 0.034 (3) | 0.4985 (19) | 0.058 (8)* | |
N3B | 0.10420 (17) | 0.20371 (16) | 0.52047 (16) | 0.0431 (4) | |
H3BA | 0.024 (3) | 0.184 (2) | 0.5222 (19) | 0.051 (7)* | |
C4A | 0.58112 (19) | 0.40965 (18) | 0.26078 (18) | 0.0409 (5) | |
C5A | 0.4574 (2) | 0.4142 (2) | 0.29303 (18) | 0.0422 (5) | |
F1A1 | 0.4274 (7) | 0.3086 (7) | 0.3249 (5) | 0.0619 (13) | 0.639 (12) |
F1A2 | 0.3945 (12) | 0.3073 (14) | 0.2818 (12) | 0.075 (3) | 0.361 (12) |
F2A1 | 0.3589 (8) | 0.4515 (8) | 0.2173 (6) | 0.0681 (17) | 0.639 (12) |
F2A2 | 0.3687 (14) | 0.4932 (10) | 0.2363 (13) | 0.067 (3) | 0.361 (12) |
F3A1 | 0.4720 (7) | 0.4955 (5) | 0.3687 (6) | 0.0651 (13) | 0.639 (12) |
F3A2 | 0.4800 (14) | 0.4446 (15) | 0.3885 (10) | 0.089 (4) | 0.361 (12) |
O1A | 0.63921 (15) | 0.31128 (13) | 0.27322 (15) | 0.0526 (5) | |
O2A | 0.60816 (16) | 0.50747 (14) | 0.22685 (17) | 0.0622 (5) | |
C4B | 0.23375 (19) | 0.8115 (2) | 0.48329 (18) | 0.0413 (5) | |
C5B | 0.2075 (2) | 0.6750 (2) | 0.45833 (19) | 0.0447 (5) | |
F1B1 | 0.1329 (4) | 0.6255 (3) | 0.5045 (6) | 0.077 (2) | 0.639 (12) |
F1B2 | 0.2028 (16) | 0.6103 (8) | 0.5367 (6) | 0.101 (4) | 0.361 (12) |
F2B1 | 0.3162 (3) | 0.6097 (3) | 0.4866 (5) | 0.0669 (13) | 0.639 (12) |
F2B2 | 0.2821 (9) | 0.6190 (6) | 0.4167 (12) | 0.089 (4) | 0.361 (12) |
F3B1 | 0.1581 (7) | 0.6629 (3) | 0.3597 (3) | 0.090 (2) | 0.639 (12) |
F3B2 | 0.0855 (7) | 0.6537 (6) | 0.3935 (8) | 0.079 (3) | 0.361 (12) |
O1B | 0.13834 (14) | 0.86991 (13) | 0.49109 (15) | 0.0530 (5) | |
O2B | 0.34134 (14) | 0.84860 (15) | 0.48973 (15) | 0.0538 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1A | 0.0374 (10) | 0.0299 (10) | 0.0508 (12) | 0.0050 (8) | 0.0177 (9) | 0.0021 (8) |
C2A | 0.0330 (11) | 0.0431 (13) | 0.0629 (15) | −0.0022 (9) | 0.0194 (10) | 0.0043 (10) |
C3A | 0.0351 (10) | 0.0382 (12) | 0.0595 (14) | 0.0072 (9) | 0.0208 (10) | 0.0022 (10) |
N1A | 0.0434 (11) | 0.0275 (10) | 0.113 (2) | 0.0008 (8) | 0.0358 (12) | −0.0044 (10) |
N2A | 0.0340 (9) | 0.0284 (9) | 0.0624 (12) | 0.0006 (7) | 0.0238 (8) | 0.0023 (8) |
N3A | 0.0385 (9) | 0.0281 (9) | 0.0701 (13) | −0.0011 (7) | 0.0239 (9) | 0.0017 (8) |
C1B | 0.0265 (9) | 0.0353 (11) | 0.0453 (11) | −0.0029 (7) | 0.0138 (8) | 0.0041 (8) |
C2B | 0.0464 (12) | 0.0299 (11) | 0.0663 (15) | −0.0029 (9) | 0.0280 (11) | −0.0050 (10) |
C3B | 0.0344 (10) | 0.0341 (11) | 0.0570 (13) | −0.0096 (8) | 0.0178 (9) | −0.0010 (9) |
N1B | 0.0302 (9) | 0.0350 (10) | 0.0823 (15) | −0.0018 (8) | 0.0259 (9) | 0.0024 (9) |
N2B | 0.0288 (8) | 0.0279 (9) | 0.0588 (11) | −0.0013 (6) | 0.0192 (7) | −0.0009 (7) |
N3B | 0.0345 (9) | 0.0330 (9) | 0.0709 (13) | −0.0024 (7) | 0.0298 (9) | −0.0039 (8) |
C4A | 0.0354 (10) | 0.0301 (11) | 0.0639 (14) | −0.0021 (8) | 0.0252 (10) | −0.0036 (9) |
C5A | 0.0363 (11) | 0.0397 (12) | 0.0549 (13) | −0.0014 (9) | 0.0201 (10) | 0.0010 (9) |
F1A1 | 0.053 (3) | 0.0486 (17) | 0.099 (4) | −0.004 (2) | 0.045 (3) | 0.015 (3) |
F1A2 | 0.046 (5) | 0.054 (3) | 0.135 (10) | −0.010 (4) | 0.044 (5) | 0.013 (7) |
F2A1 | 0.0376 (17) | 0.094 (5) | 0.071 (2) | 0.011 (3) | 0.0149 (16) | 0.019 (3) |
F2A2 | 0.038 (4) | 0.058 (5) | 0.113 (8) | 0.009 (4) | 0.035 (5) | 0.018 (4) |
F3A1 | 0.061 (2) | 0.067 (3) | 0.079 (4) | −0.001 (2) | 0.039 (2) | −0.027 (2) |
F3A2 | 0.070 (4) | 0.137 (11) | 0.069 (5) | −0.006 (7) | 0.034 (3) | −0.015 (7) |
O1A | 0.0452 (9) | 0.0277 (8) | 0.0968 (13) | 0.0022 (6) | 0.0394 (9) | 0.0030 (7) |
O2A | 0.0526 (10) | 0.0302 (8) | 0.1222 (16) | 0.0029 (7) | 0.0538 (11) | 0.0110 (9) |
C4B | 0.0309 (10) | 0.0341 (11) | 0.0634 (14) | 0.0007 (8) | 0.0211 (10) | 0.0020 (9) |
C5B | 0.0379 (11) | 0.0350 (12) | 0.0636 (15) | 0.0034 (9) | 0.0193 (10) | −0.0015 (10) |
F1B1 | 0.071 (2) | 0.0309 (14) | 0.151 (6) | −0.0066 (15) | 0.068 (3) | 0.005 (2) |
F1B2 | 0.174 (11) | 0.053 (4) | 0.069 (4) | −0.026 (6) | 0.025 (6) | 0.011 (3) |
F2B1 | 0.0527 (15) | 0.0417 (14) | 0.107 (3) | 0.0162 (11) | 0.0249 (19) | −0.0071 (17) |
F2B2 | 0.072 (6) | 0.059 (3) | 0.163 (11) | −0.002 (3) | 0.076 (7) | −0.038 (5) |
F3B1 | 0.113 (5) | 0.0658 (19) | 0.069 (2) | −0.017 (2) | −0.003 (2) | −0.0142 (14) |
F3B2 | 0.050 (3) | 0.060 (3) | 0.108 (6) | 0.002 (2) | −0.003 (3) | −0.033 (3) |
O1B | 0.0343 (8) | 0.0290 (8) | 0.1059 (14) | −0.0020 (6) | 0.0366 (8) | −0.0059 (8) |
O2B | 0.0310 (8) | 0.0434 (9) | 0.0937 (13) | −0.0013 (6) | 0.0290 (8) | 0.0035 (8) |
C1A—C3A | 1.399 (3) | N2B—H2BA | 0.95 (3) |
C1A—N1A | 1.344 (3) | N2B—N3B | 1.358 (2) |
C1A—N2A | 1.338 (3) | N3B—H3BA | 0.91 (3) |
C2A—H2A | 0.96 (3) | C4A—C5A | 1.547 (3) |
C2A—C3A | 1.354 (3) | C4A—O1A | 1.234 (2) |
C2A—N3A | 1.329 (3) | C4A—O2A | 1.238 (3) |
C3A—H3A | 0.94 (3) | C5A—F1A1 | 1.312 (8) |
N1A—H1AA | 0.85 (3) | C5A—F1A2 | 1.341 (14) |
N1A—H1AB | 0.91 (3) | C5A—F2A1 | 1.309 (8) |
N2A—H2AA | 0.94 (3) | C5A—F2A2 | 1.351 (15) |
N2A—N3A | 1.357 (2) | C5A—F3A1 | 1.337 (7) |
N3A—H3AA | 0.93 (3) | C5A—F3A2 | 1.298 (14) |
C1B—C3B | 1.393 (3) | C4B—C5B | 1.538 (3) |
C1B—N1B | 1.349 (3) | C4B—O1B | 1.255 (2) |
C1B—N2B | 1.338 (2) | C4B—O2B | 1.221 (2) |
C2B—H2B | 0.95 (3) | C5B—F1B1 | 1.295 (5) |
C2B—C3B | 1.372 (3) | C5B—F1B2 | 1.299 (8) |
C2B—N3B | 1.325 (3) | C5B—F2B1 | 1.337 (4) |
C3B—H3B | 0.89 (3) | C5B—F2B2 | 1.284 (6) |
N1B—H1BA | 0.84 (3) | C5B—F3B1 | 1.298 (4) |
N1B—H1BB | 0.90 (3) | C5B—F3B2 | 1.375 (6) |
N1A—C1A—C3A | 131.41 (19) | C2B—N3B—N2B | 108.01 (17) |
N2A—C1A—C3A | 107.28 (18) | C2B—N3B—H3BA | 130.5 (16) |
N2A—C1A—N1A | 121.30 (19) | N2B—N3B—H3BA | 121.1 (16) |
C3A—C2A—H2A | 129.0 (15) | O1A—C4A—C5A | 116.52 (18) |
N3A—C2A—H2A | 121.0 (15) | O1A—C4A—O2A | 129.27 (19) |
N3A—C2A—C3A | 109.9 (2) | O2A—C4A—C5A | 114.21 (17) |
C1A—C3A—H3A | 127.7 (15) | F1A1—C5A—C4A | 113.4 (4) |
C2A—C3A—C1A | 106.02 (19) | F1A1—C5A—F3A1 | 108.0 (4) |
C2A—C3A—H3A | 126.3 (15) | F1A2—C5A—C4A | 113.7 (7) |
C1A—N1A—H1AA | 118.4 (19) | F1A2—C5A—F2A2 | 103.9 (7) |
C1A—N1A—H1AB | 119.1 (18) | F2A1—C5A—C4A | 111.2 (4) |
H1AA—N1A—H1AB | 120 (3) | F2A1—C5A—F1A1 | 108.0 (4) |
C1A—N2A—H2AA | 128.8 (18) | F2A1—C5A—F3A1 | 106.2 (4) |
C1A—N2A—N3A | 109.00 (17) | F2A2—C5A—C4A | 113.1 (7) |
N3A—N2A—H2AA | 122.2 (18) | F3A1—C5A—C4A | 109.7 (3) |
C2A—N3A—N2A | 107.79 (18) | F3A2—C5A—C4A | 112.6 (6) |
C2A—N3A—H3AA | 129.0 (18) | F3A2—C5A—F1A2 | 105.7 (7) |
N2A—N3A—H3AA | 122.6 (18) | F3A2—C5A—F2A2 | 107.3 (8) |
N1B—C1B—C3B | 130.75 (19) | O1B—C4B—C5B | 114.19 (18) |
N2B—C1B—C3B | 107.58 (17) | O2B—C4B—C5B | 116.60 (19) |
N2B—C1B—N1B | 121.60 (19) | O2B—C4B—O1B | 129.2 (2) |
C3B—C2B—H2B | 131.0 (15) | F1B1—C5B—C4B | 113.5 (3) |
N3B—C2B—H2B | 119.5 (15) | F1B1—C5B—F2B1 | 105.8 (3) |
N3B—C2B—C3B | 109.57 (19) | F1B1—C5B—F3B1 | 110.1 (3) |
C1B—C3B—H3B | 125.5 (18) | F1B2—C5B—C4B | 113.3 (4) |
C2B—C3B—C1B | 105.75 (18) | F1B2—C5B—F3B2 | 99.4 (5) |
C2B—C3B—H3B | 128.7 (18) | F2B1—C5B—C4B | 111.4 (2) |
C1B—N1B—H1BA | 114.8 (18) | F2B2—C5B—C4B | 117.5 (3) |
C1B—N1B—H1BB | 113.5 (17) | F2B2—C5B—F1B2 | 107.4 (6) |
H1BA—N1B—H1BB | 121 (2) | F2B2—C5B—F3B2 | 104.7 (5) |
C1B—N2B—H2BA | 128.4 (16) | F3B1—C5B—C4B | 108.6 (2) |
C1B—N2B—N3B | 109.08 (17) | F3B1—C5B—F2B1 | 107.2 (3) |
N3B—N2B—H2BA | 121.5 (16) | F3B2—C5B—C4B | 112.7 (3) |
C1A—N2A—N3A—C2A | −1.0 (3) | O1A—C4A—C5A—F3A2 | 88.7 (8) |
C3A—C1A—N2A—N3A | 0.6 (3) | O2A—C4A—C5A—F1A1 | 177.4 (4) |
C3A—C2A—N3A—N2A | 1.1 (3) | O2A—C4A—C5A—F1A2 | 149.4 (7) |
N1A—C1A—C3A—C2A | 178.8 (3) | O2A—C4A—C5A—F2A1 | 55.5 (5) |
N1A—C1A—N2A—N3A | −178.3 (2) | O2A—C4A—C5A—F2A2 | 31.3 (7) |
N2A—C1A—C3A—C2A | 0.1 (3) | O2A—C4A—C5A—F3A1 | −61.7 (4) |
N3A—C2A—C3A—C1A | −0.7 (3) | O2A—C4A—C5A—F3A2 | −90.5 (8) |
C1B—N2B—N3B—C2B | 1.0 (3) | O1B—C4B—C5B—F1B1 | −38.2 (4) |
C3B—C1B—N2B—N3B | −0.9 (2) | O1B—C4B—C5B—F1B2 | −76.1 (9) |
C3B—C2B—N3B—N2B | −0.6 (3) | O1B—C4B—C5B—F2B1 | −157.5 (3) |
N1B—C1B—C3B—C2B | 177.5 (2) | O1B—C4B—C5B—F2B2 | 157.7 (8) |
N1B—C1B—N2B—N3B | −178.2 (2) | O1B—C4B—C5B—F3B1 | 84.6 (5) |
N2B—C1B—C3B—C2B | 0.5 (3) | O1B—C4B—C5B—F3B2 | 35.9 (7) |
N3B—C2B—C3B—C1B | 0.1 (3) | O2B—C4B—C5B—F1B1 | 143.9 (4) |
O1A—C4A—C5A—F1A1 | −3.4 (4) | O2B—C4B—C5B—F1B2 | 106.0 (9) |
O1A—C4A—C5A—F1A2 | −31.4 (7) | O2B—C4B—C5B—F2B1 | 24.5 (4) |
O1A—C4A—C5A—F2A1 | −125.3 (4) | O2B—C4B—C5B—F2B2 | −20.3 (9) |
O1A—C4A—C5A—F2A2 | −149.5 (6) | O2B—C4B—C5B—F3B1 | −93.3 (5) |
O1A—C4A—C5A—F3A1 | 117.5 (4) | O2B—C4B—C5B—F3B2 | −142.1 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1AA···O1Ai | 0.85 (3) | 2.28 (3) | 2.936 (3) | 134 (2) |
N1A—H1AB···O2Aii | 0.91 (3) | 1.99 (3) | 2.884 (3) | 169 (3) |
N2A—H2AA···O1Aii | 0.94 (3) | 1.85 (3) | 2.778 (2) | 171 (3) |
N3A—H3AA···O2A | 0.93 (3) | 1.78 (3) | 2.705 (2) | 172 (3) |
N1B—H1BA···O2Biii | 0.84 (3) | 2.18 (3) | 2.962 (2) | 153 (2) |
N1B—H1BB···O2Biv | 0.90 (3) | 2.03 (3) | 2.929 (3) | 173 (2) |
N2B—H2BA···O1Biv | 0.95 (3) | 1.81 (3) | 2.756 (2) | 174 (2) |
N3B—H3BA···O1Bv | 0.91 (3) | 1.82 (3) | 2.728 (2) | 171 (2) |
Symmetry codes: (i) x, y+1, z; (ii) −x+3/2, y+1/2, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) x, y−1, z; (v) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1AA···O1Ai | 0.85 (3) | 2.28 (3) | 2.936 (3) | 134 (2) |
N1A—H1AB···O2Aii | 0.91 (3) | 1.99 (3) | 2.884 (3) | 169 (3) |
N2A—H2AA···O1Aii | 0.94 (3) | 1.85 (3) | 2.778 (2) | 171 (3) |
N3A—H3AA···O2A | 0.93 (3) | 1.78 (3) | 2.705 (2) | 172 (3) |
N1B—H1BA···O2Biii | 0.84 (3) | 2.18 (3) | 2.962 (2) | 153 (2) |
N1B—H1BB···O2Biv | 0.90 (3) | 2.03 (3) | 2.929 (3) | 173 (2) |
N2B—H2BA···O1Biv | 0.95 (3) | 1.81 (3) | 2.756 (2) | 174 (2) |
N3B—H3BA···O1Bv | 0.91 (3) | 1.82 (3) | 2.728 (2) | 171 (2) |
Symmetry codes: (i) x, y+1, z; (ii) −x+3/2, y+1/2, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) x, y−1, z; (v) −x, −y+1, −z+1. |
Acknowledgements
TSY thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to do research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.
References
Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Dobson, A. J. & Gerkin, R. E. (1998). Acta Cryst. C54, 253–256. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Foces-Foces, C., Cativiela, C., Zurbano, M. M., Sobrados, I., Jagerovic, N. & Elguero, J. (1996). J. Chem. Crystallogr. 26, 579–584. CAS Google Scholar
Giuseppe, D., Salvatore, P. & Demetrio, R. (1991). Trends Heterocycl. Chem. 2, 97. Google Scholar
Hall, A., Billinton, A., Brown, S. H., Clayton, N. M., Chowdhury, A., Gerald, M. P., Goldsmith, G. P., Hayhow, T. G., Hurst, D. N., Kilford, I. R., Naylor, A. & Passingham, B. (2008). Bioorg. Med. Chem. Lett. 18, 3392–3399. Web of Science CrossRef PubMed CAS Google Scholar
Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o783–o784. Web of Science CrossRef CAS IUCr Journals Google Scholar
Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787. Web of Science CrossRef PubMed CAS Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Patel, C. K., Rami, C. S., Panigrahi, B. & Patel, C. N. (2010). J. Chem. Pharm. Res. 2, 73–78. CAS Google Scholar
Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o3319–o3320. CSD CrossRef CAS IUCr Journals Google Scholar
Vinogradov, V. M., Dalinger, I. L. & Shevelev, S. A. (1994). Khim. Farm. Zh. 28, 37–46. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrazoles are an important class of heterocyclic compounds and many pyrazole derivatives are reported to have a broad spectrum of biological properties, e.g. antibacterial and anti-inflammatory activities (Patel et al., 2010), anticancer (Hall et al., 2008), antimicrobial (Samshuddin et al., 2010), anti-inflammatory, antidepressant, anticonvulsant and anti-HIV properties (Isloor et al., 2009). The chemistry of aminopyrazoles has been extensively investigated in the past (Giuseppe et al., 1991). The considerable biological and medicinal activities of pyrazoles (Vinogradov et al., 1994) for which aminopyrazoles are preferred precursors, have stimulated our investigations.
The crystal structures of some related compounds, viz., 3-aminopyrazole-4-carboxylic acid (Dobson & Gerkin, 1998), 4-(3,5-dimethylpyrazol-1-yl)benzoic acid trifluoroacetate (Foces-Foces et al., 1996), 2-amino-5-methylpyridinium trifluoroacetate (Thanigaimani et al., 2012) and 2-amino-5-chloropyridinium trifluoroacetate (Hemamalini & Fun, 2010) have been reported. In view of the importance of the title compound this paper reports its crystal structure.
The asymmetric unit of the title compound consists of two crystallographically independent 3-aminopyrazolium cations (A and B) and two trifluoroacetate anions (A and B) (Fig. 1). Each 3-aminopyrazolium cation is planar, with a maximum deviation of 0.0006 (2) Å for atom N2A in cation A and 0.0005 (2) Å for atom N2B in cation B. In the cations, atoms N3A and N3B are protonated. The F atoms of both anions are disordered over two sets of positions, with occupancy ratios of 0.639 (12):0.361 (12). Bond lengths and are normal (Allen et al., 1987).
In the crystal packing (Fig. 2), the A/B type 3-aminopyrazolium cations interact with the carboxylate groups of the A/B type trifluoroacetate anions through N—H···O hydrogen bonds, forming R22(8), R24(8), R24(10), R44(16) and R44(18) (Bernstein et al., 1995) ring motifs.