organic compounds
2-Hydroxymethyl-1,3-dimethyl-1H-benzimidazol-3-ium iodide
aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000, Algeria, and bLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Constantine 1, 25000 Constantine, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
In the cation of the title compound, C10H13N2O+·I−, all non-H atoms, with the exception of the O atom, are essentially coplanar, with a maximum deviation of 0.04 (1) Å. In the crystal, the cations and anions are arranged in layers parallel to (100). The cations are connected to the anions via an O—H⋯I hydrogen bond and there are significant π–π stacking interactions between cation layers, with centroid–centroid distances in the range 3.606 (5)–3.630 (5) Å. A weak intramolecular C—H⋯O hydrogen bond is also observed. The crystal studied was an with refined components of 0.52 (5) and 0.48 (5).
Related literature
For applications of this class of compounds, see: Tonelli et al. (2010); Preston (1974); Hazelton et al. (1995); Kucukguzel et al. (2001); Islam et al. (1991); Li et al. (2003); Abboud et al. (2006). For our previous work on imidazole derivatives, see: Bahnous et al. (2012); Zama et al. (2013); Chelghoum et al. (2011).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).
Supporting information
10.1107/S1600536813022307/lh5638sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813022307/lh5638Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813022307/lh5638Isup3.cml
To a solution of 1-methyl-2-hydroxymethylbenzimidazole derivatives (10 mmol) in 20 ml of acetonitrile, was added 30 mmol of methyl iodide. The reaction mixture was refluxed. When the reaction was over (TLC), the solvent volume was reduced and the crude product was then filtered off and washed with cold acetonitrile. Suitable crystals for X-ray analysis were obtained by slow evaporation of a water solution of (I).
Approximate positions for all H atoms were first obtained from the difference
However, the H atoms were ultimately placed in idealized positions and treated as riding. The applied constraints were as follows: Caryl—Haryl = 0.93 Å; Cmethylene—Hmethylene = 0.97 Å; Cmethyl—Hmethyl = 0.96 Å and Chydroxy—Hhydroxy = 0.82 Å. The idealized methyl group was allowed to rotate about the C—C bond during the by application of the command AFIX 137 in SHELXL97 (Sheldrick, 2008). Uiso(Hmethyl or Hhydroxy) = 1.5Ueq(Cmethyl or Ohydroxy) or Uiso(Haryl or Hmethylene) = 1.2 Ueq(Caryl or Cmethylene). The crystal used is an with refined components 0.52 (5) and 0.48 (5).Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).C10H13N2O+·I− | F(000) = 592 |
Mr = 304.12 | Dx = 1.792 Mg m−3 |
Orthorhombic, P21nb | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P -2bc 2a | Cell parameters from 4274 reflections |
a = 6.5690 (7) Å | θ = 2.4–34.0° |
b = 10.1342 (10) Å | µ = 2.81 mm−1 |
c = 16.9357 (19) Å | T = 150 K |
V = 1127.4 (2) Å3 | Cube, colorless |
Z = 4 | 0.14 × 0.13 × 0.12 mm |
Bruker APEXII CCD diffractometer | 3243 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.02 |
CCD rotation images, thin slices scans | θmax = 34.2°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −9→10 |
Tmin = 0.647, Tmax = 0.747 | k = −16→15 |
10018 measured reflections | l = −26→19 |
4002 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.068 | w = 1/[σ2(Fo2) + (0.0263P)2 + 1.1204P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.003 |
4002 reflections | Δρmax = 1.34 e Å−3 |
131 parameters | Δρmin = −0.72 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1518 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.48 (5) |
C10H13N2O+·I− | V = 1127.4 (2) Å3 |
Mr = 304.12 | Z = 4 |
Orthorhombic, P21nb | Mo Kα radiation |
a = 6.5690 (7) Å | µ = 2.81 mm−1 |
b = 10.1342 (10) Å | T = 150 K |
c = 16.9357 (19) Å | 0.14 × 0.13 × 0.12 mm |
Bruker APEXII CCD diffractometer | 4002 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 3243 reflections with I > 2σ(I) |
Tmin = 0.647, Tmax = 0.747 | Rint = 0.02 |
10018 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.068 | Δρmax = 1.34 e Å−3 |
S = 1.05 | Δρmin = −0.72 e Å−3 |
4002 reflections | Absolute structure: Flack (1983), 1518 Friedel pairs |
131 parameters | Absolute structure parameter: 0.48 (5) |
1 restraint |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.0638 (4) | 0.0386 (3) | 0.05918 (17) | 0.0303 (8) | |
N1 | 0.9055 (15) | 0.3459 (2) | 0.11990 (13) | 0.0203 (5) | |
N2 | 0.9033 (12) | 0.2982 (2) | −0.00606 (12) | 0.0168 (5) | |
C1 | 0.893 (2) | 0.1018 (3) | 0.0837 (2) | 0.0284 (9) | |
C2 | 0.9025 (18) | 0.2473 (2) | 0.06700 (14) | 0.0192 (5) | |
C3 | 0.9014 (18) | 0.4343 (2) | −0.00046 (14) | 0.0165 (5) | |
C4 | 0.9022 (15) | 0.4649 (2) | 0.07953 (15) | 0.0179 (6) | |
C5 | 0.9046 (16) | 0.2214 (3) | −0.07961 (15) | 0.0226 (7) | |
C6 | 0.893 (2) | 0.3340 (3) | 0.20631 (18) | 0.0326 (11) | |
C7 | 0.901 (2) | 0.5947 (2) | 0.10657 (18) | 0.0239 (6) | |
C8 | 0.9001 (18) | 0.6923 (2) | 0.0495 (2) | 0.0277 (7) | |
C9 | 0.9004 (16) | 0.6620 (3) | −0.03096 (19) | 0.0255 (7) | |
C10 | 0.9028 (14) | 0.5327 (2) | −0.05820 (16) | 0.0218 (6) | |
I1 | 0.3999 (3) | 0.08238 (2) | 0.21526 (1) | 0.0330 (1) | |
H1 | 1.15370 | 0.04750 | 0.09236 | 0.0454* | |
H1A | 0.77590 | 0.06427 | 0.05712 | 0.0341* | |
H1B | 0.87606 | 0.08812 | 0.13999 | 0.0341* | |
H5A | 0.98363 | 0.14266 | −0.07223 | 0.0339* | |
H5B | 0.76764 | 0.19799 | −0.09352 | 0.0339* | |
H5C | 0.96352 | 0.27334 | −0.12114 | 0.0339* | |
H6A | 0.83795 | 0.24932 | 0.21993 | 0.0487* | |
H6B | 1.02677 | 0.34281 | 0.22861 | 0.0487* | |
H6C | 0.80648 | 0.40223 | 0.22679 | 0.0487* | |
H7 | 0.90136 | 0.61465 | 0.16017 | 0.0287* | |
H8 | 0.89907 | 0.78024 | 0.06512 | 0.0333* | |
H9 | 0.89902 | 0.73060 | −0.06745 | 0.0306* | |
H10 | 0.90517 | 0.51273 | −0.11180 | 0.0262* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0335 (14) | 0.0250 (11) | 0.0324 (14) | 0.0107 (11) | −0.0066 (12) | −0.0073 (10) |
N1 | 0.0282 (11) | 0.0161 (8) | 0.0166 (9) | −0.002 (3) | 0.000 (4) | −0.0013 (7) |
N2 | 0.0179 (9) | 0.0168 (8) | 0.0158 (9) | −0.011 (2) | 0.001 (3) | −0.0022 (7) |
C1 | 0.045 (2) | 0.0144 (10) | 0.0258 (13) | 0.009 (3) | 0.004 (4) | 0.0015 (9) |
C2 | 0.0215 (10) | 0.0150 (8) | 0.0210 (10) | 0.003 (3) | 0.003 (5) | −0.0004 (8) |
C3 | 0.0142 (8) | 0.0155 (9) | 0.0197 (10) | −0.001 (3) | 0.001 (5) | −0.0004 (7) |
C4 | 0.0179 (10) | 0.0152 (9) | 0.0206 (11) | 0.006 (3) | −0.003 (4) | −0.0020 (8) |
C5 | 0.0248 (13) | 0.0236 (11) | 0.0194 (11) | −0.010 (3) | −0.003 (4) | −0.0061 (9) |
C6 | 0.053 (3) | 0.0289 (12) | 0.0158 (12) | 0.003 (4) | −0.001 (4) | −0.0010 (9) |
C7 | 0.0250 (11) | 0.0174 (9) | 0.0292 (13) | 0.005 (4) | 0.001 (6) | −0.0065 (9) |
C8 | 0.0222 (11) | 0.0130 (9) | 0.0480 (17) | 0.000 (4) | −0.001 (6) | −0.0015 (10) |
C9 | 0.0183 (11) | 0.0205 (10) | 0.0377 (15) | −0.008 (3) | −0.003 (5) | 0.0089 (10) |
C10 | 0.0188 (10) | 0.0226 (10) | 0.0240 (12) | 0.002 (4) | −0.001 (5) | 0.0059 (9) |
I1 | 0.0493 (1) | 0.0319 (1) | 0.0177 (1) | −0.0001 (3) | −0.0001 (4) | −0.0009 (1) |
O1—C1 | 1.357 (11) | C9—C10 | 1.389 (4) |
O1—H1 | 0.8200 | C1—H1A | 0.9700 |
N1—C4 | 1.387 (3) | C1—H1B | 0.9700 |
N1—C6 | 1.471 (4) | C5—H5A | 0.9600 |
N1—C2 | 1.342 (3) | C5—H5B | 0.9600 |
N2—C3 | 1.383 (3) | C5—H5C | 0.9600 |
N2—C5 | 1.469 (3) | C6—H6A | 0.9600 |
N2—C2 | 1.341 (3) | C6—H6B | 0.9600 |
C1—C2 | 1.503 (4) | C6—H6C | 0.9600 |
C3—C10 | 1.397 (3) | C7—H7 | 0.9300 |
C3—C4 | 1.390 (3) | C8—H8 | 0.9300 |
C4—C7 | 1.393 (3) | C9—H9 | 0.9300 |
C7—C8 | 1.383 (4) | C10—H10 | 0.9300 |
C8—C9 | 1.397 (5) | ||
C1—O1—H1 | 109.00 | C2—C1—H1A | 109.00 |
C2—N1—C4 | 108.6 (2) | C2—C1—H1B | 109.00 |
C2—N1—C6 | 127.0 (2) | H1A—C1—H1B | 108.00 |
C4—N1—C6 | 124.1 (2) | N2—C5—H5A | 109.00 |
C2—N2—C3 | 108.69 (19) | N2—C5—H5B | 109.00 |
C2—N2—C5 | 125.4 (2) | N2—C5—H5C | 109.00 |
C3—N2—C5 | 125.9 (2) | H5A—C5—H5B | 109.00 |
O1—C1—C2 | 111.8 (8) | H5A—C5—H5C | 109.00 |
N1—C2—C1 | 127.3 (2) | H5B—C5—H5C | 109.00 |
N2—C2—C1 | 123.5 (2) | N1—C6—H6A | 109.00 |
N1—C2—N2 | 109.24 (19) | N1—C6—H6B | 109.00 |
N2—C3—C10 | 131.6 (2) | N1—C6—H6C | 109.00 |
C4—C3—C10 | 121.5 (2) | H6A—C6—H6B | 109.00 |
N2—C3—C4 | 106.82 (19) | H6A—C6—H6C | 110.00 |
N1—C4—C7 | 131.3 (2) | H6B—C6—H6C | 109.00 |
C3—C4—C7 | 122.1 (2) | C4—C7—H7 | 122.00 |
N1—C4—C3 | 106.66 (19) | C8—C7—H7 | 122.00 |
C4—C7—C8 | 116.5 (3) | C7—C8—H8 | 119.00 |
C7—C8—C9 | 121.6 (2) | C9—C8—H8 | 119.00 |
C8—C9—C10 | 122.1 (3) | C8—C9—H9 | 119.00 |
C3—C10—C9 | 116.2 (2) | C10—C9—H9 | 119.00 |
O1—C1—H1A | 109.00 | C3—C10—H10 | 122.00 |
O1—C1—H1B | 109.00 | C9—C10—H10 | 122.00 |
C2—N1—C4—C7 | 179.2 (12) | C3—N2—C2—C1 | 176.7 (11) |
C6—N1—C4—C7 | 4.8 (19) | O1—C1—C2—N2 | 66.5 (13) |
C4—N1—C2—N2 | 1.8 (13) | O1—C1—C2—N1 | −115.6 (11) |
C6—N1—C2—N2 | 175.9 (10) | N2—C3—C10—C9 | −179.9 (11) |
C4—N1—C2—C1 | −176.4 (11) | C4—C3—C10—C9 | −1.4 (15) |
C6—N1—C2—C1 | −2 (2) | C10—C3—C4—C7 | 1.1 (17) |
C6—N1—C4—C3 | −175.6 (10) | N2—C3—C4—N1 | 0.3 (12) |
C2—N1—C4—C3 | −1.2 (12) | N2—C3—C4—C7 | 179.9 (10) |
C5—N2—C2—N1 | 178.8 (9) | C10—C3—C4—N1 | −178.6 (10) |
C5—N2—C2—C1 | −3.0 (17) | N1—C4—C7—C8 | 179.2 (11) |
C3—N2—C2—N1 | −1.6 (13) | C3—C4—C7—C8 | −0.4 (17) |
C5—N2—C3—C4 | −179.6 (9) | C4—C7—C8—C9 | 0.0 (18) |
C2—N2—C3—C10 | 179.5 (12) | C7—C8—C9—C10 | −0.4 (18) |
C2—N2—C3—C4 | 0.8 (12) | C8—C9—C10—C3 | 1.1 (15) |
C5—N2—C3—C10 | −0.9 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···I1i | 0.8200 | 2.6600 | 3.473 (3) | 171.00 |
C5—H5A···O1 | 0.9600 | 2.5200 | 3.170 (5) | 125.00 |
Symmetry code: (i) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···I1i | 0.8200 | 2.6600 | 3.473 (3) | 171.00 |
C5—H5A···O1 | 0.9600 | 2.5200 | 3.170 (5) | 125.00 |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
We are grateful to all personal of the research squad `Synthèse de molécules à objectif thérapeutique' of PHYSYNOR Laboratory, Université Constantine 1, Algeria, for their assistance. Thanks are due to MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique – Algérie) for financial support.
References
Abboud, Y., Abourriche, A., Saffaj, T., Berrada, M., Charrouf, M., Bennamara, A., Cherqaoui, A. & Takky, D. (2006). Appl. Surf. Sci. 252, 8178–8184. Web of Science CrossRef CAS Google Scholar
Bahnous, M., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2012). Acta Cryst. E68, o1391. CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker. (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chelghoum, M., Bahnous, M., Bouacida, S., Roisnel, T. & Belfaitah, A. (2011). Acta Cryst. E67, o1890. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hazelton, J. C., Iddon, B., Suschitzky, H. & Woolley, L. H. (1995). Tetrahedron, 51, 10771–10794. CrossRef CAS Web of Science Google Scholar
Islam, I., Skibo, E. B., Dorr, R. T. & Alberts, D. S. (1991). J. Med. Chem. 34, 2954–2961. CrossRef PubMed CAS Web of Science Google Scholar
Kucukguzel, I., Kucukguzel, S. G., Rollas, S. & Kiraz, M. (2001). Bioorg. Med. Chem. Lett. 11, 1703–1707. Web of Science PubMed CAS Google Scholar
Li, Q. F., He, R. H., Jensen, J. O. & Bjerrum, N. J. (2003). Chem. Mater. 15, 4896–4915. Web of Science CrossRef CAS Google Scholar
Preston, P. N. (1974). Chem. Rev. 74, 279–314. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tonelli, M., Simone, M., Tasso, B., Novelli, F., Boido, V., Sparatore, F., Paglietti, G., Pricl, S., Giliberti, G., Blois, S., Ibba, C., Sanna, G., Loddo, R. & Colla, P. L. (2010). Bioorg. Med. Chem. 18, 2937–2953. Web of Science CrossRef CAS PubMed Google Scholar
Zama, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2013). Acta Cryst. E69, o837–o838. CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Benzimidazole, is isosteric with indole and purine nuclei, which are present in a number of fundamental cellular components and bioactive compounds. This structural similarity means the benzimidazole molecule is endowed with a variety of interesting biological properties (Kucukguzel, et al., 2001; Islam et al., 1991; Tonelli et al., 2010). Some of these compounds are marketed as antifungal, (Preston, 1974), antihelmintic, (Hazelton et al., 1995). Furthermore, benzimidazole derivatives can be also used as epoxy resin curing agents, catalysts, and metallic surface treatment agents (Li et al., 2003; Abboud et al., 2006). In previous work, we have reported the synthesis and structure determination of some new heterocyclic compounds bearing an imidazole unit (Bahnous et al., 2012; Zama et al., 2013; Chelghoum et al., 2011). Herein, we describe the synthesis and the structure determination of 1,3-dimethyl-2-hydroxymethylbenzimidazolium iodide (I) resulting from the quaternization reaction of 1-methyl-2-hydroxymethylbenzimidazole with methyl iodide.
The molecular structure of (I) is shown in Fig. 1. The asymmetric unit contains a 1,3-dimethyl-2-hydroxymethylbenzimidazolium cation and an iodide anion. All non-H atoms in the cation, with the exception of the O atom, are essentially co-planar with a maximum deviation of 0.04 (1)Å for N1. In the crystal, the cations and anions are arranged in layers parallel to (100) (Fig. 2). The cations are hydrogen bonded to the anions via an O—H···I hydrogen bond and there are significant π—π stacking interactions between cation layers with centroid-centroid distances in the range 3.606 (5) - 3.630 (5)Å.