organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1429-o1430

2-Hy­dr­oxy­methyl-1,3-di­methyl-1H-benzimidazol-3-ium iodide

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000, Algeria, and bLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Constantine 1, 25000 Constantine, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 21 July 2013; accepted 8 August 2013; online 14 August 2013)

In the cation of the title compound, C10H13N2O+·I, all non-H atoms, with the exception of the O atom, are essentially coplanar, with a maximum deviation of 0.04 (1) Å. In the crystal, the cations and anions are arranged in layers parallel to (100). The cations are connected to the anions via an O—H⋯I hydrogen bond and there are significant ππ stacking inter­actions between cation layers, with centroid–centroid distances in the range 3.606 (5)–3.630 (5) Å. A weak intra­molecular C—H⋯O hydrogen bond is also observed. The crystal studied was an inversion twin with refined components of 0.52 (5) and 0.48 (5).

Related literature

For applications of this class of compounds, see: Tonelli et al. (2010[Tonelli, M., Simone, M., Tasso, B., Novelli, F., Boido, V., Sparatore, F., Paglietti, G., Pricl, S., Giliberti, G., Blois, S., Ibba, C., Sanna, G., Loddo, R. & Colla, P. L. (2010). Bioorg. Med. Chem. 18, 2937-2953.]); Preston (1974[Preston, P. N. (1974). Chem. Rev. 74, 279-314.]); Hazelton et al. (1995[Hazelton, J. C., Iddon, B., Suschitzky, H. & Woolley, L. H. (1995). Tetrahedron, 51, 10771-10794.]); Kucukguzel et al. (2001[Kucukguzel, I., Kucukguzel, S. G., Rollas, S. & Kiraz, M. (2001). Bioorg. Med. Chem. Lett. 11, 1703-1707.]); Islam et al. (1991[Islam, I., Skibo, E. B., Dorr, R. T. & Alberts, D. S. (1991). J. Med. Chem. 34, 2954-2961.]); Li et al. (2003[Li, Q. F., He, R. H., Jensen, J. O. & Bjerrum, N. J. (2003). Chem. Mater. 15, 4896-4915.]); Abboud et al. (2006[Abboud, Y., Abourriche, A., Saffaj, T., Berrada, M., Charrouf, M., Bennamara, A., Cherqaoui, A. & Takky, D. (2006). Appl. Surf. Sci. 252, 8178-8184.]). For our previous work on imidazole derivatives, see: Bahnous et al. (2012[Bahnous, M., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2012). Acta Cryst. E68, o1391.]); Zama et al. (2013[Zama, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2013). Acta Cryst. E69, o837-o838.]); Chelghoum et al. (2011[Chelghoum, M., Bahnous, M., Bouacida, S., Roisnel, T. & Belfaitah, A. (2011). Acta Cryst. E67, o1890.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13N2O+·I

  • Mr = 304.12

  • Orthorhombic, P 21 n b

  • a = 6.5690 (7) Å

  • b = 10.1342 (10) Å

  • c = 16.9357 (19) Å

  • V = 1127.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.81 mm−1

  • T = 150 K

  • 0.14 × 0.13 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.647, Tmax = 0.747

  • 10018 measured reflections

  • 4002 independent reflections

  • 3243 reflections with I > 2σ(I)

  • Rint = 0.02

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.068

  • S = 1.05

  • 4002 reflections

  • 131 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.34 e Å−3

  • Δρmin = −0.72 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1518 Friedel pairs

  • Absolute structure parameter: 0.48 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯I1i 0.82 2.66 3.473 (3) 171
C5—H5A⋯O1 0.96 2.52 3.170 (5) 125
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2006[Bruker. (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker. (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CRYSCAL (T. Roisnel, local program).

Supporting information


Comment top

Benzimidazole, is isosteric with indole and purine nuclei, which are present in a number of fundamental cellular components and bioactive compounds. This structural similarity means the benzimidazole molecule is endowed with a variety of interesting biological properties (Kucukguzel, et al., 2001; Islam et al., 1991; Tonelli et al., 2010). Some of these compounds are marketed as antifungal, (Preston, 1974), antihelmintic, (Hazelton et al., 1995). Furthermore, benzimidazole derivatives can be also used as epoxy resin curing agents, catalysts, and metallic surface treatment agents (Li et al., 2003; Abboud et al., 2006). In previous work, we have reported the synthesis and structure determination of some new heterocyclic compounds bearing an imidazole unit (Bahnous et al., 2012; Zama et al., 2013; Chelghoum et al., 2011). Herein, we describe the synthesis and the structure determination of 1,3-dimethyl-2-hydroxymethylbenzimidazolium iodide (I) resulting from the quaternization reaction of 1-methyl-2-hydroxymethylbenzimidazole with methyl iodide.

The molecular structure of (I) is shown in Fig. 1. The asymmetric unit contains a 1,3-dimethyl-2-hydroxymethylbenzimidazolium cation and an iodide anion. All non-H atoms in the cation, with the exception of the O atom, are essentially co-planar with a maximum deviation of 0.04 (1)Å for N1. In the crystal, the cations and anions are arranged in layers parallel to (100) (Fig. 2). The cations are hydrogen bonded to the anions via an O—H···I hydrogen bond and there are significant ππ stacking interactions between cation layers with centroid-centroid distances in the range 3.606 (5) - 3.630 (5)Å.

Related literature top

For applications of this class of compounds, see: Tonelli et al. (2010); Preston (1974); Hazelton et al. (1995); Kucukguzel et al. (2001); Islam et al. (1991); Li et al. (2003); Abboud et al. (2006). For our previous work on imidazole derivatives, see: Bahnous et al. (2012); Zama et al. (2013); Chelghoum et al. (2011).

Experimental top

To a solution of 1-methyl-2-hydroxymethylbenzimidazole derivatives (10 mmol) in 20 ml of acetonitrile, was added 30 mmol of methyl iodide. The reaction mixture was refluxed. When the reaction was over (TLC), the solvent volume was reduced and the crude product was then filtered off and washed with cold acetonitrile. Suitable crystals for X-ray analysis were obtained by slow evaporation of a water solution of (I).

Refinement top

Approximate positions for all H atoms were first obtained from the difference electron density map. However, the H atoms were ultimately placed in idealized positions and treated as riding. The applied constraints were as follows: Caryl—Haryl = 0.93 Å; Cmethylene—Hmethylene = 0.97 Å; Cmethyl—Hmethyl = 0.96 Å and Chydroxy—Hhydroxy = 0.82 Å. The idealized methyl group was allowed to rotate about the C—C bond during the refinement by application of the command AFIX 137 in SHELXL97 (Sheldrick, 2008). Uiso(Hmethyl or Hhydroxy) = 1.5Ueq(Cmethyl or Ohydroxy) or Uiso(Haryl or Hmethylene) = 1.2 Ueq(Caryl or Cmethylene). The crystal used is an inversion twin with refined components 0.52 (5) and 0.48 (5).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Alternating layers of (I) viewed along the b axis showing hydrogen bonds as dashed lines.
2-Hydroxymethyl-1,3-dimethyl-1H-benzimidazol-3-ium iodide top
Crystal data top
C10H13N2O+·IF(000) = 592
Mr = 304.12Dx = 1.792 Mg m3
Orthorhombic, P21nbMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2bc 2aCell parameters from 4274 reflections
a = 6.5690 (7) Åθ = 2.4–34.0°
b = 10.1342 (10) ŵ = 2.81 mm1
c = 16.9357 (19) ÅT = 150 K
V = 1127.4 (2) Å3Cube, colorless
Z = 40.14 × 0.13 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
3243 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.02
CCD rotation images, thin slices scansθmax = 34.2°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 910
Tmin = 0.647, Tmax = 0.747k = 1615
10018 measured reflectionsl = 2619
4002 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0263P)2 + 1.1204P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
4002 reflectionsΔρmax = 1.34 e Å3
131 parametersΔρmin = 0.72 e Å3
1 restraintAbsolute structure: Flack (1983), 1518 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.48 (5)
Crystal data top
C10H13N2O+·IV = 1127.4 (2) Å3
Mr = 304.12Z = 4
Orthorhombic, P21nbMo Kα radiation
a = 6.5690 (7) ŵ = 2.81 mm1
b = 10.1342 (10) ÅT = 150 K
c = 16.9357 (19) Å0.14 × 0.13 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
4002 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3243 reflections with I > 2σ(I)
Tmin = 0.647, Tmax = 0.747Rint = 0.02
10018 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.068Δρmax = 1.34 e Å3
S = 1.05Δρmin = 0.72 e Å3
4002 reflectionsAbsolute structure: Flack (1983), 1518 Friedel pairs
131 parametersAbsolute structure parameter: 0.48 (5)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0638 (4)0.0386 (3)0.05918 (17)0.0303 (8)
N10.9055 (15)0.3459 (2)0.11990 (13)0.0203 (5)
N20.9033 (12)0.2982 (2)0.00606 (12)0.0168 (5)
C10.893 (2)0.1018 (3)0.0837 (2)0.0284 (9)
C20.9025 (18)0.2473 (2)0.06700 (14)0.0192 (5)
C30.9014 (18)0.4343 (2)0.00046 (14)0.0165 (5)
C40.9022 (15)0.4649 (2)0.07953 (15)0.0179 (6)
C50.9046 (16)0.2214 (3)0.07961 (15)0.0226 (7)
C60.893 (2)0.3340 (3)0.20631 (18)0.0326 (11)
C70.901 (2)0.5947 (2)0.10657 (18)0.0239 (6)
C80.9001 (18)0.6923 (2)0.0495 (2)0.0277 (7)
C90.9004 (16)0.6620 (3)0.03096 (19)0.0255 (7)
C100.9028 (14)0.5327 (2)0.05820 (16)0.0218 (6)
I10.3999 (3)0.08238 (2)0.21526 (1)0.0330 (1)
H11.153700.047500.092360.0454*
H1A0.775900.064270.057120.0341*
H1B0.876060.088120.139990.0341*
H5A0.983630.142660.072230.0339*
H5B0.767640.197990.093520.0339*
H5C0.963520.273340.121140.0339*
H6A0.837950.249320.219930.0487*
H6B1.026770.342810.228610.0487*
H6C0.806480.402230.226790.0487*
H70.901360.614650.160170.0287*
H80.899070.780240.065120.0333*
H90.899020.730600.067450.0306*
H100.905170.512730.111800.0262*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0335 (14)0.0250 (11)0.0324 (14)0.0107 (11)0.0066 (12)0.0073 (10)
N10.0282 (11)0.0161 (8)0.0166 (9)0.002 (3)0.000 (4)0.0013 (7)
N20.0179 (9)0.0168 (8)0.0158 (9)0.011 (2)0.001 (3)0.0022 (7)
C10.045 (2)0.0144 (10)0.0258 (13)0.009 (3)0.004 (4)0.0015 (9)
C20.0215 (10)0.0150 (8)0.0210 (10)0.003 (3)0.003 (5)0.0004 (8)
C30.0142 (8)0.0155 (9)0.0197 (10)0.001 (3)0.001 (5)0.0004 (7)
C40.0179 (10)0.0152 (9)0.0206 (11)0.006 (3)0.003 (4)0.0020 (8)
C50.0248 (13)0.0236 (11)0.0194 (11)0.010 (3)0.003 (4)0.0061 (9)
C60.053 (3)0.0289 (12)0.0158 (12)0.003 (4)0.001 (4)0.0010 (9)
C70.0250 (11)0.0174 (9)0.0292 (13)0.005 (4)0.001 (6)0.0065 (9)
C80.0222 (11)0.0130 (9)0.0480 (17)0.000 (4)0.001 (6)0.0015 (10)
C90.0183 (11)0.0205 (10)0.0377 (15)0.008 (3)0.003 (5)0.0089 (10)
C100.0188 (10)0.0226 (10)0.0240 (12)0.002 (4)0.001 (5)0.0059 (9)
I10.0493 (1)0.0319 (1)0.0177 (1)0.0001 (3)0.0001 (4)0.0009 (1)
Geometric parameters (Å, º) top
O1—C11.357 (11)C9—C101.389 (4)
O1—H10.8200C1—H1A0.9700
N1—C41.387 (3)C1—H1B0.9700
N1—C61.471 (4)C5—H5A0.9600
N1—C21.342 (3)C5—H5B0.9600
N2—C31.383 (3)C5—H5C0.9600
N2—C51.469 (3)C6—H6A0.9600
N2—C21.341 (3)C6—H6B0.9600
C1—C21.503 (4)C6—H6C0.9600
C3—C101.397 (3)C7—H70.9300
C3—C41.390 (3)C8—H80.9300
C4—C71.393 (3)C9—H90.9300
C7—C81.383 (4)C10—H100.9300
C8—C91.397 (5)
C1—O1—H1109.00C2—C1—H1A109.00
C2—N1—C4108.6 (2)C2—C1—H1B109.00
C2—N1—C6127.0 (2)H1A—C1—H1B108.00
C4—N1—C6124.1 (2)N2—C5—H5A109.00
C2—N2—C3108.69 (19)N2—C5—H5B109.00
C2—N2—C5125.4 (2)N2—C5—H5C109.00
C3—N2—C5125.9 (2)H5A—C5—H5B109.00
O1—C1—C2111.8 (8)H5A—C5—H5C109.00
N1—C2—C1127.3 (2)H5B—C5—H5C109.00
N2—C2—C1123.5 (2)N1—C6—H6A109.00
N1—C2—N2109.24 (19)N1—C6—H6B109.00
N2—C3—C10131.6 (2)N1—C6—H6C109.00
C4—C3—C10121.5 (2)H6A—C6—H6B109.00
N2—C3—C4106.82 (19)H6A—C6—H6C110.00
N1—C4—C7131.3 (2)H6B—C6—H6C109.00
C3—C4—C7122.1 (2)C4—C7—H7122.00
N1—C4—C3106.66 (19)C8—C7—H7122.00
C4—C7—C8116.5 (3)C7—C8—H8119.00
C7—C8—C9121.6 (2)C9—C8—H8119.00
C8—C9—C10122.1 (3)C8—C9—H9119.00
C3—C10—C9116.2 (2)C10—C9—H9119.00
O1—C1—H1A109.00C3—C10—H10122.00
O1—C1—H1B109.00C9—C10—H10122.00
C2—N1—C4—C7179.2 (12)C3—N2—C2—C1176.7 (11)
C6—N1—C4—C74.8 (19)O1—C1—C2—N266.5 (13)
C4—N1—C2—N21.8 (13)O1—C1—C2—N1115.6 (11)
C6—N1—C2—N2175.9 (10)N2—C3—C10—C9179.9 (11)
C4—N1—C2—C1176.4 (11)C4—C3—C10—C91.4 (15)
C6—N1—C2—C12 (2)C10—C3—C4—C71.1 (17)
C6—N1—C4—C3175.6 (10)N2—C3—C4—N10.3 (12)
C2—N1—C4—C31.2 (12)N2—C3—C4—C7179.9 (10)
C5—N2—C2—N1178.8 (9)C10—C3—C4—N1178.6 (10)
C5—N2—C2—C13.0 (17)N1—C4—C7—C8179.2 (11)
C3—N2—C2—N11.6 (13)C3—C4—C7—C80.4 (17)
C5—N2—C3—C4179.6 (9)C4—C7—C8—C90.0 (18)
C2—N2—C3—C10179.5 (12)C7—C8—C9—C100.4 (18)
C2—N2—C3—C40.8 (12)C8—C9—C10—C31.1 (15)
C5—N2—C3—C100.9 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···I1i0.82002.66003.473 (3)171.00
C5—H5A···O10.96002.52003.170 (5)125.00
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···I1i0.82002.66003.473 (3)171.00
C5—H5A···O10.96002.52003.170 (5)125.00
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We are grateful to all personal of the research squad `Synthèse de molécules à objectif thérapeutique' of PHYSYNOR Laboratory, Université Constantine 1, Algeria, for their assistance. Thanks are due to MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique – Algérie) for financial support.

References

First citationAbboud, Y., Abourriche, A., Saffaj, T., Berrada, M., Charrouf, M., Bennamara, A., Cherqaoui, A. & Takky, D. (2006). Appl. Surf. Sci. 252, 8178–8184.  Web of Science CrossRef CAS Google Scholar
First citationBahnous, M., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2012). Acta Cryst. E68, o1391.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker. (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChelghoum, M., Bahnous, M., Bouacida, S., Roisnel, T. & Belfaitah, A. (2011). Acta Cryst. E67, o1890.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHazelton, J. C., Iddon, B., Suschitzky, H. & Woolley, L. H. (1995). Tetrahedron, 51, 10771–10794.  CrossRef CAS Web of Science Google Scholar
First citationIslam, I., Skibo, E. B., Dorr, R. T. & Alberts, D. S. (1991). J. Med. Chem. 34, 2954–2961.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKucukguzel, I., Kucukguzel, S. G., Rollas, S. & Kiraz, M. (2001). Bioorg. Med. Chem. Lett. 11, 1703–1707.  Web of Science PubMed CAS Google Scholar
First citationLi, Q. F., He, R. H., Jensen, J. O. & Bjerrum, N. J. (2003). Chem. Mater. 15, 4896–4915.  Web of Science CrossRef CAS Google Scholar
First citationPreston, P. N. (1974). Chem. Rev. 74, 279–314.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTonelli, M., Simone, M., Tasso, B., Novelli, F., Boido, V., Sparatore, F., Paglietti, G., Pricl, S., Giliberti, G., Blois, S., Ibba, C., Sanna, G., Loddo, R. & Colla, P. L. (2010). Bioorg. Med. Chem. 18, 2937–2953.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZama, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2013). Acta Cryst. E69, o837–o838.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1429-o1430
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds