metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages m479-m480

{[Eth­yl(pyridin-4-ylmeth­yl)carbamo­thio­yl]sulfanido-κ2S,S′}(1,4,7,10,13,16-hexa­oxa­cyclo­octa­decane-κ6O)potassium

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, bChemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio 43202, USA, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 24 July 2013; accepted 1 August 2013; online 7 August 2013)

The asymmetric unit of title salt co-crystal, [K(C9H11N2S2)(C12H24O6)], comprises a K+ cation, an S2CN(Et)py anion and a 18-crown-6 mol­ecule. Substantial delocalization of π-electron density is evident in the di­thio­carbamate anion, as indicated by the equivalent C—S bond lengths. The K+ cation sits within an O6S2 donor set lying 0.7506 (6) Å out of the least-squares plane through the six O atoms (r.m.s. deviation = 0.1766 Å) of the 18-crown-6 mol­ecule with the two S atoms being on one side of this plane. Supra­molecular layers in the bc plane, sustained by C—H⋯O and C—H⋯π inter­actions, feature in the crystal packing.

Related literature

For the relevance of functionalized di­thio­carbamate ligands, see: Tan et al. (2013[Tan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N., Bt, A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046-3056.]). For Cu, Hg and Sn structures of S2CN(Et)py, see: Barba et al. (2012[Barba, V., Arenaza, B., Guerrero, J. & Reyes, R. (2012). Heteroat. Chem. 23, 422-428.]); Singh et al. (2011[Singh, V., Kumar, A., Prasad, R., Rajput, G., Drew, M. G. B. & Singh, N. (2011). CrystEngComm, 13, 6817-6826.]); Rajput et al. (2012[Rajput, G., Singh, V., Singh, S. K., Prasad, L. B., Drew, M. G. B. & Singh, N. (2012). Eur. J. Inorg. Chem. pp. 3885-3891.]). For a structure featuring a similar coordination geometry for K+, see: Harrington et al. (2004[Harrington, J. M., Jones, S. B., White, P. H. & Hancock, R. D. (2004). Inorg. Chem. 43, 4456-4463.]).

[Scheme 1]

Experimental

Crystal data
  • [K(C9H11N2S2)(C12H24O6)]

  • Mr = 514.73

  • Monoclinic, P 21 /c

  • a = 17.077 (3) Å

  • b = 17.816 (3) Å

  • c = 8.5107 (17) Å

  • β = 96.010 (3)°

  • V = 2575.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 98 K

  • 0.50 × 0.40 × 0.08 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.634, Tmax = 1.000

  • 13965 measured reflections

  • 5807 independent reflections

  • 5310 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.100

  • S = 1.09

  • 5807 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected bond lengths (Å)

K1—O1 2.7710 (12)
K1—O2 2.9414 (13)
K1—O3 2.8203 (13)
K1—O4 2.9712 (13)
K1—O5 2.8098 (13)
K1—O6 2.9788 (13)
K1—S1 3.1804 (7)
K1—S2 3.2393 (6)
S1—C1 1.7174 (17)
S2—C1 1.7103 (16)
N1—C1 1.362 (2)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N3,C3–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.95 2.51 3.311 (2) 143
C2—H2BCg1ii 0.99 2.87 3.4275 (18) 116
C12—H12BCg1iii 0.99 2.95 3.820 (2) 148
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The supramolecular chemistry of dithiocarbamate (-S2CNR2) compounds compared with their xanthate (-S2COR2) counterparts is rather limited owing to the strong chelating ability of the anion, which often precludes the possibility of forming intermolecular M···S interactions (Tan et al., 2013). One way of overcoming this is to functionalize the dithiocarbamate ligand, as in the title salt co-crystal, (I), where the dithiocarbamate ligand carries a pyridyl residue. Crystal structures containing this dithiocarbamate ligand have been reported in recent years (Barba et al., 2012; Singh et al., 2011; Rajput et al., 2012).

The asymmetric unit of (I), Fig. 1, comprises a K+ cation, an -S2CN(Et)py anion and a 18-crown-6 molecule. The dithiocarbamate ligand exhibits the expected features with equivalent C—S bond lengths and a short C—N bond, Table 1, consistent with a significant contribution of the (2-)S2C=N(+)(Et)py canonical form to the overall electronic structure. The ethyl and pyridyl substituents lie to either side of the S2CN plane, as is normally the case for dithiocarbamate anions.

The K+ cation is coordinated by the six oxygen atoms of the 18-crown-6 molecule and the two sulfur atoms of the dithiocarbamate anion, Table 1. The cation lies 0.7506 (6) Å out of the best plane through the six oxygen atoms (r.m.s. deviation = 0.1766 Å) in the direction of the sulfur atoms. The resulting O6S2 donor set has a precedent in the literature, namely in the structure of [K18-crown-6][Cd(SCN)3] (Harrington et al., 2004).

In the crystal packing, molecules assemble into supramolecular layers in the bc plane by a combination of pyridyl-C—H···O and methylene-C—H···π interactions, Table 2 and Fig. 2.

Related literature top

For the relevance of functionalized dithiocarbamate ligands, see: Tan et al. (2013). For Cu, Hg and Sn structures of -S2CN(Et)py, see: Barba et al. (2012); Singh et al. (2011); Rajput et al. (2012). For a structure featuring a similar coordination geometry for K+, see: Harrington et al. (2004).

Experimental top

K±S2CN(Et)(CH2py) (250 mg,1.00 mmol; prepared from 4-(ethylaminomethyl)pyridine, carbon disulfide and potassium hydroxide via the standard route) and 18-crown-6 (264 mg, 1.00 mmol) were dissolved in methanol (25 ml). The solution was filtered and left to evaporate slowly. As the solvent evaporated, the solution turned into yellow oil, from which crystals eventually appeared after about 10 days. Yield – quantitative. IR (cm-1): 2888(s), 1475(m), 1455(m), 1350(ms), 1069(s), 960(s), 836(s). NMR 1H: δ (p.p.m.) 8.43 (dd, Ar, 2.44 Hz, 1.80 Hz), 7.22 (d, Ar, 6.30 Hz), 5.46 (s, –CH2-py), 3.98 (q, Et—CH2, 6.88 Hz), 3.55 (s, 18-crown-6), 1.07 (t, Me, 6.89 Hz). M.pt: = 409–411 K (uncorrected).

Refinement top

C-bound H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). One reflection, i.e. (2 0 0), was omitted from the final refinement owing to poor agreement.

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structures of the components of (I), showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Unit-cell contents in (I) viewed in projection down the c axis. The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.
{[Ethyl(pyridin-4-ylmethyl)carbamothioyl]sulfanido-κ2S,S'}(1,4,7,10,13,16-hexaoxacyclooctadecane-κ6O)potassium top
Crystal data top
[K(C9H11N2S2)(C12H24O6)]F(000) = 1096
Mr = 514.73Dx = 1.328 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 16821 reflections
a = 17.077 (3) Åθ = 2.3–40.7°
b = 17.816 (3) ŵ = 0.41 mm1
c = 8.5107 (17) ÅT = 98 K
β = 96.010 (3)°Prism, colourless
V = 2575.1 (8) Å30.50 × 0.40 × 0.08 mm
Z = 4
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
5807 independent reflections
Radiation source: fine-focus sealed tube5310 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1822
Tmin = 0.634, Tmax = 1.000k = 1423
13965 measured reflectionsl = 911
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.8477P]
where P = (Fo2 + 2Fc2)/3
5807 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[K(C9H11N2S2)(C12H24O6)]V = 2575.1 (8) Å3
Mr = 514.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.077 (3) ŵ = 0.41 mm1
b = 17.816 (3) ÅT = 98 K
c = 8.5107 (17) Å0.50 × 0.40 × 0.08 mm
β = 96.010 (3)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
5807 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5310 reflections with I > 2σ(I)
Tmin = 0.634, Tmax = 1.000Rint = 0.034
13965 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.09Δρmax = 0.54 e Å3
5807 reflectionsΔρmin = 0.26 e Å3
290 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.24561 (2)0.587841 (19)0.53186 (4)0.01748 (9)
S10.15616 (3)0.44193 (3)0.39265 (6)0.02666 (11)
S20.32453 (2)0.45749 (2)0.33489 (4)0.01782 (10)
O10.34937 (7)0.56053 (7)0.79834 (13)0.0194 (2)
O20.41075 (7)0.63733 (7)0.55515 (13)0.0207 (2)
O30.30075 (7)0.68129 (7)0.29964 (14)0.0233 (3)
O40.13744 (7)0.68803 (7)0.33222 (14)0.0243 (3)
O50.08784 (7)0.61018 (7)0.58646 (14)0.0242 (3)
O60.19263 (7)0.57671 (7)0.85357 (13)0.0220 (2)
N10.22952 (8)0.34829 (8)0.21384 (16)0.0188 (3)
N20.41879 (10)0.13141 (9)0.35162 (18)0.0261 (3)
C10.23661 (9)0.41094 (9)0.30594 (18)0.0172 (3)
C20.29360 (10)0.32110 (9)0.12539 (18)0.0198 (3)
H2A0.33160.36240.11530.024*
H2B0.27140.30630.01770.024*
C30.33654 (10)0.25475 (9)0.20519 (18)0.0193 (3)
C40.39809 (10)0.26495 (10)0.32451 (19)0.0215 (3)
H40.41330.31410.35880.026*
C50.43679 (10)0.20272 (10)0.3926 (2)0.0250 (4)
H50.47870.21100.47330.030*
C60.35984 (11)0.12247 (10)0.2361 (2)0.0259 (4)
H60.34600.07280.20380.031*
C70.31778 (11)0.18124 (10)0.1607 (2)0.0240 (3)
H70.27660.17130.07950.029*
C80.15514 (10)0.30749 (10)0.1812 (2)0.0243 (4)
H8A0.12490.31130.27400.029*
H8B0.16640.25380.16430.029*
C90.10550 (12)0.33806 (12)0.0364 (2)0.0329 (4)
H9A0.05660.30900.01790.049*
H9B0.13500.33400.05600.049*
H9C0.09290.39090.05390.049*
C100.43213 (10)0.57113 (10)0.7992 (2)0.0222 (3)
H10A0.46090.52900.85510.027*
H10B0.44840.61840.85450.027*
C110.45080 (10)0.57442 (9)0.6314 (2)0.0213 (3)
H11A0.50830.57980.62830.026*
H11B0.43360.52750.57580.026*
C120.43101 (10)0.64712 (10)0.3982 (2)0.0234 (3)
H12A0.42280.59960.33840.028*
H12B0.48710.66140.40060.028*
C130.37967 (11)0.70785 (10)0.3196 (2)0.0255 (4)
H13A0.38320.75370.38580.031*
H13B0.39730.72050.21570.031*
C140.24825 (11)0.73107 (11)0.2105 (2)0.0273 (4)
H14A0.26810.74250.10800.033*
H14B0.24390.77870.26880.033*
C150.16952 (11)0.69396 (12)0.1837 (2)0.0288 (4)
H15A0.13390.72400.10890.035*
H15B0.17500.64340.13780.035*
C160.06537 (11)0.64719 (12)0.3188 (2)0.0304 (4)
H16A0.07460.59480.28650.037*
H16B0.02720.67050.23780.037*
C170.03337 (10)0.64813 (11)0.4759 (2)0.0292 (4)
H17A0.02630.70050.51050.035*
H17B0.01840.62270.46830.035*
C180.06301 (10)0.60856 (11)0.7410 (2)0.0269 (4)
H18A0.00680.59420.73560.032*
H18B0.06930.65880.79040.032*
C190.11281 (11)0.55225 (11)0.8369 (2)0.0275 (4)
H19A0.09390.54680.94240.033*
H19B0.10870.50270.78380.033*
C200.24280 (11)0.52364 (11)0.9397 (2)0.0277 (4)
H20A0.23980.47470.88410.033*
H20B0.22560.51621.04610.033*
C210.32592 (11)0.55234 (11)0.95408 (19)0.0260 (4)
H21A0.32910.60131.00930.031*
H21B0.36130.51661.01580.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.01821 (17)0.01634 (17)0.01786 (17)0.00049 (12)0.00177 (12)0.00050 (11)
S10.0179 (2)0.0253 (2)0.0378 (3)0.00251 (16)0.00775 (17)0.01033 (18)
S20.01652 (19)0.01639 (19)0.02050 (19)0.00146 (14)0.00174 (14)0.00132 (13)
O10.0181 (6)0.0223 (6)0.0176 (5)0.0003 (5)0.0003 (4)0.0013 (4)
O20.0209 (6)0.0199 (6)0.0221 (6)0.0013 (5)0.0053 (4)0.0009 (4)
O30.0239 (6)0.0211 (6)0.0249 (6)0.0006 (5)0.0027 (5)0.0061 (5)
O40.0247 (6)0.0270 (7)0.0211 (6)0.0009 (5)0.0016 (5)0.0019 (5)
O50.0196 (6)0.0303 (7)0.0229 (6)0.0061 (5)0.0036 (4)0.0017 (5)
O60.0215 (6)0.0226 (6)0.0222 (6)0.0006 (5)0.0030 (4)0.0052 (4)
N10.0196 (7)0.0170 (7)0.0198 (6)0.0012 (5)0.0017 (5)0.0016 (5)
N20.0321 (8)0.0197 (7)0.0282 (8)0.0049 (6)0.0105 (6)0.0018 (6)
C10.0183 (7)0.0159 (7)0.0171 (7)0.0007 (6)0.0001 (5)0.0023 (5)
C20.0246 (8)0.0183 (8)0.0170 (7)0.0009 (6)0.0041 (6)0.0008 (6)
C30.0232 (8)0.0170 (8)0.0188 (7)0.0012 (6)0.0073 (6)0.0012 (6)
C40.0234 (8)0.0176 (8)0.0241 (8)0.0013 (6)0.0054 (6)0.0014 (6)
C50.0247 (9)0.0254 (9)0.0249 (8)0.0039 (7)0.0033 (6)0.0013 (7)
C60.0374 (10)0.0147 (8)0.0273 (9)0.0002 (7)0.0113 (7)0.0023 (6)
C70.0321 (9)0.0199 (8)0.0204 (8)0.0009 (7)0.0051 (6)0.0038 (6)
C80.0252 (9)0.0182 (8)0.0293 (9)0.0057 (7)0.0011 (7)0.0029 (6)
C90.0279 (10)0.0348 (10)0.0341 (10)0.0052 (8)0.0062 (7)0.0040 (8)
C100.0194 (8)0.0196 (8)0.0264 (8)0.0001 (6)0.0039 (6)0.0002 (6)
C110.0151 (7)0.0185 (8)0.0300 (8)0.0004 (6)0.0011 (6)0.0014 (6)
C120.0210 (8)0.0270 (9)0.0232 (8)0.0029 (7)0.0077 (6)0.0008 (7)
C130.0283 (9)0.0247 (9)0.0244 (8)0.0068 (7)0.0072 (7)0.0027 (7)
C140.0361 (10)0.0241 (9)0.0224 (8)0.0067 (8)0.0070 (7)0.0075 (7)
C150.0316 (9)0.0367 (10)0.0178 (8)0.0080 (8)0.0004 (7)0.0033 (7)
C160.0266 (9)0.0347 (10)0.0279 (9)0.0007 (8)0.0074 (7)0.0045 (7)
C170.0167 (8)0.0321 (10)0.0378 (10)0.0019 (7)0.0007 (7)0.0050 (8)
C180.0199 (8)0.0340 (10)0.0279 (9)0.0010 (7)0.0079 (6)0.0011 (7)
C190.0255 (9)0.0325 (10)0.0257 (9)0.0066 (8)0.0080 (7)0.0035 (7)
C200.0320 (10)0.0272 (9)0.0250 (8)0.0062 (8)0.0080 (7)0.0110 (7)
C210.0298 (9)0.0309 (9)0.0172 (8)0.0068 (8)0.0016 (6)0.0041 (6)
Geometric parameters (Å, º) top
K1—O12.7710 (12)C7—H70.9500
K1—O22.9414 (13)C8—C91.522 (3)
K1—O32.8203 (13)C8—H8A0.9900
K1—O42.9712 (13)C8—H8B0.9900
K1—O52.8098 (13)C9—H9A0.9800
K1—O62.9788 (13)C9—H9B0.9800
K1—S13.1804 (7)C9—H9C0.9800
K1—S23.2393 (6)C10—C111.497 (2)
S1—C11.7174 (17)C10—H10A0.9900
S2—C11.7103 (16)C10—H10B0.9900
O1—C101.425 (2)C11—H11A0.9900
O1—C211.432 (2)C11—H11B0.9900
O2—C121.425 (2)C12—C131.505 (3)
O2—C111.433 (2)C12—H12A0.9900
O3—C131.422 (2)C12—H12B0.9900
O3—C141.422 (2)C13—H13A0.9900
O4—C161.424 (2)C13—H13B0.9900
O4—C151.433 (2)C14—C151.494 (3)
O5—C171.423 (2)C14—H14A0.9900
O5—C181.424 (2)C14—H14B0.9900
O6—C191.424 (2)C15—H15A0.9900
O6—C201.426 (2)C15—H15B0.9900
N1—C11.362 (2)C16—C171.497 (3)
N1—C81.465 (2)C16—H16A0.9900
N1—C21.474 (2)C16—H16B0.9900
N2—C61.341 (2)C17—H17A0.9900
N2—C51.344 (2)C17—H17B0.9900
C2—C31.514 (2)C18—C191.500 (3)
C2—H2A0.9900C18—H18A0.9900
C2—H2B0.9900C18—H18B0.9900
C3—C71.391 (2)C19—H19A0.9900
C3—C41.395 (2)C19—H19B0.9900
C4—C51.386 (2)C20—C211.502 (3)
C4—H40.9500C20—H20A0.9900
C5—H50.9500C20—H20B0.9900
C6—C71.388 (3)C21—H21A0.9900
C6—H60.9500C21—H21B0.9900
O1—K1—O5115.56 (4)C9—C8—H8A109.2
O1—K1—O3116.45 (4)N1—C8—H8B109.2
O5—K1—O3115.37 (4)C9—C8—H8B109.2
O1—K1—O258.07 (3)H8A—C8—H8B107.9
O5—K1—O2151.10 (4)C8—C9—H9A109.5
O3—K1—O258.82 (3)C8—C9—H9B109.5
O1—K1—O4151.58 (4)H9A—C9—H9B109.5
O5—K1—O457.31 (4)C8—C9—H9C109.5
O3—K1—O458.52 (4)H9A—C9—H9C109.5
O2—K1—O4113.13 (4)H9B—C9—H9C109.5
O1—K1—O657.71 (4)O1—C10—C11108.09 (12)
O5—K1—O657.90 (3)O1—C10—H10A110.1
O3—K1—O6147.06 (4)C11—C10—H10A110.1
O2—K1—O6109.84 (3)O1—C10—H10B110.1
O4—K1—O6109.58 (4)C11—C10—H10B110.1
O1—K1—S1113.72 (3)H10A—C10—H10B108.4
O5—K1—S175.28 (3)O2—C11—C10108.88 (13)
O3—K1—S1113.83 (3)O2—C11—K154.74 (7)
O2—K1—S1133.61 (3)C10—C11—K185.77 (9)
O4—K1—S191.86 (3)O2—C11—H11A109.9
O6—K1—S196.19 (3)C10—C11—H11A109.9
O1—K1—S291.87 (3)K1—C11—H11A162.0
O5—K1—S2130.18 (3)O2—C11—H11B109.9
O3—K1—S282.71 (3)C10—C11—H11B109.9
O2—K1—S278.57 (3)K1—C11—H11B72.8
O4—K1—S2113.72 (3)H11A—C11—H11B108.3
O6—K1—S2127.65 (3)O2—C12—C13108.48 (14)
S1—K1—S255.310 (15)O2—C12—H12A110.0
O1—K1—C1142.03 (4)C13—C12—H12A110.0
O5—K1—C11156.33 (4)O2—C12—H12B110.0
O3—K1—C1179.17 (4)C13—C12—H12B110.0
O2—K1—C1123.43 (4)H12A—C12—H12B108.4
O4—K1—C11136.13 (4)O3—C13—C12108.36 (14)
O6—K1—C1199.47 (4)O3—C13—H13A110.0
S1—K1—C11117.42 (3)C12—C13—H13A110.0
S2—K1—C1167.60 (3)O3—C13—H13B110.0
C1—S1—K192.77 (6)C12—C13—H13B110.0
C1—S2—K190.90 (6)H13A—C13—H13B108.4
C10—O1—C21112.46 (12)O3—C14—C15108.20 (15)
C10—O1—K1121.99 (9)O3—C14—H14A110.1
C21—O1—K1123.97 (10)C15—C14—H14A110.1
C12—O2—C11111.66 (13)O3—C14—H14B110.1
C12—O2—K1107.38 (9)C15—C14—H14B110.1
C11—O2—K1101.83 (9)H14A—C14—H14B108.4
C13—O3—C14113.14 (13)O4—C15—C14108.61 (14)
C13—O3—K1119.63 (9)O4—C15—H15A110.0
C14—O3—K1120.25 (10)C14—C15—H15A110.0
C16—O4—C15111.96 (14)O4—C15—H15B110.0
C16—O4—K1102.67 (10)C14—C15—H15B110.0
C15—O4—K1106.05 (10)H15A—C15—H15B108.3
C17—O5—C18112.52 (14)O4—C16—C17108.42 (15)
C17—O5—K1122.00 (10)O4—C16—H16A110.0
C18—O5—K1122.23 (10)C17—C16—H16A110.0
C19—O6—C20111.44 (14)O4—C16—H16B110.0
C19—O6—K1107.97 (9)C17—C16—H16B110.0
C20—O6—K1107.01 (9)H16A—C16—H16B108.4
C1—N1—C8122.62 (14)O5—C17—C16108.10 (15)
C1—N1—C2122.51 (14)O5—C17—H17A110.1
C8—N1—C2114.55 (13)C16—C17—H17A110.1
C6—N2—C5115.85 (15)O5—C17—H17B110.1
N1—C1—S2120.28 (12)C16—C17—H17B110.1
N1—C1—S1118.94 (12)H17A—C17—H17B108.4
S2—C1—S1120.78 (9)O5—C18—C19108.02 (14)
N1—C2—C3112.22 (13)O5—C18—H18A110.1
N1—C2—H2A109.2C19—C18—H18A110.1
C3—C2—H2A109.2O5—C18—H18B110.1
N1—C2—H2B109.2C19—C18—H18B110.1
C3—C2—H2B109.2H18A—C18—H18B108.4
H2A—C2—H2B107.9O6—C19—C18109.37 (14)
C7—C3—C4117.07 (16)O6—C19—H19A109.8
C7—C3—C2121.74 (15)C18—C19—H19A109.8
C4—C3—C2121.18 (15)O6—C19—H19B109.8
C5—C4—C3119.35 (16)C18—C19—H19B109.8
C5—C4—H4120.3H19A—C19—H19B108.2
C3—C4—H4120.3O6—C20—C21109.15 (14)
N2—C5—C4124.15 (16)O6—C20—H20A109.9
N2—C5—H5117.9C21—C20—H20A109.9
C4—C5—H5117.9O6—C20—H20B109.9
N2—C6—C7124.17 (16)C21—C20—H20B109.9
N2—C6—H6117.9H20A—C20—H20B108.3
C7—C6—H6117.9O1—C21—C20108.22 (14)
C6—C7—C3119.41 (16)O1—C21—H21A110.1
C6—C7—H7120.3C20—C21—H21A110.1
C3—C7—H7120.3O1—C21—H21B110.1
N1—C8—C9112.00 (15)C20—C21—H21B110.1
N1—C8—H8A109.2H21A—C21—H21B108.4
O1—K1—S1—C177.63 (6)O4—K1—O5—C18147.58 (14)
O5—K1—S1—C1170.54 (6)O6—K1—O5—C183.16 (12)
O3—K1—S1—C158.93 (6)S1—K1—O5—C18110.39 (13)
O2—K1—S1—C19.91 (7)S2—K1—O5—C18117.62 (12)
O4—K1—S1—C1115.09 (6)C11—K1—O5—C1815.54 (19)
O6—K1—S1—C1134.99 (6)O1—K1—O6—C19152.93 (12)
S2—K1—S1—C12.75 (5)O5—K1—O6—C1929.60 (10)
C11—K1—S1—C130.95 (6)O3—K1—O6—C19117.44 (11)
O1—K1—S2—C1120.60 (6)O2—K1—O6—C19179.66 (10)
O5—K1—S2—C15.75 (6)O4—K1—O6—C1955.48 (11)
O3—K1—S2—C1122.97 (6)S1—K1—O6—C1938.71 (11)
O2—K1—S2—C1177.47 (6)S2—K1—O6—C1988.96 (11)
O4—K1—S2—C172.11 (6)C11—K1—O6—C19157.90 (11)
O6—K1—S2—C171.14 (6)O1—K1—O6—C2032.86 (10)
S1—K1—S2—C12.76 (5)O5—K1—O6—C20149.67 (12)
C11—K1—S2—C1155.78 (6)O3—K1—O6—C20122.49 (11)
O5—K1—O1—C10160.07 (11)O2—K1—O6—C2059.59 (11)
O3—K1—O1—C1019.85 (12)O4—K1—O6—C20175.56 (10)
O2—K1—O1—C1012.35 (11)S1—K1—O6—C2081.36 (11)
O4—K1—O1—C1092.03 (13)S2—K1—O6—C2031.11 (12)
O6—K1—O1—C10162.45 (12)C11—K1—O6—C2037.83 (11)
S1—K1—O1—C10115.52 (11)C8—N1—C1—S2178.15 (12)
S2—K1—O1—C1062.94 (11)C2—N1—C1—S25.0 (2)
C11—K1—O1—C1010.22 (10)C8—N1—C1—S12.1 (2)
O5—K1—O1—C214.51 (13)C2—N1—C1—S1175.24 (11)
O3—K1—O1—C21144.74 (12)K1—S2—C1—N1175.37 (12)
O2—K1—O1—C21152.23 (13)K1—S2—C1—S14.89 (9)
O4—K1—O1—C2172.56 (15)K1—S1—C1—N1175.27 (12)
O6—K1—O1—C212.14 (11)K1—S1—C1—S24.99 (9)
S1—K1—O1—C2179.90 (12)C1—N1—C2—C3102.48 (17)
S2—K1—O1—C21132.48 (12)C8—N1—C2—C383.88 (17)
C11—K1—O1—C21174.81 (14)N1—C2—C3—C796.36 (18)
O1—K1—O2—C12157.70 (11)N1—C2—C3—C485.12 (19)
O5—K1—O2—C12116.71 (11)C7—C3—C4—C50.3 (2)
O3—K1—O2—C1230.15 (10)C2—C3—C4—C5178.85 (15)
O4—K1—O2—C1252.90 (10)C6—N2—C5—C40.7 (3)
O6—K1—O2—C12175.69 (10)C3—C4—C5—N20.3 (3)
S1—K1—O2—C1264.19 (11)C5—N2—C6—C70.5 (3)
S2—K1—O2—C1258.19 (10)N2—C6—C7—C30.0 (3)
C11—K1—O2—C12117.43 (14)C4—C3—C7—C60.4 (2)
O1—K1—O2—C1140.26 (9)C2—C3—C7—C6179.00 (15)
O5—K1—O2—C11125.86 (10)C1—N1—C8—C988.48 (19)
O3—K1—O2—C11147.58 (10)C2—N1—C8—C985.15 (18)
O4—K1—O2—C11170.34 (9)C21—O1—C10—C11176.67 (14)
O6—K1—O2—C1166.88 (9)K1—O1—C10—C1117.13 (17)
S1—K1—O2—C1153.24 (10)C12—O2—C11—C10175.41 (13)
S2—K1—O2—C1159.24 (9)K1—O2—C11—C1070.29 (12)
O1—K1—O3—C133.60 (13)C12—O2—C11—K1114.30 (12)
O5—K1—O3—C13143.90 (11)O1—C10—C11—O261.78 (17)
O2—K1—O3—C133.84 (11)O1—C10—C11—K111.35 (11)
O4—K1—O3—C13151.51 (13)O1—K1—C11—O2124.99 (11)
O6—K1—O3—C1374.36 (14)O5—K1—C11—O2102.72 (12)
S1—K1—O3—C13131.72 (11)O3—K1—C11—O227.84 (9)
S2—K1—O3—C1384.86 (12)O4—K1—C11—O212.87 (11)
C11—K1—O3—C1316.37 (12)O6—K1—C11—O2118.71 (9)
O1—K1—O3—C14145.18 (11)S1—K1—C11—O2139.19 (8)
O5—K1—O3—C144.88 (13)S2—K1—C11—O2114.34 (9)
O2—K1—O3—C14152.62 (13)O1—K1—C11—C108.26 (8)
O4—K1—O3—C142.73 (11)O5—K1—C11—C1014.00 (16)
O6—K1—O3—C1474.42 (14)O3—K1—C11—C10144.56 (10)
S1—K1—O3—C1479.50 (12)O2—K1—C11—C10116.72 (14)
S2—K1—O3—C14126.36 (12)O4—K1—C11—C10129.59 (9)
C11—K1—O3—C14165.15 (12)O6—K1—C11—C101.99 (10)
O1—K1—O4—C16123.50 (11)S1—K1—C11—C10104.08 (9)
O5—K1—O4—C1639.72 (10)S2—K1—C11—C10128.93 (10)
O3—K1—O4—C16148.45 (11)C11—O2—C12—C13173.23 (13)
O2—K1—O4—C16171.28 (10)K1—O2—C12—C1362.42 (14)
O6—K1—O4—C1665.79 (11)C14—O3—C13—C12173.42 (14)
S1—K1—O4—C1631.44 (10)K1—O3—C13—C1235.72 (17)
S2—K1—O4—C1684.02 (10)O2—C12—C13—O367.22 (17)
C11—K1—O4—C16165.76 (10)C13—O3—C14—C15174.41 (14)
O1—K1—O4—C15118.89 (12)K1—O3—C14—C1534.93 (17)
O5—K1—O4—C15157.34 (12)C16—O4—C15—C14174.80 (15)
O3—K1—O4—C1530.84 (10)K1—O4—C15—C1463.57 (15)
O2—K1—O4—C1553.67 (11)O3—C14—C15—O467.93 (18)
O6—K1—O4—C15176.59 (10)C15—O4—C16—C17176.24 (15)
S1—K1—O4—C1586.17 (11)K1—O4—C16—C1770.42 (15)
S2—K1—O4—C1533.60 (11)C18—O5—C17—C16179.48 (15)
C11—K1—O4—C1548.14 (13)K1—O5—C17—C1619.4 (2)
O1—K1—O5—C17158.90 (12)O4—C16—C17—O563.1 (2)
O3—K1—O5—C1718.24 (14)C17—O5—C18—C19166.24 (15)
O2—K1—O5—C1789.17 (14)K1—O5—C18—C1933.78 (19)
O4—K1—O5—C1710.52 (12)C20—O6—C19—C18178.07 (14)
O6—K1—O5—C17161.27 (14)K1—O6—C19—C1860.82 (15)
S1—K1—O5—C1791.50 (13)O5—C18—C19—O664.13 (19)
S2—K1—O5—C1784.27 (13)C19—O6—C20—C21179.81 (14)
C11—K1—O5—C17142.57 (13)K1—O6—C20—C2162.36 (15)
O1—K1—O5—C180.79 (14)C10—O1—C21—C20166.78 (14)
O3—K1—O5—C18139.87 (12)K1—O1—C21—C2027.35 (18)
O2—K1—O5—C1868.93 (15)O6—C20—C21—O161.03 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N3,C3–C7 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.513.311 (2)143
C2—H2B···Cg1ii0.992.873.4275 (18)116
C12—H12B···Cg1iii0.992.953.820 (2)148
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z3/2; (iii) x+1, y+1/2, z+1/2.
Selected bond lengths (Å) top
K1—O12.7710 (12)K1—S13.1804 (7)
K1—O22.9414 (13)K1—S23.2393 (6)
K1—O32.8203 (13)S1—C11.7174 (17)
K1—O42.9712 (13)S2—C11.7103 (16)
K1—O52.8098 (13)N1—C11.362 (2)
K1—O62.9788 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N3,C3–C7 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.513.311 (2)143
C2—H2B···Cg1ii0.992.873.4275 (18)116
C12—H12B···Cg1iii0.992.953.820 (2)148
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z3/2; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

We gratefully thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

First citationBarba, V., Arenaza, B., Guerrero, J. & Reyes, R. (2012). Heteroat. Chem. 23, 422–428.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHarrington, J. M., Jones, S. B., White, P. H. & Hancock, R. D. (2004). Inorg. Chem. 43, 4456–4463.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRajput, G., Singh, V., Singh, S. K., Prasad, L. B., Drew, M. G. B. & Singh, N. (2012). Eur. J. Inorg. Chem. pp. 3885–3891.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V., Kumar, A., Prasad, R., Rajput, G., Drew, M. G. B. & Singh, N. (2011). CrystEngComm, 13, 6817–6826.  Web of Science CSD CrossRef CAS Google Scholar
First citationTan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N., Bt, A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046–3056.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages m479-m480
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds