organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A second monoclinic polymorph of 3,5-di-tert-butyl-2-hy­dr­oxy­benzaldehyde

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 26 July 2013; accepted 7 August 2013; online 14 August 2013)

In the title mol­ecule, C15H22O2, there is an intra­molecular hydrogen bond involving the hy­droxy and aldehyde groups and forming an S(6) ring. The mean plane of the non-H atoms of this ring [(H)O—C C—C=O, with a maximum deviation of 0.013 (1) Å] are essentially coplanar with the benzene ring, forming a dihedral angle of 2.29 (8)°.

Related literature

For a monoclinic polymorph which contains two independent mol­ecules in the asymmetric unit, see: Chu et al. (2004[Chu, Z.-L., Huang, W., Cui, K. & Gou, S.-H. (2004). Acta Cryst. E60, o1043-o1045.]); Ng (2013[Ng, S. W. (2013). Private communication (deposition number 952571). CCDC, Cambridge, England.]); Tooke & Spek (2004[Tooke, D. M. & Spek, A. L. (2004). Acta Cryst. E60, o766-o767.]).

[Scheme 1]

Experimental

Crystal data
  • C15H22O2

  • Mr = 234.33

  • Monoclinic, P 21 /n

  • a = 9.8347 (6) Å

  • b = 11.1775 (5) Å

  • c = 13.1287 (8) Å

  • β = 110.614 (7)°

  • V = 1350.80 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.971, Tmax = 0.985

  • 7536 measured reflections

  • 3130 independent reflections

  • 2511 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.119

  • S = 1.02

  • 3130 reflections

  • 158 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.90 (2) 1.77 (2) 2.611 (2) 154 (2)

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound has been previously described in the monoclinic crystal class with two independent molecules in the asymmetric unit. In the room temperature structure, the 5-tert-butyl group in each molecule is disordered over two positions (Chu et al., 2004) but in the structure at 150 K, in one molecule only is the 5-tert-butyl group disordered (Tooke & Spek, 2004). The disorder is retained even at 100 K (Ng, 2013).

In the title polymorph (I) there is one molecule in the asymmetric unit and there is no disorder. The hydroxy group forms a short intramolecular hydrogen bond with the aldehyde group. The mean plane of the six-membered hydrogen-bonded ring (O1/C1/C6/C7/O2 with maximum deviation 0.013 (1)Å for C7) is essentially co-planar with the benzene ring [dihedral angle = 2.29 (8)°]. The volume of one molecule is calculated to be 338 Å3 at 100 K; the volume increased marginally to 349 Å3 at 150 K, and at room temperature, the volume is 361 Å3. The absence of disorder is plausibly explained by a more efficient packing.

Related literature top

For a monoclinic polymorph which contains two independent molecules in the asymmetric unit, see: Chu et al. (2004); Ng (2013); Tooke & Spek (2004).

Experimental top

3,5-Di-tert-butyl-2-hydroxybenzaldehyde was recovered unchanged from a reaction that used the compound as a reactant. It was recrystallized from ethanol to afford colorless primatic crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The hydroxy H-atom was located in a difference Fourier map, and was freely refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of (I) at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
3,5-Di-tert-butyl-2-hydroxybenzaldehyde top
Crystal data top
C15H22O2F(000) = 512
Mr = 234.33Dx = 1.152 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3060 reflections
a = 9.8347 (6) Åθ = 2.9–27.5°
b = 11.1775 (5) ŵ = 0.07 mm1
c = 13.1287 (8) ÅT = 100 K
β = 110.614 (7)°Prism, colorless
V = 1350.80 (13) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3130 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2511 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.9°
ω scanh = 129
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1414
Tmin = 0.971, Tmax = 0.985l = 1217
7536 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.4143P]
where P = (Fo2 + 2Fc2)/3
3130 reflections(Δ/σ)max = 0.001
158 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C15H22O2V = 1350.80 (13) Å3
Mr = 234.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8347 (6) ŵ = 0.07 mm1
b = 11.1775 (5) ÅT = 100 K
c = 13.1287 (8) Å0.40 × 0.30 × 0.20 mm
β = 110.614 (7)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3130 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
2511 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.985Rint = 0.027
7536 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.29 e Å3
3130 reflectionsΔρmin = 0.23 e Å3
158 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.82116 (10)0.43175 (9)0.47510 (8)0.0249 (2)
H10.833 (2)0.489 (2)0.5258 (17)0.059 (6)*
O20.77316 (11)0.61059 (9)0.58586 (8)0.0264 (3)
C10.68674 (14)0.45184 (11)0.40121 (10)0.0170 (3)
C20.63560 (14)0.38221 (11)0.30569 (10)0.0161 (3)
C30.49801 (14)0.40954 (11)0.23303 (10)0.0158 (3)
H30.46230.36360.16810.019*
C40.40701 (13)0.50021 (11)0.24795 (10)0.0149 (3)
C50.46075 (14)0.56620 (11)0.34210 (10)0.0159 (3)
H50.40320.62840.35530.019*
C60.59895 (14)0.54334 (11)0.41894 (10)0.0171 (3)
C70.65209 (15)0.61768 (12)0.51539 (11)0.0210 (3)
H70.58800.67670.52480.025*
C80.72960 (14)0.28431 (12)0.28098 (11)0.0196 (3)
C90.86554 (15)0.34226 (14)0.26966 (13)0.0274 (3)
H9A0.83600.40230.21150.041*
H9B0.92440.28060.25180.041*
H9C0.92280.38080.33840.041*
C100.77506 (16)0.19013 (12)0.37206 (12)0.0263 (3)
H10A0.82990.22890.44130.040*
H10B0.83610.12950.35540.040*
H10C0.68820.15190.37760.040*
C110.64704 (16)0.21922 (13)0.17455 (12)0.0260 (3)
H11A0.61650.27710.11460.039*
H11B0.56130.17980.18080.039*
H11C0.71050.15910.16010.039*
C120.26001 (14)0.52301 (11)0.15867 (10)0.0169 (3)
C130.17026 (15)0.61558 (12)0.19394 (12)0.0226 (3)
H13A0.22490.69060.21310.034*
H13B0.15010.58530.25720.034*
H13C0.07840.62990.13400.034*
C140.17131 (14)0.40643 (12)0.13060 (11)0.0214 (3)
H14A0.22700.34520.10890.032*
H14B0.07970.42120.07050.032*
H14C0.15070.37870.19450.032*
C150.28685 (15)0.57049 (12)0.05752 (11)0.0206 (3)
H15A0.34430.64420.07620.031*
H15B0.19350.58720.00010.031*
H15C0.33990.51030.03190.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0165 (5)0.0293 (5)0.0222 (5)0.0014 (4)0.0015 (4)0.0000 (4)
O20.0243 (6)0.0312 (6)0.0194 (5)0.0085 (4)0.0023 (4)0.0035 (4)
C10.0138 (6)0.0188 (6)0.0165 (6)0.0017 (5)0.0031 (5)0.0046 (5)
C20.0145 (6)0.0169 (6)0.0179 (7)0.0006 (5)0.0068 (5)0.0028 (5)
C30.0169 (6)0.0164 (6)0.0143 (6)0.0015 (5)0.0054 (5)0.0005 (5)
C40.0134 (6)0.0156 (6)0.0157 (6)0.0004 (5)0.0054 (5)0.0028 (5)
C50.0165 (6)0.0144 (6)0.0182 (6)0.0007 (5)0.0078 (5)0.0005 (5)
C60.0192 (7)0.0167 (6)0.0155 (6)0.0038 (5)0.0064 (5)0.0006 (5)
C70.0229 (7)0.0209 (7)0.0194 (7)0.0055 (5)0.0078 (6)0.0015 (6)
C80.0146 (7)0.0198 (6)0.0248 (7)0.0030 (5)0.0075 (6)0.0019 (6)
C90.0183 (7)0.0314 (8)0.0359 (9)0.0024 (6)0.0140 (6)0.0016 (7)
C100.0247 (8)0.0221 (7)0.0323 (8)0.0061 (6)0.0100 (6)0.0055 (6)
C110.0238 (8)0.0255 (7)0.0301 (8)0.0054 (6)0.0114 (6)0.0053 (6)
C120.0134 (6)0.0188 (6)0.0168 (6)0.0010 (5)0.0033 (5)0.0013 (5)
C130.0178 (7)0.0259 (7)0.0233 (7)0.0056 (5)0.0060 (6)0.0014 (6)
C140.0155 (7)0.0232 (7)0.0220 (7)0.0017 (5)0.0024 (5)0.0006 (6)
C150.0192 (7)0.0219 (7)0.0179 (7)0.0014 (5)0.0031 (5)0.0009 (5)
Geometric parameters (Å, º) top
O1—C11.3551 (15)C9—H9C0.9800
O1—H10.90 (2)C10—H10A0.9800
O2—C71.2265 (17)C10—H10B0.9800
C1—C21.4097 (18)C10—H10C0.9800
C1—C61.4096 (18)C11—H11A0.9800
C2—C31.3877 (17)C11—H11B0.9800
C2—C81.5390 (17)C11—H11C0.9800
C3—C41.4106 (17)C12—C131.5336 (18)
C3—H30.9500C12—C151.5367 (18)
C4—C51.3751 (18)C12—C141.5389 (18)
C4—C121.5283 (17)C13—H13A0.9800
C5—C61.4018 (18)C13—H13B0.9800
C5—H50.9500C13—H13C0.9800
C6—C71.4494 (18)C14—H14A0.9800
C7—H70.9500C14—H14B0.9800
C8—C111.5304 (19)C14—H14C0.9800
C8—C101.5368 (19)C15—H15A0.9800
C8—C91.5391 (18)C15—H15B0.9800
C9—H9A0.9800C15—H15C0.9800
C9—H9B0.9800
C1—O1—H1104.6 (14)C8—C10—H10B109.5
O1—C1—C2119.86 (12)H10A—C10—H10B109.5
O1—C1—C6120.13 (12)C8—C10—H10C109.5
C2—C1—C6120.01 (12)H10A—C10—H10C109.5
C3—C2—C1116.49 (11)H10B—C10—H10C109.5
C3—C2—C8121.63 (11)C8—C11—H11A109.5
C1—C2—C8121.84 (11)C8—C11—H11B109.5
C2—C3—C4125.14 (12)H11A—C11—H11B109.5
C2—C3—H3117.4C8—C11—H11C109.5
C4—C3—H3117.4H11A—C11—H11C109.5
C5—C4—C3116.63 (12)H11B—C11—H11C109.5
C5—C4—C12124.09 (11)C4—C12—C13111.74 (11)
C3—C4—C12119.23 (11)C4—C12—C15108.45 (10)
C4—C5—C6121.17 (12)C13—C12—C15108.67 (11)
C4—C5—H5119.4C4—C12—C14110.24 (10)
C6—C5—H5119.4C13—C12—C14107.79 (11)
C5—C6—C1120.56 (12)C15—C12—C14109.93 (11)
C5—C6—C7118.96 (12)C12—C13—H13A109.5
C1—C6—C7120.45 (12)C12—C13—H13B109.5
O2—C7—C6125.29 (13)H13A—C13—H13B109.5
O2—C7—H7117.4C12—C13—H13C109.5
C6—C7—H7117.4H13A—C13—H13C109.5
C11—C8—C10107.47 (11)H13B—C13—H13C109.5
C11—C8—C9108.16 (11)C12—C14—H14A109.5
C10—C8—C9109.80 (11)C12—C14—H14B109.5
C11—C8—C2111.44 (11)H14A—C14—H14B109.5
C10—C8—C2110.78 (11)C12—C14—H14C109.5
C9—C8—C2109.13 (11)H14A—C14—H14C109.5
C8—C9—H9A109.5H14B—C14—H14C109.5
C8—C9—H9B109.5C12—C15—H15A109.5
H9A—C9—H9B109.5C12—C15—H15B109.5
C8—C9—H9C109.5H15A—C15—H15B109.5
H9A—C9—H9C109.5C12—C15—H15C109.5
H9B—C9—H9C109.5H15A—C15—H15C109.5
C8—C10—H10A109.5H15B—C15—H15C109.5
O1—C1—C2—C3178.86 (11)C2—C1—C6—C7178.25 (11)
C6—C1—C2—C30.20 (18)C5—C6—C7—O2176.38 (13)
O1—C1—C2—C81.20 (18)C1—C6—C7—O21.7 (2)
C6—C1—C2—C8177.85 (11)C3—C2—C8—C114.45 (17)
C1—C2—C3—C40.27 (19)C1—C2—C8—C11178.02 (12)
C8—C2—C3—C4177.93 (11)C3—C2—C8—C10124.05 (13)
C2—C3—C4—C50.29 (19)C1—C2—C8—C1058.41 (16)
C2—C3—C4—C12177.79 (11)C3—C2—C8—C9114.93 (13)
C3—C4—C5—C60.23 (18)C1—C2—C8—C962.60 (15)
C12—C4—C5—C6177.60 (11)C5—C4—C12—C138.45 (17)
C4—C5—C6—C10.18 (19)C3—C4—C12—C13174.25 (11)
C4—C5—C6—C7178.29 (11)C5—C4—C12—C15111.31 (13)
O1—C1—C6—C5178.89 (11)C3—C4—C12—C1565.99 (14)
C2—C1—C6—C50.16 (18)C5—C4—C12—C14128.29 (13)
O1—C1—C6—C70.80 (18)C3—C4—C12—C1454.40 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.90 (2)1.77 (2)2.611 (2)154 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.90 (2)1.77 (2)2.611 (2)154 (2)
 

Acknowledgements

I thank the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR-MOHE/SC/03) for supporting this study.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationChu, Z.-L., Huang, W., Cui, K. & Gou, S.-H. (2004). Acta Cryst. E60, o1043–o1045.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNg, S. W. (2013). Private communication (deposition number 952571). CCDC, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTooke, D. M. & Spek, A. L. (2004). Acta Cryst. E60, o766–o767.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds