organic compounds
(E)-2-[(1H-Imidazol-4-yl)methylidene]hydrazinecarbothioamide monohydrate
aLaboratoire de Chimie Inorganique et Environnement, Université de Tlemcen, BP 119, 13000, Tlemcen, Algeria, bCentre de Diffractométrie X, UMR 6226 CNRS, Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France, and cUSMBA, FSDM, Département de Chimie, BP 1796 Fès - Atlas, Morocco
*Correspondence e-mail: samhibi1@yahoo.fr
In the title compound, C5H7N5S·H2O, the main molecule is approximately planar, with a maximum deviation from the mean plane through the non-H atoms of 0.1478 (12) Å for the amine N atom. In the crystal, the components are connected via N—H⋯O, N—H⋯S and O—H⋯N hydrogen bonds, forming a three-dimensional network.
Related literature
For the biological activity of thiosimecarbazone derivatives, see: Finch et al. (2000). For the crystal structures of related compounds, see: Alomar et al. (2013).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).
Supporting information
10.1107/S1600536813022927/lh5642sup1.cif
contains datablocks I, publication_text. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813022927/lh5642Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813022927/lh5642Isup3.docx
Supporting information file. DOI: 10.1107/S1600536813022927/lh5642Isup4.cml
All the chemicals were purchased from Merck and were used as received. An equimolar amount of thiosemicarbazide 10 mmol (0.91 g) and imidazolecarboxaldehyde 10 mmol (0.96 g) were dissolved in a mixture of ethanol and water (30 ml, 50%) and refluxed for 5 h in the presence of a catalytic amount of glacial acetic acid. Yellow crystals suitable for X-ray analysis were obtained after slow evaporation of the solution.
H atoms bonded to C atoms were placed in calculated positions with C—H = 0.95 Å and refined in a riding-model approximation with Uiso(H) = 1.2Ueq(C). The H atoms bonded to O and N atoms were refined independently with fixed isotropic displacement parameters.
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines. |
C5H7N5S·H2O | Dx = 1.483 Mg m−3 |
Mr = 187.23 | Melting point: 0 K |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.8734 (5) Å | Cell parameters from 3274 reflections |
b = 11.2416 (5) Å | θ = 2.7–27.5° |
c = 7.0822 (3) Å | µ = 0.35 mm−1 |
β = 75.601 (2)° | T = 150 K |
V = 838.50 (6) Å3 | Prism, colourless |
Z = 4 | 0.4 × 0.23 × 0.16 mm |
F(000) = 392 |
Bruker APEXII CCD diffractometer | Rint = 0.031 |
Graphite monochromator | θmax = 27.5°, θmin = 3.5° |
CCD rotation images, thin slices scans | h = −13→14 |
6537 measured reflections | k = −14→13 |
1903 independent reflections | l = −9→9 |
1726 reflections with I > 2σ(I) |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.083 | H-atom parameters not refined |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0438P)2 + 0.2645P] where P = (Fo2 + 2Fc2)/3 |
1903 reflections | (Δ/σ)max = 0.003 |
127 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C5H7N5S·H2O | V = 838.50 (6) Å3 |
Mr = 187.23 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.8734 (5) Å | µ = 0.35 mm−1 |
b = 11.2416 (5) Å | T = 150 K |
c = 7.0822 (3) Å | 0.4 × 0.23 × 0.16 mm |
β = 75.601 (2)° |
Bruker APEXII CCD diffractometer | 1726 reflections with I > 2σ(I) |
6537 measured reflections | Rint = 0.031 |
1903 independent reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.083 | H-atom parameters not refined |
S = 1.06 | Δρmax = 0.38 e Å−3 |
1903 reflections | Δρmin = −0.22 e Å−3 |
127 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | −0.87437 (3) | 0.64372 (3) | 0.33879 (5) | 0.02064 (13) | |
N1 | −0.66924 (10) | 0.51441 (11) | 0.17680 (17) | 0.0192 (3) | |
H1A | −0.6294 (19) | 0.443 (2) | 0.140 (3) | 0.05* | |
H1B | −0.6319 (19) | 0.583 (2) | 0.135 (3) | 0.05* | |
C2 | −0.79042 (12) | 0.51613 (11) | 0.27634 (18) | 0.0154 (3) | |
N3 | −0.84841 (10) | 0.41073 (10) | 0.32669 (17) | 0.0177 (2) | |
H3 | −0.928 (2) | 0.408 (2) | 0.406 (3) | 0.05* | |
N4 | −0.77834 (10) | 0.30715 (10) | 0.28202 (16) | 0.0170 (2) | |
C5 | −0.84105 (12) | 0.21003 (12) | 0.32281 (19) | 0.0168 (3) | |
H5 | −0.9299 | 0.2125 | 0.38 | 0.02* | |
C6 | −0.77714 (12) | 0.09669 (12) | 0.28214 (18) | 0.0165 (3) | |
C7 | −0.82981 (13) | −0.01458 (12) | 0.3055 (2) | 0.0203 (3) | |
H7 | −0.9172 | −0.0336 | 0.3521 | 0.024* | |
N8 | −0.73164 (11) | −0.09260 (11) | 0.24822 (17) | 0.0214 (3) | |
H8 | −0.743 (2) | −0.172 (2) | 0.251 (3) | 0.05* | |
C9 | −0.62411 (13) | −0.02867 (13) | 0.1925 (2) | 0.0218 (3) | |
H9 | −0.5421 | −0.0627 | 0.1467 | 0.026* | |
N10 | −0.64591 (10) | 0.08743 (10) | 0.20915 (17) | 0.0191 (3) | |
O21 | −0.50826 (10) | 0.29013 (9) | −0.04044 (17) | 0.0250 (2) | |
H21A | −0.552 (2) | 0.3077 (19) | −0.118 (3) | 0.05* | |
H21B | −0.552 (2) | 0.237 (2) | 0.038 (3) | 0.05* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01797 (19) | 0.01144 (19) | 0.0285 (2) | 0.00167 (11) | 0.00184 (13) | 0.00089 (13) |
N1 | 0.0159 (5) | 0.0133 (6) | 0.0254 (6) | −0.0002 (4) | 0.0004 (4) | 0.0000 (5) |
C2 | 0.0159 (6) | 0.0146 (6) | 0.0152 (6) | 0.0002 (5) | −0.0030 (4) | −0.0003 (5) |
N3 | 0.0154 (5) | 0.0117 (6) | 0.0224 (6) | 0.0018 (4) | 0.0025 (4) | −0.0001 (4) |
N4 | 0.0174 (5) | 0.0131 (6) | 0.0185 (6) | 0.0028 (4) | −0.0009 (4) | −0.0010 (4) |
C5 | 0.0158 (6) | 0.0158 (7) | 0.0178 (6) | −0.0005 (5) | −0.0022 (5) | −0.0003 (5) |
C6 | 0.0171 (6) | 0.0162 (7) | 0.0158 (6) | −0.0002 (5) | −0.0030 (5) | −0.0002 (5) |
C7 | 0.0207 (6) | 0.0163 (7) | 0.0230 (7) | −0.0019 (5) | −0.0034 (5) | −0.0006 (5) |
N8 | 0.0279 (6) | 0.0114 (6) | 0.0240 (6) | −0.0005 (5) | −0.0046 (5) | −0.0013 (5) |
C9 | 0.0224 (7) | 0.0167 (7) | 0.0240 (7) | 0.0032 (5) | −0.0015 (5) | −0.0012 (5) |
N10 | 0.0177 (5) | 0.0139 (6) | 0.0233 (6) | 0.0013 (4) | −0.0006 (4) | −0.0001 (4) |
O21 | 0.0221 (5) | 0.0221 (6) | 0.0298 (6) | −0.0038 (4) | −0.0047 (4) | 0.0068 (4) |
S1—C2 | 1.6986 (13) | C6—C7 | 1.3685 (18) |
N1—C2 | 1.3309 (17) | C6—N10 | 1.3955 (16) |
N1—H1A | 0.92 (2) | C7—N8 | 1.3630 (18) |
N1—H1B | 0.88 (2) | C7—H7 | 0.95 |
C2—N3 | 1.3480 (17) | N8—C9 | 1.3453 (18) |
N3—N4 | 1.3844 (15) | N8—H8 | 0.90 (2) |
N3—H3 | 0.90 (2) | C9—N10 | 1.3264 (18) |
N4—C5 | 1.2816 (17) | C9—H9 | 0.95 |
C5—C6 | 1.4456 (18) | O21—H21A | 0.83 (2) |
C5—H5 | 0.95 | O21—H21B | 0.87 (2) |
C2—N1—H1A | 119.8 (13) | C7—C6—C5 | 127.99 (12) |
C2—N1—H1B | 118.5 (14) | N10—C6—C5 | 122.42 (12) |
H1A—N1—H1B | 121.2 (19) | N8—C7—C6 | 106.20 (12) |
N1—C2—N3 | 117.63 (12) | N8—C7—H7 | 126.9 |
N1—C2—S1 | 123.18 (10) | C6—C7—H7 | 126.9 |
N3—C2—S1 | 119.18 (10) | C9—N8—C7 | 107.62 (12) |
C2—N3—N4 | 118.96 (11) | C9—N8—H8 | 129.8 (14) |
C2—N3—H3 | 120.5 (14) | C7—N8—H8 | 122.6 (14) |
N4—N3—H3 | 119.7 (14) | N10—C9—N8 | 112.12 (12) |
C5—N4—N3 | 115.68 (11) | N10—C9—H9 | 123.9 |
N4—C5—C6 | 120.23 (12) | N8—C9—H9 | 123.9 |
N4—C5—H5 | 119.9 | C9—N10—C6 | 104.47 (11) |
C6—C5—H5 | 119.9 | H21A—O21—H21B | 106 (2) |
C7—C6—N10 | 109.59 (11) | ||
N1—C2—N3—N4 | 3.30 (18) | C5—C6—C7—N8 | −179.86 (12) |
S1—C2—N3—N4 | −177.56 (9) | C6—C7—N8—C9 | −0.07 (15) |
C2—N3—N4—C5 | −175.73 (11) | C7—N8—C9—N10 | −0.24 (16) |
N3—N4—C5—C6 | 180.00 (11) | N8—C9—N10—C6 | 0.43 (15) |
N4—C5—C6—C7 | −175.90 (13) | C7—C6—N10—C9 | −0.46 (15) |
N4—C5—C6—N10 | 3.9 (2) | C5—C6—N10—C9 | 179.72 (12) |
N10—C6—C7—N8 | 0.33 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O21 | 0.92 (2) | 2.34 (2) | 3.2325 (16) | 163.2 (18) |
N8—H8···S1i | 0.90 (2) | 2.51 (2) | 3.3334 (13) | 153.0 (18) |
O21—H21B···N10 | 0.87 (2) | 2.17 (2) | 3.0399 (15) | 172 (2) |
Symmetry code: (i) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O21 | 0.92 (2) | 2.34 (2) | 3.2325 (16) | 163.2 (18) |
N8—H8···S1i | 0.90 (2) | 2.51 (2) | 3.3334 (13) | 153.0 (18) |
O21—H21B···N10 | 0.87 (2) | 2.17 (2) | 3.0399 (15) | 172 (2) |
Symmetry code: (i) x, y−1, z. |
Acknowledgements
The authors gratefully acknowledge the support of the Algerian Ministry of Higher Education and Scientific Research.
References
Alomar, K., Landreau, A., Allain, M., Bouet, G. & Larcher, G. (2013). J. of Inorg. Biochem. 126, 76–83. Web of Science CSD CrossRef CAS Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Finch, R. A., Liu, M., Grill, S. P., Rose, W. C., Loomis, R., Vasquez, K. M., Cheng, Y. & Sartorelli, A. C. (2000). Biochem. Pharmacol. 59, 983–991. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Our interest in thiosemicarbazone derivatives stems from their wide spectrum of biological activity (Finch et al., 2000; Alomar et al. 2013). As part of our study of thiosemicarbazone derivatives, we report herein the crystal structure of the title compound (I). The molecular structure of (I) is shown in Fig. 1. The molecule is approximately planar and the maximum deviation from the least squares plane through the 11 non-hydrogen atoms is -0.1478 (12) Å for N1. The bond angles suggest sp2 hybridization for the C and N atoms which contributes to the planarity of the molecule. The crystal packing is stabilized by intermolecular N—H···O and N—H···S hydrogen bonds (Fig. 2 and Table 1) forming a three-dimensional network.