organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[(1H-Imidazol-4-yl)methyl­­idene]hydrazinecarbo­thio­amide monohydrate

aLaboratoire de Chimie Inorganique et Environnement, Université de Tlemcen, BP 119, 13000, Tlemcen, Algeria, bCentre de Diffractométrie X, UMR 6226 CNRS, Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France, and cUSMBA, FSDM, Département de Chimie, BP 1796 Fès - Atlas, Morocco
*Correspondence e-mail: samhibi1@yahoo.fr

(Received 6 August 2013; accepted 14 August 2013; online 23 August 2013)

In the title compound, C5H7N5S·H2O, the main mol­ecule is approximately planar, with a maximum deviation from the mean plane through the non-H atoms of 0.1478 (12) Å for the amine N atom. In the crystal, the components are connected via N—H⋯O, N—H⋯S and O—H⋯N hydrogen bonds, forming a three-dimensional network.

Related literature

For the biological activity of thio­simecarbazone derivatives, see: Finch et al. (2000[Finch, R. A., Liu, M., Grill, S. P., Rose, W. C., Loomis, R., Vasquez, K. M., Cheng, Y. & Sartorelli, A. C. (2000). Biochem. Pharmacol. 59, 983-991.]). For the crystal structures of related compounds, see: Alomar et al. (2013[Alomar, K., Landreau, A., Allain, M., Bouet, G. & Larcher, G. (2013). J. of Inorg. Biochem. 126, 76-83.]).

[Scheme 1]

Experimental

Crystal data
  • C5H7N5S·H2O

  • Mr = 187.23

  • Monoclinic, P 21 /c

  • a = 10.8734 (5) Å

  • b = 11.2416 (5) Å

  • c = 7.0822 (3) Å

  • β = 75.601 (2)°

  • V = 838.50 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 150 K

  • 0.4 × 0.23 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 6537 measured reflections

  • 1903 independent reflections

  • 1726 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.083

  • S = 1.06

  • 1903 reflections

  • 127 parameters

  • H-atom parameters not refined

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O21 0.92 (2) 2.34 (2) 3.2325 (16) 163.2 (18)
N8—H8⋯S1i 0.90 (2) 2.51 (2) 3.3334 (13) 153.0 (18)
O21—H21B⋯N10 0.87 (2) 2.17 (2) 3.0399 (15) 172 (2)
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CRYSCAL (T. Roisnel, local program).

Supporting information


Comment top

Our interest in thiosemicarbazone derivatives stems from their wide spectrum of biological activity (Finch et al., 2000; Alomar et al. 2013). As part of our study of thiosemicarbazone derivatives, we report herein the crystal structure of the title compound (I). The molecular structure of (I) is shown in Fig. 1. The molecule is approximately planar and the maximum deviation from the least squares plane through the 11 non-hydrogen atoms is -0.1478 (12) Å for N1. The bond angles suggest sp2 hybridization for the C and N atoms which contributes to the planarity of the molecule. The crystal packing is stabilized by intermolecular N—H···O and N—H···S hydrogen bonds (Fig. 2 and Table 1) forming a three-dimensional network.

Related literature top

For the biological activity of thiosimecarbazone derivatives, see: Finch et al. (2000). For the crystal structures of related compounds, see: Alomar et al. (2013).

Experimental top

All the chemicals were purchased from Merck and were used as received. An equimolar amount of thiosemicarbazide 10 mmol (0.91 g) and imidazolecarboxaldehyde 10 mmol (0.96 g) were dissolved in a mixture of ethanol and water (30 ml, 50%) and refluxed for 5 h in the presence of a catalytic amount of glacial acetic acid. Yellow crystals suitable for X-ray analysis were obtained after slow evaporation of the solution.

Refinement top

H atoms bonded to C atoms were placed in calculated positions with C—H = 0.95 Å and refined in a riding-model approximation with Uiso(H) = 1.2Ueq(C). The H atoms bonded to O and N atoms were refined independently with fixed isotropic displacement parameters.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
(I) top
Crystal data top
C5H7N5S·H2ODx = 1.483 Mg m3
Mr = 187.23Melting point: 0 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.8734 (5) ÅCell parameters from 3274 reflections
b = 11.2416 (5) Åθ = 2.7–27.5°
c = 7.0822 (3) ŵ = 0.35 mm1
β = 75.601 (2)°T = 150 K
V = 838.50 (6) Å3Prism, colourless
Z = 40.4 × 0.23 × 0.16 mm
F(000) = 392
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.031
Graphite monochromatorθmax = 27.5°, θmin = 3.5°
CCD rotation images, thin slices scansh = 1314
6537 measured reflectionsk = 1413
1903 independent reflectionsl = 99
1726 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters not refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.2645P]
where P = (Fo2 + 2Fc2)/3
1903 reflections(Δ/σ)max = 0.003
127 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C5H7N5S·H2OV = 838.50 (6) Å3
Mr = 187.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8734 (5) ŵ = 0.35 mm1
b = 11.2416 (5) ÅT = 150 K
c = 7.0822 (3) Å0.4 × 0.23 × 0.16 mm
β = 75.601 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1726 reflections with I > 2σ(I)
6537 measured reflectionsRint = 0.031
1903 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.083H-atom parameters not refined
S = 1.06Δρmax = 0.38 e Å3
1903 reflectionsΔρmin = 0.22 e Å3
127 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.87437 (3)0.64372 (3)0.33879 (5)0.02064 (13)
N10.66924 (10)0.51441 (11)0.17680 (17)0.0192 (3)
H1A0.6294 (19)0.443 (2)0.140 (3)0.05*
H1B0.6319 (19)0.583 (2)0.135 (3)0.05*
C20.79042 (12)0.51613 (11)0.27634 (18)0.0154 (3)
N30.84841 (10)0.41073 (10)0.32669 (17)0.0177 (2)
H30.928 (2)0.408 (2)0.406 (3)0.05*
N40.77834 (10)0.30715 (10)0.28202 (16)0.0170 (2)
C50.84105 (12)0.21003 (12)0.32281 (19)0.0168 (3)
H50.92990.21250.380.02*
C60.77714 (12)0.09669 (12)0.28214 (18)0.0165 (3)
C70.82981 (13)0.01458 (12)0.3055 (2)0.0203 (3)
H70.91720.03360.35210.024*
N80.73164 (11)0.09260 (11)0.24822 (17)0.0214 (3)
H80.743 (2)0.172 (2)0.251 (3)0.05*
C90.62411 (13)0.02867 (13)0.1925 (2)0.0218 (3)
H90.54210.06270.14670.026*
N100.64591 (10)0.08743 (10)0.20915 (17)0.0191 (3)
O210.50826 (10)0.29013 (9)0.04044 (17)0.0250 (2)
H21A0.552 (2)0.3077 (19)0.118 (3)0.05*
H21B0.552 (2)0.237 (2)0.038 (3)0.05*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01797 (19)0.01144 (19)0.0285 (2)0.00167 (11)0.00184 (13)0.00089 (13)
N10.0159 (5)0.0133 (6)0.0254 (6)0.0002 (4)0.0004 (4)0.0000 (5)
C20.0159 (6)0.0146 (6)0.0152 (6)0.0002 (5)0.0030 (4)0.0003 (5)
N30.0154 (5)0.0117 (6)0.0224 (6)0.0018 (4)0.0025 (4)0.0001 (4)
N40.0174 (5)0.0131 (6)0.0185 (6)0.0028 (4)0.0009 (4)0.0010 (4)
C50.0158 (6)0.0158 (7)0.0178 (6)0.0005 (5)0.0022 (5)0.0003 (5)
C60.0171 (6)0.0162 (7)0.0158 (6)0.0002 (5)0.0030 (5)0.0002 (5)
C70.0207 (6)0.0163 (7)0.0230 (7)0.0019 (5)0.0034 (5)0.0006 (5)
N80.0279 (6)0.0114 (6)0.0240 (6)0.0005 (5)0.0046 (5)0.0013 (5)
C90.0224 (7)0.0167 (7)0.0240 (7)0.0032 (5)0.0015 (5)0.0012 (5)
N100.0177 (5)0.0139 (6)0.0233 (6)0.0013 (4)0.0006 (4)0.0001 (4)
O210.0221 (5)0.0221 (6)0.0298 (6)0.0038 (4)0.0047 (4)0.0068 (4)
Geometric parameters (Å, º) top
S1—C21.6986 (13)C6—C71.3685 (18)
N1—C21.3309 (17)C6—N101.3955 (16)
N1—H1A0.92 (2)C7—N81.3630 (18)
N1—H1B0.88 (2)C7—H70.95
C2—N31.3480 (17)N8—C91.3453 (18)
N3—N41.3844 (15)N8—H80.90 (2)
N3—H30.90 (2)C9—N101.3264 (18)
N4—C51.2816 (17)C9—H90.95
C5—C61.4456 (18)O21—H21A0.83 (2)
C5—H50.95O21—H21B0.87 (2)
C2—N1—H1A119.8 (13)C7—C6—C5127.99 (12)
C2—N1—H1B118.5 (14)N10—C6—C5122.42 (12)
H1A—N1—H1B121.2 (19)N8—C7—C6106.20 (12)
N1—C2—N3117.63 (12)N8—C7—H7126.9
N1—C2—S1123.18 (10)C6—C7—H7126.9
N3—C2—S1119.18 (10)C9—N8—C7107.62 (12)
C2—N3—N4118.96 (11)C9—N8—H8129.8 (14)
C2—N3—H3120.5 (14)C7—N8—H8122.6 (14)
N4—N3—H3119.7 (14)N10—C9—N8112.12 (12)
C5—N4—N3115.68 (11)N10—C9—H9123.9
N4—C5—C6120.23 (12)N8—C9—H9123.9
N4—C5—H5119.9C9—N10—C6104.47 (11)
C6—C5—H5119.9H21A—O21—H21B106 (2)
C7—C6—N10109.59 (11)
N1—C2—N3—N43.30 (18)C5—C6—C7—N8179.86 (12)
S1—C2—N3—N4177.56 (9)C6—C7—N8—C90.07 (15)
C2—N3—N4—C5175.73 (11)C7—N8—C9—N100.24 (16)
N3—N4—C5—C6180.00 (11)N8—C9—N10—C60.43 (15)
N4—C5—C6—C7175.90 (13)C7—C6—N10—C90.46 (15)
N4—C5—C6—N103.9 (2)C5—C6—N10—C9179.72 (12)
N10—C6—C7—N80.33 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O210.92 (2)2.34 (2)3.2325 (16)163.2 (18)
N8—H8···S1i0.90 (2)2.51 (2)3.3334 (13)153.0 (18)
O21—H21B···N100.87 (2)2.17 (2)3.0399 (15)172 (2)
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O210.92 (2)2.34 (2)3.2325 (16)163.2 (18)
N8—H8···S1i0.90 (2)2.51 (2)3.3334 (13)153.0 (18)
O21—H21B···N100.87 (2)2.17 (2)3.0399 (15)172 (2)
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors gratefully acknowledge the support of the Algerian Ministry of Higher Education and Scientific Research.

References

First citationAlomar, K., Landreau, A., Allain, M., Bouet, G. & Larcher, G. (2013). J. of Inorg. Biochem. 126, 76–83.  Web of Science CSD CrossRef CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFinch, R. A., Liu, M., Grill, S. P., Rose, W. C., Loomis, R., Vasquez, K. M., Cheng, Y. & Sartorelli, A. C. (2000). Biochem. Pharmacol. 59, 983–991.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds