metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[{μ-N′-[2-(carboxylato­meth­oxy)benzyl­idene]-2-hydroxybenzohydrazidato}(methanol-κO)nickel(II)]

aDepartment of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Sichuan Key Laboratory of Characteristic Plant Development Research, Dazhou, Sichuan 635000, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou, Sichuan 635000, People's Republic of China
*Correspondence e-mail: fhluo2005@163.com

(Received 17 August 2013; accepted 28 August 2013; online 31 August 2013)

In the title compound, [Ni(C16H12N2O5)(CH3OH)]n, the unique NiII ion is coordinated in a distorted octa­hedral environment by three O atoms and one N atom from a symmetry-unique ligand in the equatorial sites. Coordination of the axial sites is provided by an O atom of a symmetry-unique methanol ligand and an O atom of a carboxyl­ate group from a symmetry-related ligand, thus generating a one-dimensional polymer parallel to [010]. In the crystal, O—H⋯N hydrogen bonds and ππ inter­actions, with a centroid–centroid distance of 3.693 (2) Å, form a two-dimensional network parallel to (100). In addition, weak C—H⋯O and C—H⋯N hydrogen bonds complete a three-dimensional network. An intra­molecular O—H⋯O hydrogen bond is also observed.

Related literature

For background information on nickel(II) carboxyl­ate compounds, see: Lu et al. (2010[Lu, R. Q., Chen, Y. Y. & Zhou, H. (2010). Acta Chim. Sin. 68, 1199-1204.]). For general information on the structures of carboxyl­ate and hydrazone compounds, see: Wu et al. (2007[Wu, L. M., Qiu, G. F. & Teng, H. B. (2007). Inorg. Chim. Acta, 360, 3069-3074.]); Luo et al. (2010[Luo, F. H., Hu, Z. Q. & Yang, L. (2010). Chin. J. Inorg. Chem. 26, 682-686.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C16H12N2O5)(CH4O)]

  • Mr = 403.03

  • Monoclinic, P 21 /c

  • a = 10.0877 (14) Å

  • b = 8.1922 (10) Å

  • c = 20.570 (2) Å

  • β = 102.589 (8)°

  • V = 1659.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 12305 measured reflections

  • 2921 independent reflections

  • 2635 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.073

  • S = 1.08

  • 2921 reflections

  • 248 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O6i 0.93 2.46 3.350 (3) 160
C3—H3B⋯O1ii 0.97 2.36 3.151 (3) 138
O5—H2M⋯N6iii 0.77 (3) 1.95 (3) 2.721 (2) 172 (3)
O6—H2A⋯O4 0.99 (4) 1.63 (4) 2.547 (3) 151 (4)
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Nickel(II) carboxylates, especially those with nitrogen-donor ligands, have been the subject of numerous investigations (Lu et al., 2010). Different coordination modes of carboxylate groups can form mononuclear and polynuclear structures. Hydrazone with carboxylate groups can also form mono- and polynuclear structures under different conditions (Wu et al., 2007; Luo et al., 2010). Herein we report the synthesis and crystal structure of the title compound, (I).

Part of the one-dimensional structure of (I) is shown in Fig. 1. The unique NiII ion is coordinated in a distorted octahedral environment by three O atoms and one N atom from a symmetry-unique ligand. One axial site is coordinated by a methanol solvent and a symmetry-related ligand provides an O atom from a carboxylate group to complete the coordination in the other axial site and generate a one-dimensional polymer parallel to [010]. In the crystal, O—H···O hydrogen bonds and ππ interactions, with a centroid–centroid distance of 3.693 (2) Å, form a two-dimensional network parallel to (100). In addition, weak C—H···O and C—H···N hydrogen bonds complete a three-dimensional network (Fig. 2). An intramolecular O—H···O hydrogen bond is also observed.

Related literature top

For background information on nickel(II) carboxylate compounds, see: Lu et al. (2010). For general information on the structures of carboxylate and hydrazone compounds, see: Wu et al. (2007); Luo et al. (2010).

Experimental top

The hydrazone ligand was synthesized according to the literature procedure (Luo et al., 2010). Nickel(II) acetate monohydrate (1 mmol) was dissolved in methanol (15 ml), to which a solution of the ligand (2.5 mmol) in dimethylformamide (15 ml) was added. The mixture was stirred for 3 h at room temperature. A light-green solution was obtained, the solution was filtered and allowed to stand at room temperature for three weeks, where upon light-green block-shaped crystals were obtained.

Refinement top

All H atoms, except for H2A, H1M and H2M were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.93-0.97Å and Uiso=1.2–1.5Ueq(C). The hydroxy H2A, H1M and H2M atoms were refined independently with an isotropic displacement parameters.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the 1-D structure of the title compound with displacement ellipsoids drawn at the 30% probability level [symmetry codes: (a) -x+1, y-1/2, -z+1/2; (b) -x+1, y+1/2, -z+1/2].
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds drawn as dashed lines. Only H atoms involved in hydrogen bonds are shown.
catena-Poly[{µ-N'-[2-(carboxylatomethoxy)benzylidene]-2-hydroxybenzohydrazidato}(methanol-κO)nickel(II)] top
Crystal data top
[Ni(C16H12N2O5)(CH4O)]F(000) = 832
Mr = 403.03Dx = 1.614 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6447 reflections
a = 10.0877 (14) Åθ = 2.6–27.6°
b = 8.1922 (10) ŵ = 1.21 mm1
c = 20.570 (2) ÅT = 296 K
β = 102.589 (8)°Block, green
V = 1659.0 (4) Å30.20 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2635 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ϕ and ω scansh = 118
12305 measured reflectionsk = 99
2921 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0266P)2 + 1.2361P]
where P = (Fo2 + 2Fc2)/3
2921 reflections(Δ/σ)max = 0.001
248 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Ni(C16H12N2O5)(CH4O)]V = 1659.0 (4) Å3
Mr = 403.03Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0877 (14) ŵ = 1.21 mm1
b = 8.1922 (10) ÅT = 296 K
c = 20.570 (2) Å0.20 × 0.20 × 0.15 mm
β = 102.589 (8)°
Data collection top
Bruker SMART CCD
diffractometer
2635 reflections with I > 2σ(I)
12305 measured reflectionsRint = 0.027
2921 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.35 e Å3
2921 reflectionsΔρmin = 0.24 e Å3
248 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6935 (4)0.2217 (5)0.41187 (18)0.0885 (14)
H1A0.67690.15990.37120.133*
H1B0.70390.14850.44910.133*
H1C0.77490.28480.41540.133*
C20.5242 (2)0.3099 (3)0.24797 (11)0.0298 (5)
C30.3753 (2)0.2907 (3)0.25087 (12)0.0378 (6)
H3A0.31790.32490.20890.045*
H3B0.35600.17700.25810.045*
C40.1090 (2)0.3233 (3)0.26828 (12)0.0394 (6)
H40.12740.25880.23410.047*
C50.0237 (3)0.3400 (4)0.27576 (13)0.0453 (7)
H50.09360.28670.24650.054*
C60.0525 (3)0.4341 (4)0.32578 (14)0.0450 (7)
H60.14180.44700.33010.054*
C70.0517 (3)0.5092 (3)0.36958 (14)0.0401 (6)
H70.03150.57130.40400.048*
C80.1880 (2)0.4959 (3)0.36431 (11)0.0299 (5)
C90.2136 (2)0.4015 (3)0.31103 (11)0.0290 (5)
C100.2849 (2)0.5833 (3)0.41492 (11)0.0312 (5)
C110.6105 (2)0.7209 (3)0.45898 (11)0.0293 (5)
C120.7036 (2)0.8173 (3)0.50982 (11)0.0299 (5)
C130.6566 (3)0.9116 (3)0.55665 (11)0.0365 (6)
H130.56380.91540.55520.044*
C140.7437 (3)0.9989 (3)0.60491 (13)0.0444 (7)
H140.71061.06020.63600.053*
C150.8805 (3)0.9942 (4)0.60641 (14)0.0527 (8)
H150.94031.05240.63900.063*
C160.9299 (3)0.9054 (4)0.56088 (15)0.0543 (8)
H161.02280.90440.56250.065*
C170.8429 (3)0.8170 (3)0.51235 (13)0.0418 (6)
H2A0.818 (4)0.691 (5)0.4351 (19)0.106 (14)*
H1M0.251 (2)0.630 (3)0.4492 (12)0.033 (6)*
H2M0.558 (3)0.323 (4)0.4441 (16)0.064 (11)*
N60.48640 (18)0.6936 (2)0.46842 (9)0.0285 (4)
N70.41149 (18)0.6014 (2)0.41628 (8)0.0261 (4)
Ni10.51359 (3)0.52553 (4)0.351123 (13)0.02633 (11)
O10.59405 (15)0.4187 (2)0.28177 (7)0.0318 (4)
O20.56805 (17)0.2161 (2)0.21012 (8)0.0378 (4)
O30.34651 (15)0.3882 (2)0.30411 (7)0.0320 (4)
O40.65470 (16)0.6669 (2)0.40854 (8)0.0358 (4)
O50.58543 (18)0.3247 (2)0.41172 (9)0.0412 (4)
O60.8977 (2)0.7297 (3)0.46879 (12)0.0714 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.102 (3)0.104 (3)0.076 (2)0.067 (2)0.056 (2)0.044 (2)
C20.0348 (13)0.0315 (13)0.0249 (11)0.0008 (10)0.0104 (10)0.0013 (10)
C30.0346 (13)0.0427 (15)0.0385 (13)0.0032 (11)0.0131 (11)0.0141 (11)
C40.0355 (13)0.0452 (16)0.0368 (13)0.0021 (11)0.0064 (11)0.0017 (11)
C50.0317 (13)0.0550 (18)0.0453 (15)0.0085 (12)0.0002 (11)0.0051 (13)
C60.0256 (13)0.0551 (18)0.0558 (17)0.0022 (12)0.0124 (12)0.0107 (14)
C70.0320 (13)0.0476 (16)0.0436 (14)0.0047 (11)0.0145 (11)0.0018 (12)
C80.0267 (12)0.0330 (13)0.0310 (12)0.0014 (9)0.0083 (10)0.0049 (10)
C90.0241 (11)0.0327 (13)0.0308 (12)0.0008 (9)0.0076 (9)0.0045 (10)
C100.0309 (12)0.0366 (14)0.0292 (12)0.0044 (10)0.0134 (10)0.0014 (10)
C110.0345 (12)0.0277 (12)0.0267 (11)0.0017 (10)0.0087 (10)0.0021 (9)
C120.0322 (12)0.0285 (13)0.0285 (11)0.0000 (10)0.0058 (9)0.0009 (10)
C130.0411 (14)0.0351 (14)0.0344 (13)0.0014 (11)0.0105 (11)0.0018 (11)
C140.0595 (18)0.0386 (15)0.0349 (14)0.0015 (13)0.0097 (13)0.0081 (11)
C150.0562 (18)0.0518 (18)0.0439 (16)0.0095 (14)0.0028 (14)0.0122 (13)
C160.0345 (14)0.066 (2)0.0589 (18)0.0033 (14)0.0015 (13)0.0128 (16)
C170.0371 (14)0.0431 (16)0.0460 (15)0.0007 (12)0.0107 (12)0.0088 (12)
N60.0313 (10)0.0305 (11)0.0245 (9)0.0006 (8)0.0080 (8)0.0017 (8)
N70.0302 (10)0.0261 (10)0.0231 (9)0.0000 (8)0.0084 (8)0.0016 (8)
Ni10.02821 (18)0.02915 (19)0.02373 (16)0.00093 (12)0.01027 (12)0.00196 (11)
O10.0329 (8)0.0358 (10)0.0293 (8)0.0050 (7)0.0127 (7)0.0060 (7)
O20.0417 (10)0.0401 (10)0.0360 (9)0.0043 (8)0.0177 (8)0.0123 (8)
O30.0270 (8)0.0386 (10)0.0325 (8)0.0024 (7)0.0111 (7)0.0104 (7)
O40.0343 (9)0.0456 (10)0.0310 (8)0.0075 (8)0.0149 (7)0.0108 (8)
O50.0476 (11)0.0462 (11)0.0352 (10)0.0138 (8)0.0206 (9)0.0092 (8)
O60.0373 (11)0.0965 (19)0.0834 (16)0.0034 (11)0.0199 (11)0.0473 (14)
Geometric parameters (Å, º) top
C1—O51.378 (3)C11—O41.293 (3)
C1—H1A0.9600C11—N61.327 (3)
C1—H1B0.9600C11—C121.473 (3)
C1—H1C0.9600C12—C171.395 (3)
C2—O21.242 (3)C12—C131.396 (3)
C2—O11.249 (3)C13—C141.374 (3)
C2—C31.524 (3)C13—H130.9300
C3—O31.435 (3)C14—C151.375 (4)
C3—H3A0.9700C14—H140.9300
C3—H3B0.9700C15—C161.363 (4)
C4—C91.375 (3)C15—H150.9300
C4—C51.387 (3)C16—C171.382 (4)
C4—H40.9300C16—H160.9300
C5—C61.367 (4)C17—O61.355 (3)
C5—H50.9300N6—N71.393 (2)
C6—C71.373 (4)N7—Ni11.9608 (17)
C6—H60.9300Ni1—O11.9914 (15)
C7—C81.407 (3)Ni1—O42.0076 (16)
C7—H70.9300Ni1—O2i2.0615 (16)
C8—C91.410 (3)Ni1—O32.0810 (15)
C8—C101.452 (3)Ni1—O52.0954 (18)
C9—O31.384 (3)O2—Ni1ii2.0615 (16)
C10—N71.280 (3)O5—H2M0.77 (3)
C10—H1M0.93 (2)O6—H2A0.99 (4)
O5—C1—H1A109.5C14—C13—H13119.1
O5—C1—H1B109.5C12—C13—H13119.1
H1A—C1—H1B109.5C15—C14—C13118.8 (3)
O5—C1—H1C109.5C15—C14—H14120.6
H1A—C1—H1C109.5C13—C14—H14120.6
H1B—C1—H1C109.5C16—C15—C14121.0 (3)
O2—C2—O1123.7 (2)C16—C15—H15119.5
O2—C2—C3116.7 (2)C14—C15—H15119.5
O1—C2—C3119.5 (2)C15—C16—C17120.4 (3)
O3—C3—C2109.71 (18)C15—C16—H16119.8
O3—C3—H3A109.7C17—C16—H16119.8
C2—C3—H3A109.7O6—C17—C16117.9 (2)
O3—C3—H3B109.7O6—C17—C12122.0 (2)
C2—C3—H3B109.7C16—C17—C12120.1 (2)
H3A—C3—H3B108.2C11—N6—N7110.46 (17)
C9—C4—C5120.5 (2)C10—N7—N6116.80 (18)
C9—C4—H4119.8C10—N7—Ni1128.23 (16)
C5—C4—H4119.8N6—N7—Ni1114.88 (13)
C6—C5—C4120.5 (2)N7—Ni1—O1170.34 (7)
C6—C5—H5119.7N7—Ni1—O479.97 (7)
C4—C5—H5119.7O1—Ni1—O4109.13 (6)
C5—C6—C7119.3 (2)N7—Ni1—O2i88.76 (7)
C5—C6—H6120.4O1—Ni1—O2i93.79 (7)
C7—C6—H6120.4O4—Ni1—O2i93.45 (7)
C6—C7—C8122.4 (3)N7—Ni1—O389.77 (7)
C6—C7—H7118.8O1—Ni1—O381.07 (6)
C8—C7—H7118.8O4—Ni1—O3169.71 (6)
C7—C8—C9116.7 (2)O2i—Ni1—O387.14 (7)
C7—C8—C10115.0 (2)N7—Ni1—O590.41 (7)
C9—C8—C10128.2 (2)O1—Ni1—O586.50 (7)
C4—C9—O3121.5 (2)O4—Ni1—O589.66 (7)
C4—C9—C8120.5 (2)O2i—Ni1—O5176.60 (7)
O3—C9—C8117.95 (19)O3—Ni1—O589.55 (7)
N7—C10—C8125.8 (2)C2—O1—Ni1116.33 (14)
N7—C10—H1M117.7 (14)C2—O2—Ni1ii134.59 (15)
C8—C10—H1M116.4 (14)C9—O3—C3118.95 (17)
O4—C11—N6124.1 (2)C9—O3—Ni1127.93 (14)
O4—C11—C12118.3 (2)C3—O3—Ni1112.18 (13)
N6—C11—C12117.53 (19)C11—O4—Ni1110.17 (14)
C17—C12—C13117.8 (2)C1—O5—Ni1130.77 (18)
C17—C12—C11120.4 (2)C1—O5—H2M115 (2)
C13—C12—C11121.8 (2)Ni1—O5—H2M113 (2)
C14—C13—C12121.8 (2)C17—O6—H2A104 (2)
O2—C2—C3—O3170.7 (2)C10—N7—Ni1—O310.1 (2)
O1—C2—C3—O310.8 (3)N6—N7—Ni1—O3173.58 (14)
C9—C4—C5—C60.1 (4)C10—N7—Ni1—O599.7 (2)
C4—C5—C6—C71.4 (4)N6—N7—Ni1—O584.03 (14)
C5—C6—C7—C81.3 (4)O2—C2—O1—Ni1168.85 (18)
C6—C7—C8—C90.4 (4)C3—C2—O1—Ni112.7 (3)
C6—C7—C8—C10180.0 (2)O4—Ni1—O1—C2170.61 (15)
C5—C4—C9—O3179.3 (2)O2i—Ni1—O1—C294.41 (16)
C5—C4—C9—C81.9 (4)O3—Ni1—O1—C27.90 (16)
C7—C8—C9—C42.0 (3)O5—Ni1—O1—C282.19 (17)
C10—C8—C9—C4178.5 (2)O1—C2—O2—Ni1ii179.20 (16)
C7—C8—C9—O3179.1 (2)C3—C2—O2—Ni1ii2.3 (3)
C10—C8—C9—O30.4 (4)C4—C9—O3—C30.2 (3)
C7—C8—C10—N7172.9 (2)C8—C9—O3—C3179.0 (2)
C9—C8—C10—N76.6 (4)C4—C9—O3—Ni1168.12 (17)
O4—C11—C12—C1715.3 (3)C8—C9—O3—Ni113.0 (3)
N6—C11—C12—C17164.0 (2)C2—C3—O3—C9173.36 (19)
O4—C11—C12—C13164.5 (2)C2—C3—O3—Ni13.6 (2)
N6—C11—C12—C1316.1 (3)N7—Ni1—O3—C916.00 (18)
C17—C12—C13—C141.5 (4)O1—Ni1—O3—C9167.07 (18)
C11—C12—C13—C14178.7 (2)O4—Ni1—O3—C920.8 (5)
C12—C13—C14—C150.7 (4)O2i—Ni1—O3—C972.77 (17)
C13—C14—C15—C160.3 (4)O5—Ni1—O3—C9106.41 (18)
C14—C15—C16—C170.5 (5)N7—Ni1—O3—C3175.38 (16)
C15—C16—C17—O6179.4 (3)O1—Ni1—O3—C31.56 (15)
C15—C16—C17—C120.3 (5)O4—Ni1—O3—C3170.6 (4)
C13—C12—C17—O6179.7 (3)O2i—Ni1—O3—C395.85 (16)
C11—C12—C17—O60.2 (4)O5—Ni1—O3—C384.97 (16)
C13—C12—C17—C161.3 (4)N6—C11—O4—Ni13.8 (3)
C11—C12—C17—C16178.9 (2)C12—C11—O4—Ni1175.49 (16)
O4—C11—N6—N70.7 (3)N7—Ni1—O4—C114.87 (15)
C12—C11—N6—N7180.00 (18)O1—Ni1—O4—C11171.78 (14)
C8—C10—N7—N6178.3 (2)O2i—Ni1—O4—C1193.00 (15)
C8—C10—N7—Ni12.1 (4)O3—Ni1—O4—C110.0 (5)
C11—N6—N7—C10171.6 (2)O5—Ni1—O4—C1185.61 (15)
C11—N6—N7—Ni15.1 (2)N7—Ni1—O5—C1162.2 (3)
C10—N7—Ni1—O4170.7 (2)O1—Ni1—O5—C127.0 (3)
N6—N7—Ni1—O45.55 (14)O4—Ni1—O5—C182.2 (3)
C10—N7—Ni1—O2i77.0 (2)O3—Ni1—O5—C1108.1 (3)
N6—N7—Ni1—O2i99.27 (14)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O6iii0.932.463.350 (3)160
C3—H3B···O1ii0.972.363.151 (3)138
O5—H2M···N6iv0.77 (3)1.95 (3)2.721 (2)172 (3)
O6—H2A···O40.99 (4)1.63 (4)2.547 (3)151 (4)
Symmetry codes: (ii) x+1, y1/2, z+1/2; (iii) x1, y, z; (iv) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O6i0.932.463.350 (3)159.6
C3—H3B···O1ii0.972.363.151 (3)137.9
O5—H2M···N6iii0.77 (3)1.95 (3)2.721 (2)172 (3)
O6—H2A···O40.99 (4)1.63 (4)2.547 (3)151 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1, z+1.
 

Acknowledgements

We are grateful to the Youth Foundation of the Education Department of Sichuan Province (grant Nos. 12ZA282 and 12ZA146).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLu, R. Q., Chen, Y. Y. & Zhou, H. (2010). Acta Chim. Sin. 68, 1199–1204.  CAS Google Scholar
First citationLuo, F. H., Hu, Z. Q. & Yang, L. (2010). Chin. J. Inorg. Chem. 26, 682–686.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, L. M., Qiu, G. F. & Teng, H. B. (2007). Inorg. Chim. Acta, 360, 3069–3074.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds