metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages m517-m518

Tetra­kis(μ-2-phenyl­acetato-κ2O:O′)bis­­{[4-(di­methyl­amino)­pyridine-κN1]cobalt(II)}

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Faculté des Sciences Exactes, Département de Chimie, Université de Constantine 1, 25000 Constantine, Algeria, and bDepartment of Chemistry and Biochemistry, Concordia University, Montréal, Canada
*Correspondence e-mail: b_meriem80@yahoo.fr

(Received 5 August 2013; accepted 19 August 2013; online 23 August 2013)

The title compound, [Co2(C8H7O2)4(C7H10N2)2], crystallizes as a centrosymmetric dimer containing two CoII atoms bridged by four bidentate phenyl­acetate ligands in syn–syn bridging modes. Each CoII atom is five-coordinated by four O atoms from four different carboxyl­ate ligands and the ring N atom of a 4-(di­methyl­amino)­pyridine unit, generating a distorted square-pyramidal geometry in which the four O atoms form the basal plane and the N atom occupies the axial position. In the crystal, C—H⋯O inter­actions link the dinuclear complex mol­ecules into a three-dimensional network.

Related literature

For properties of the 4-(di­methyl­amino)­pyridine ligand as a homogeneous catalyst, see: Satgé et al. (2004[Satgé, C., Granet, R., Verneuil, B., Branland, P. & Krausz, P. (2004). C. R. Chim. 7, 135-142.]). For transition metal complexes of 4-(di­methyl­amino)­pyridine which exhibit luminescence properties, see: Araki et al. (2005[Araki, H., Tsuge, K., Sasaki, Y., Ishizaka, S. & Kitamura, N. (2005). Inorg. Chem. 44, 9667-9675.]). For biological and magnetic properties of carb­oxy­lic acid complexes of cobalt(II), see: Cotton et al. (1999[Cotton, F. A., Wilkinson, G., Murillo, C. A. & Bochmann, M. (1999). Advanced Inorganic Chemistry, 6th ed. Singapore: John Wiley & Sons.]). For related centrosymmetric dinuclear cobalt(II) complexes bridged by carboxyl­ates, see: Cui et al. (1999[Cui, Y., Long, D. L., Huang, X. Y., Zheng, F. K., Chen, W. D. & Huang, J. S. (1999). Chin. J. Struct. Chem. 19, 9-13.]); Catterick & Thornton (1977[Catterick, J. & Thornton, P. (1977). Adv. Inorg. Chem. Radiochem. 20, 291-362.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C8H7O2)4(C7H10N2)2]

  • Mr = 902.74

  • Triclinic, [P \overline 1]

  • a = 8.107 (5) Å

  • b = 11.043 (5) Å

  • c = 12.573 (5) Å

  • α = 99.766 (5)°

  • β = 101.878 (5)°

  • γ = 105.335 (5)°

  • V = 1031.9 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 150 K

  • 0.15 × 0.10 × 0.01 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.902, Tmax = 0.991

  • 9238 measured reflections

  • 3645 independent reflections

  • 3352 reflections with I > 2σ(I))

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.060

  • S = 1.05

  • 3645 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O2i 0.96 2.53 3.337 (3) 142
C23—H23⋯O3ii 0.93 2.58 3.469 (3) 159
Symmetry codes: (i) x, y, z+1; (ii) -x+2, -y, -z.

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The N-heteroaromatic ligand 4-(dimethylamino)pyridine (DMAP) finds use as a homogeneous catalyst in cellulose acylation in the synthesis of biodegradable plastics (Satgé et al., 2004). DMAP is also known to form transition metal complexes which exhibit luminescence properties (Araki et al., 2005). Our interest in cobalt(II) carboxylates with DMAP evolves from their catalytic activity. Moreover, carboxylic acid complexes of cobalt(II) have properties of special interest in the fields of biology and magnetism (Cotton et al., 1999). The coordination chemistry of centrosymmetric dinuclear Co2+ complexes bridged by carboxylates has been investigated (Cui et al., 1999, Catterick et al., 1977). In order to explore further the coordination behaviour of the Co2+ ion, the title complex, incorporating phenylacetate and DMAP as co-ligand has been prepared and its crystal structure is reported here.

The title molecule is a centrosymmetric dimer with four bidentate phenylacetate groups as bridging ligands between two CoII centres, to each of which a DMAP group is also coordinated, as shown in Fig. 1. The coordination geometry about each Co atom is distorted square pyramidal, with four O atoms from four different carboxylate ligands forming the basal plane and a pyridine N atom occupying the axial position, where the most distorted angle is 101.39 (5)° for O2i—Co—N2 [symmetry code: (i) -x + 1,-y,-z]. The interatomic distances of Co—O [2.0224 (12)–2.0628 (16) Å], Co—N2 [2.0460 (16) Å] and Co···Co [2.8019 (12) Å] agree well with the related values recorded for the structures of the analogous pivalate (Cui et al., 1999) and benzoate (Catterick et al., 1977). The Co(II) atom is 0.2286 (2) Å from the mean plane formed by the four equatorial O atoms. On the other hand, the coordinated N2 atom also lies in the same direction, at a distance of 2.2643 (13) Å from the plane. The dihedral angles between the mean planes through the C10—C15 and C18—C23 benzene rings and the DMPA plane are 7.46 (9)° and 72.08 (9)°, respectively. The dihedral angle between the planes trough Co1/O3/O4/C16/Co1i/O3i/O4i/C16i and Co1/O1/O2/C8/Co1i/O1i/O2i/C8i [symmetry code:(i) 1 - x, -y, -z] is 87.22 (4)°, which is close to the ideal value of 90°. Nonclassical C—H···O hydrogen bonds (Table 1) occur in the structure, which link adjacent complex molecule into a three-dimensional network , Fig. 2 and Fig. 3.

Related literature top

For properties of the 4-(dimethylamino)pyridine ligand as a homogeneous catalyst, see: Satgé et al. (2004). For transition metal complexes of 4-(dimethylamino)pyridine which exhibit luminescence properties, see: Araki et al. (2005). For biological and magnetic properties of carboxylic acid complexes of cobalt(II), see: Cotton et al. (1999). For related centrosymmetric dinuclear cobalt(II) complexes bridged by carboxylates, see: Cui et al. (1999); Catterick & Thornton (1977).

Experimental top

CoCl2.2H2O (0.116 g,1 mmol) was dissolved in methanol (10 ml). To this solution, phenyacetic acid (C6H5CH2COOH; 0.136 g, 1 mmol) was added and the mixture was stirred for ca 10 min to obtain a bleu solution. 4-(Dimethylamino)pyridine (0.122 g, 1 mmol) was added and the mixture was stirred for an additional 2 h. Single crystals suitable for X-ray diffraction were obtained from a methanol solution of the title complex by slow evaporation.

Refinement top

The C-bound H atoms were included in calculated positions, with C—H = 0.93 Å (aromatic), 0.96 Å (methyl), 0.97 Å(aliphatic) and refined using a riding model, with Uiso(H) = 1.5Ueq(C) for the methyl groups and 1.2Ueq(C) for the remainder.

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Symmetry code, (i):1 - x, -y, -z.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines. Symmetry code, (ii): x, y, 1 + z.
[Figure 3] Fig. 3. The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.Symmetry code, (iii):2 - x, -y, -z.
Tetrakis(µ-2-phenylacetato-κ2O:O')bis{[4-(dimethylamino)pyridine-κN1]cobalt(II)} top
Crystal data top
[Co2(C8H7O2)4(C7H10N2)2]Z = 1
Mr = 902.74F(000) = 470
Triclinic, P1Dx = 1.453 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.107 (5) ÅCell parameters from 4872 reflections
b = 11.043 (5) Åθ = 2.3–25°
c = 12.573 (5) ŵ = 0.86 mm1
α = 99.766 (5)°T = 150 K
β = 101.878 (5)°Box, blue
γ = 105.335 (5)°0.15 × 0.1 × 0.01 mm
V = 1031.9 (9) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3645 independent reflections
Radiation source: fine-focus sealed tube3352 reflections with I > 2σ(I))
Graphite monochromatorRint = 0.019
ω and ϕ scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 99
Tmin = 0.902, Tmax = 0.991k = 1313
9238 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0206P)2 + 0.6871P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.060(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.25 e Å3
3645 reflectionsΔρmin = 0.24 e Å3
271 parameters
Crystal data top
[Co2(C8H7O2)4(C7H10N2)2]γ = 105.335 (5)°
Mr = 902.74V = 1031.9 (9) Å3
Triclinic, P1Z = 1
a = 8.107 (5) ÅMo Kα radiation
b = 11.043 (5) ŵ = 0.86 mm1
c = 12.573 (5) ÅT = 150 K
α = 99.766 (5)°0.15 × 0.1 × 0.01 mm
β = 101.878 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
3645 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
3352 reflections with I > 2σ(I))
Tmin = 0.902, Tmax = 0.991Rint = 0.019
9238 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
3645 reflectionsΔρmin = 0.24 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.56888 (3)0.01135 (2)0.114253 (18)0.01603 (8)
O10.70384 (17)0.18802 (11)0.09742 (10)0.0256 (3)
O30.75242 (16)0.06983 (12)0.07678 (10)0.0241 (3)
O20.59969 (17)0.17191 (12)0.08452 (10)0.0248 (3)
O40.64516 (17)0.08060 (13)0.10383 (10)0.0277 (3)
N10.7414 (2)0.15583 (15)0.63408 (12)0.0259 (3)
N20.64381 (19)0.06270 (13)0.28539 (11)0.0178 (3)
C100.7997 (2)0.46694 (16)0.12315 (14)0.0192 (4)
C30.7158 (2)0.00546 (16)0.34964 (14)0.0197 (4)
H30.74150.07640.31390.024*
C110.7164 (3)0.55861 (17)0.10444 (16)0.0256 (4)
H110.66610.55990.03130.031*
C10.7158 (2)0.12779 (17)0.52207 (14)0.0195 (4)
C180.8183 (2)0.25048 (16)0.17600 (14)0.0181 (4)
C130.7818 (3)0.64805 (18)0.30092 (16)0.0302 (4)
H130.77660.70850.36030.036*
C170.8651 (2)0.18185 (17)0.05447 (14)0.0205 (4)
H17A0.98550.12360.03380.025*
H17B0.86240.24540.00970.025*
C230.9124 (2)0.20046 (17)0.24739 (15)0.0222 (4)
H231.00520.12330.22020.027*
C20.7540 (2)0.02208 (17)0.46401 (14)0.0216 (4)
H20.80510.02890.50330.026*
C190.6790 (2)0.36483 (17)0.21909 (15)0.0245 (4)
H190.61350.3990.17240.029*
C90.8102 (3)0.37074 (16)0.02588 (15)0.0236 (4)
H9A0.93240.37170.03580.028*
H9B0.77540.39820.04240.028*
C140.8655 (3)0.55707 (19)0.32101 (16)0.0311 (4)
H140.91630.55630.39420.037*
C40.6139 (2)0.16674 (17)0.34079 (14)0.0228 (4)
H40.5680.21790.2990.027*
C150.8741 (2)0.46726 (18)0.23306 (15)0.0267 (4)
H150.93030.40630.24760.032*
C50.6466 (2)0.20198 (17)0.45452 (15)0.0246 (4)
H50.62310.27530.48760.029*
C220.8696 (3)0.26441 (19)0.35918 (15)0.0274 (4)
H220.9340.230.40620.033*
C160.7435 (2)0.10501 (16)0.02568 (14)0.0180 (4)
C200.6361 (3)0.42857 (18)0.33028 (16)0.0291 (4)
H200.54250.50530.35790.035*
C120.7061 (3)0.64871 (18)0.19226 (17)0.0322 (5)
H120.64870.70910.1780.039*
C80.6943 (2)0.23260 (16)0.01192 (14)0.0186 (4)
C70.8177 (3)0.0810 (2)0.70317 (16)0.0328 (5)
H7A0.82560.11520.78020.049*
H7B0.93410.08580.69460.049*
H7C0.74380.00760.68040.049*
C210.7319 (3)0.37875 (19)0.40079 (15)0.0292 (4)
H210.70370.42190.47560.035*
C60.6940 (3)0.2633 (2)0.68950 (16)0.0353 (5)
H6A0.7210.26930.76860.053*
H6B0.56940.24930.66110.053*
H6C0.76010.34210.67540.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02007 (13)0.01633 (13)0.01213 (12)0.00678 (9)0.00475 (9)0.00211 (9)
O10.0329 (7)0.0188 (6)0.0213 (7)0.0030 (5)0.0044 (6)0.0066 (5)
O30.0262 (7)0.0258 (7)0.0218 (7)0.0115 (5)0.0093 (5)0.0010 (5)
O20.0293 (7)0.0213 (6)0.0190 (6)0.0020 (5)0.0056 (6)0.0022 (5)
O40.0278 (7)0.0354 (8)0.0261 (7)0.0202 (6)0.0074 (6)0.0073 (6)
N10.0366 (9)0.0275 (8)0.0140 (7)0.0111 (7)0.0067 (7)0.0044 (6)
N20.0212 (7)0.0178 (7)0.0146 (7)0.0072 (6)0.0048 (6)0.0029 (6)
C100.0187 (9)0.0152 (8)0.0212 (9)0.0001 (7)0.0075 (7)0.0034 (7)
C30.0234 (9)0.0163 (8)0.0209 (9)0.0086 (7)0.0065 (7)0.0030 (7)
C110.0319 (10)0.0201 (9)0.0238 (9)0.0060 (8)0.0054 (8)0.0080 (8)
C10.0196 (9)0.0213 (9)0.0160 (8)0.0035 (7)0.0054 (7)0.0040 (7)
C180.0181 (8)0.0187 (9)0.0209 (9)0.0111 (7)0.0059 (7)0.0041 (7)
C130.0418 (12)0.0204 (9)0.0283 (10)0.0084 (9)0.0156 (9)0.0003 (8)
C170.0190 (9)0.0212 (9)0.0213 (9)0.0081 (7)0.0052 (7)0.0023 (7)
C230.0182 (9)0.0231 (9)0.0252 (9)0.0068 (7)0.0047 (7)0.0066 (8)
C20.0265 (10)0.0217 (9)0.0196 (9)0.0109 (8)0.0055 (7)0.0085 (7)
C190.0248 (10)0.0238 (9)0.0256 (10)0.0062 (8)0.0090 (8)0.0068 (8)
C90.0301 (10)0.0185 (9)0.0221 (9)0.0041 (8)0.0114 (8)0.0047 (7)
C140.0390 (12)0.0316 (11)0.0200 (9)0.0107 (9)0.0046 (9)0.0034 (8)
C40.0330 (10)0.0216 (9)0.0180 (9)0.0151 (8)0.0061 (8)0.0057 (7)
C150.0289 (10)0.0255 (10)0.0270 (10)0.0132 (8)0.0043 (8)0.0059 (8)
C50.0346 (11)0.0213 (9)0.0199 (9)0.0144 (8)0.0069 (8)0.0016 (7)
C220.0283 (10)0.0366 (11)0.0224 (10)0.0131 (9)0.0097 (8)0.0117 (8)
C160.0165 (8)0.0139 (8)0.0234 (9)0.0029 (7)0.0081 (7)0.0030 (7)
C200.0277 (10)0.0222 (9)0.0285 (10)0.0035 (8)0.0000 (8)0.0017 (8)
C120.0420 (12)0.0205 (10)0.0393 (12)0.0154 (9)0.0124 (10)0.0098 (9)
C80.0189 (9)0.0179 (9)0.0208 (9)0.0070 (7)0.0089 (7)0.0026 (7)
C70.0410 (12)0.0410 (12)0.0191 (10)0.0146 (10)0.0071 (9)0.0124 (9)
C210.0347 (11)0.0350 (11)0.0169 (9)0.0160 (9)0.0022 (8)0.0006 (8)
C60.0547 (14)0.0327 (11)0.0196 (10)0.0140 (10)0.0148 (9)0.0022 (8)
Geometric parameters (Å, º) top
Co1—O32.0224 (15)C13—H130.93
Co1—O12.0382 (14)C17—C161.519 (2)
Co1—O2i2.0429 (15)C17—H17A0.97
Co1—N22.0460 (16)C17—H17B0.97
Co1—O4i2.0628 (16)C23—C221.388 (3)
Co1—Co1i2.8020 (12)C23—H230.93
O1—C81.253 (2)C2—H20.93
O3—C161.262 (2)C19—C201.381 (3)
O2—C81.256 (2)C19—H190.93
O2—Co1i2.0429 (15)C9—C81.524 (2)
O4—C161.247 (2)C9—H9A0.97
O4—Co1i2.0628 (16)C9—H9B0.97
N1—C11.349 (2)C14—C151.381 (3)
N1—C61.453 (2)C14—H140.93
N1—C71.454 (2)C4—C51.366 (2)
N2—C31.343 (2)C4—H40.93
N2—C41.345 (2)C15—H150.93
C10—C111.383 (3)C5—H50.93
C10—C151.388 (3)C22—C211.380 (3)
C10—C91.510 (2)C22—H220.93
C3—C21.369 (2)C20—C211.384 (3)
C3—H30.93C20—H200.93
C11—C121.387 (3)C12—H120.93
C11—H110.93C7—H7A0.96
C1—C21.410 (2)C7—H7B0.96
C1—C51.411 (2)C7—H7C0.96
C18—C231.386 (2)C21—H210.93
C18—C191.388 (3)C6—H6A0.96
C18—C171.506 (2)C6—H6B0.96
C13—C121.380 (3)C6—H6C0.96
C13—C141.382 (3)
O3—Co1—O193.27 (6)C3—C2—H2120.1
O3—Co1—O2i87.33 (6)C1—C2—H2120.1
O1—Co1—O2i163.77 (5)C20—C19—C18120.91 (17)
O3—Co1—N2102.92 (6)C20—C19—H19119.5
O1—Co1—N294.29 (5)C18—C19—H19119.5
O2i—Co1—N2101.39 (5)C10—C9—C8114.21 (14)
O3—Co1—O4i163.73 (5)C10—C9—H9A108.7
O1—Co1—O4i85.64 (6)C8—C9—H9A108.7
O2i—Co1—O4i89.27 (7)C10—C9—H9B108.7
N2—Co1—O4i93.35 (5)C8—C9—H9B108.7
O3—Co1—Co1i89.34 (4)H9A—C9—H9B107.6
O1—Co1—Co1i79.04 (4)C15—C14—C13120.40 (18)
O2i—Co1—Co1i84.75 (4)C15—C14—H14119.8
N2—Co1—Co1i166.44 (4)C13—C14—H14119.8
O4i—Co1—Co1i74.50 (4)N2—C4—C5124.16 (16)
C8—O1—Co1129.17 (11)N2—C4—H4117.9
C16—O3—Co1116.62 (11)C5—C4—H4117.9
C8—O2—Co1i121.65 (11)C14—C15—C10120.78 (17)
C16—O4—Co1i133.30 (12)C14—C15—H15119.6
C1—N1—C6120.56 (16)C10—C15—H15119.6
C1—N1—C7121.55 (16)C4—C5—C1120.39 (16)
C6—N1—C7117.89 (15)C4—C5—H5119.8
C3—N2—C4115.61 (15)C1—C5—H5119.8
C3—N2—Co1124.00 (11)C21—C22—C23120.28 (18)
C4—N2—Co1120.31 (11)C21—C22—H22119.9
C11—C10—C15118.12 (17)C23—C22—H22119.9
C11—C10—C9120.35 (16)O4—C16—O3125.35 (16)
C15—C10—C9121.52 (16)O4—C16—C17118.12 (15)
N2—C3—C2124.67 (16)O3—C16—C17116.52 (15)
N2—C3—H3117.7C19—C20—C21120.23 (18)
C2—C3—H3117.7C19—C20—H20119.9
C10—C11—C12121.52 (18)C21—C20—H20119.9
C10—C11—H11119.2C13—C12—C11119.52 (18)
C12—C11—H11119.2C13—C12—H12120.2
N1—C1—C2122.71 (16)C11—C12—H12120.2
N1—C1—C5122.05 (16)O1—C8—O2125.30 (16)
C2—C1—C5115.23 (16)O1—C8—C9117.19 (15)
C23—C18—C19118.53 (16)O2—C8—C9117.50 (15)
C23—C18—C17120.81 (16)N1—C7—H7A109.5
C19—C18—C17120.66 (16)N1—C7—H7B109.5
C12—C13—C14119.66 (18)H7A—C7—H7B109.5
C12—C13—H13120.2N1—C7—H7C109.5
C14—C13—H13120.2H7A—C7—H7C109.5
C18—C17—C16114.52 (14)H7B—C7—H7C109.5
C18—C17—H17A108.6C22—C21—C20119.40 (17)
C16—C17—H17A108.6C22—C21—H21120.3
C18—C17—H17B108.6C20—C21—H21120.3
C16—C17—H17B108.6N1—C6—H6A109.5
H17A—C17—H17B107.6N1—C6—H6B109.5
C18—C23—C22120.65 (17)H6A—C6—H6B109.5
C18—C23—H23119.7N1—C6—H6C109.5
C22—C23—H23119.7H6A—C6—H6C109.5
C3—C2—C1119.85 (16)H6B—C6—H6C109.5
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O2ii0.962.533.337 (3)142
C23—H23···O3iii0.932.583.469 (3)159
Symmetry codes: (ii) x, y, z+1; (iii) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O2i0.96002.53003.337 (3)142.00
C23—H23···O3ii0.93002.58003.469 (3)159.00
Symmetry codes: (i) x, y, z+1; (ii) x+2, y, z.
 

Acknowledgements

This work was supported by the University of Constantine 1.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAraki, H., Tsuge, K., Sasaki, Y., Ishizaka, S. & Kitamura, N. (2005). Inorg. Chem. 44, 9667–9675.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCatterick, J. & Thornton, P. (1977). Adv. Inorg. Chem. Radiochem. 20, 291–362.  CrossRef CAS Google Scholar
First citationCotton, F. A., Wilkinson, G., Murillo, C. A. & Bochmann, M. (1999). Advanced Inorganic Chemistry, 6th ed. Singapore: John Wiley & Sons.  Google Scholar
First citationCui, Y., Long, D. L., Huang, X. Y., Zheng, F. K., Chen, W. D. & Huang, J. S. (1999). Chin. J. Struct. Chem. 19, 9–13.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSatgé, C., Granet, R., Verneuil, B., Branland, P. & Krausz, P. (2004). C. R. Chim. 7, 135–142.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages m517-m518
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds