organic compounds
3-Ethyl-cis-2,6-diphenylpiperidine
aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India
*Correspondence e-mail: mnpsy2004@yahoo.com
In the title compound, C19H23N, the piperidine ring adopts a chair conformation. The phenyl rings at the 2,6-positions of the piperidine ring occupy equatorial orientations. The features C—H⋯π interactions.
Related literature
For the biological activity of piperidine derivatives, see: Nalanishi et al. (1974). For the synthesis, see: Ponnuswamy et al. (2002). For puckering parameters, see: Cremer & Pople (1975) and for asymmetry parameters, see: Nardelli (1983).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536813021417/ng5337sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813021417/ng5337Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813021417/ng5337Isup3.cml
A mixture of piperidin-4-one (10 mM), and 80% hydrazine hydrate (3.1 ml) in diethylene glycol (100 ml) was heated on a steam bath for 2 h. Potassium hydroxide pellets (2.8 g) were added to the mixture and the contents were refluxed for another 2 h. The reaction mixture was cooled (Ponnuswamy et al., 2002). The product formed was filtered and recrystallized from ethanol.
C-bound H atoms were positioned geometrically (C–H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms. The N-bound H was located in a difference Fourier map and was refined with a distance restraint; its temperature factor was refined.
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level. | |
Fig. 2. The crystal packing of the molecules viewed down a axis. |
C19H23N | Z = 2 |
Mr = 265.38 | F(000) = 288 |
Triclinic, P1 | Dx = 1.117 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.5384 (5) Å | Cell parameters from 2579 reflections |
b = 9.2717 (9) Å | θ = 1.3–26.5° |
c = 16.0483 (14) Å | µ = 0.06 mm−1 |
α = 75.508 (5)° | T = 293 K |
β = 89.474 (5)° | Block, colorless |
γ = 81.625 (5)° | 0.20 × 0.19 × 0.19 mm |
V = 789.04 (13) Å3 |
Bruker SMART APEXII CCD diffractometer | 3251 independent reflections |
Radiation source: fine-focus sealed tube | 2579 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω and ϕ scans | θmax = 26.5°, θmin = 1.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −6→6 |
Tmin = 0.987, Tmax = 0.988 | k = −11→8 |
11467 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.124 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0584P)2 + 0.1238P] where P = (Fo2 + 2Fc2)/3 |
3251 reflections | (Δ/σ)max < 0.001 |
185 parameters | Δρmax = 0.13 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C19H23N | γ = 81.625 (5)° |
Mr = 265.38 | V = 789.04 (13) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.5384 (5) Å | Mo Kα radiation |
b = 9.2717 (9) Å | µ = 0.06 mm−1 |
c = 16.0483 (14) Å | T = 293 K |
α = 75.508 (5)° | 0.20 × 0.19 × 0.19 mm |
β = 89.474 (5)° |
Bruker SMART APEXII CCD diffractometer | 3251 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2579 reflections with I > 2σ(I) |
Tmin = 0.987, Tmax = 0.988 | Rint = 0.025 |
11467 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.124 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.13 e Å−3 |
3251 reflections | Δρmin = −0.18 e Å−3 |
185 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C2 | 0.1613 (2) | 0.41471 (13) | 0.23423 (7) | 0.0434 (3) | |
H2 | 0.0128 | 0.3751 | 0.2238 | 0.052* | |
C3 | 0.3820 (2) | 0.31957 (13) | 0.20539 (8) | 0.0471 (3) | |
H3 | 0.5289 | 0.3604 | 0.2160 | 0.057* | |
C4 | 0.4049 (3) | 0.15761 (15) | 0.26061 (9) | 0.0594 (4) | |
H4A | 0.2685 | 0.1119 | 0.2470 | 0.071* | |
H4B | 0.5538 | 0.1004 | 0.2466 | 0.071* | |
C5 | 0.4091 (3) | 0.14914 (15) | 0.35648 (9) | 0.0582 (4) | |
H5A | 0.5578 | 0.1813 | 0.3719 | 0.070* | |
H5B | 0.4089 | 0.0456 | 0.3888 | 0.070* | |
C6 | 0.1893 (2) | 0.24831 (14) | 0.38030 (8) | 0.0484 (3) | |
H6 | 0.0405 | 0.2116 | 0.3672 | 0.058* | |
C7 | 0.1925 (2) | 0.24838 (13) | 0.47436 (8) | 0.0471 (3) | |
C8 | 0.0291 (3) | 0.17969 (17) | 0.53029 (9) | 0.0612 (4) | |
H8 | −0.0888 | 0.1347 | 0.5095 | 0.073* | |
C9 | 0.0372 (3) | 0.17646 (19) | 0.61675 (10) | 0.0708 (4) | |
H9 | −0.0737 | 0.1285 | 0.6535 | 0.085* | |
C10 | 0.2063 (3) | 0.24306 (17) | 0.64857 (9) | 0.0639 (4) | |
H10 | 0.2111 | 0.2413 | 0.7067 | 0.077* | |
C11 | 0.3691 (3) | 0.31261 (19) | 0.59385 (10) | 0.0721 (4) | |
H11 | 0.4852 | 0.3585 | 0.6150 | 0.086* | |
C12 | 0.3625 (3) | 0.31531 (18) | 0.50754 (9) | 0.0663 (4) | |
H12 | 0.4745 | 0.3630 | 0.4712 | 0.080* | |
C13 | 0.1329 (2) | 0.57950 (13) | 0.18804 (7) | 0.0429 (3) | |
C14 | 0.3020 (2) | 0.66778 (14) | 0.20280 (8) | 0.0501 (3) | |
H14 | 0.4373 | 0.6233 | 0.2389 | 0.060* | |
C15 | 0.2726 (3) | 0.82000 (15) | 0.16494 (9) | 0.0596 (4) | |
H15 | 0.3872 | 0.8774 | 0.1759 | 0.071* | |
C16 | 0.0745 (3) | 0.88777 (16) | 0.11094 (9) | 0.0657 (4) | |
H16 | 0.0540 | 0.9909 | 0.0859 | 0.079* | |
C17 | −0.0922 (3) | 0.80212 (17) | 0.09430 (9) | 0.0665 (4) | |
H17 | −0.2250 | 0.8472 | 0.0572 | 0.080* | |
C18 | −0.0642 (2) | 0.64924 (16) | 0.13235 (8) | 0.0545 (3) | |
H18 | −0.1786 | 0.5924 | 0.1206 | 0.065* | |
C19 | 0.3650 (3) | 0.32871 (17) | 0.10912 (9) | 0.0609 (4) | |
H19A | 0.2269 | 0.2818 | 0.0983 | 0.073* | |
H19B | 0.3334 | 0.4339 | 0.0778 | 0.073* | |
C20 | 0.5909 (3) | 0.2544 (2) | 0.07412 (11) | 0.0823 (5) | |
H20A | 0.5665 | 0.2649 | 0.0136 | 0.124* | |
H20B | 0.6213 | 0.1494 | 0.1034 | 0.124* | |
H20C | 0.7282 | 0.3016 | 0.0831 | 0.124* | |
N1 | 0.1873 (2) | 0.40159 (11) | 0.32687 (6) | 0.0463 (3) | |
H1 | 0.069 (3) | 0.4663 (17) | 0.3429 (10) | 0.064 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.0430 (6) | 0.0478 (6) | 0.0404 (6) | −0.0064 (5) | 0.0015 (5) | −0.0133 (5) |
C3 | 0.0495 (7) | 0.0477 (7) | 0.0462 (6) | −0.0048 (5) | 0.0039 (5) | −0.0172 (5) |
C4 | 0.0736 (9) | 0.0475 (7) | 0.0576 (8) | 0.0000 (6) | 0.0069 (7) | −0.0194 (6) |
C5 | 0.0725 (9) | 0.0444 (7) | 0.0532 (8) | 0.0003 (6) | 0.0024 (6) | −0.0092 (6) |
C6 | 0.0534 (7) | 0.0488 (7) | 0.0438 (6) | −0.0120 (5) | 0.0022 (5) | −0.0106 (5) |
C7 | 0.0521 (7) | 0.0439 (6) | 0.0435 (6) | −0.0052 (5) | 0.0022 (5) | −0.0085 (5) |
C8 | 0.0607 (8) | 0.0709 (9) | 0.0558 (8) | −0.0190 (7) | 0.0106 (6) | −0.0180 (7) |
C9 | 0.0776 (10) | 0.0810 (10) | 0.0539 (8) | −0.0192 (8) | 0.0214 (7) | −0.0138 (7) |
C10 | 0.0784 (10) | 0.0673 (9) | 0.0432 (7) | 0.0027 (7) | 0.0035 (7) | −0.0163 (6) |
C11 | 0.0844 (11) | 0.0823 (11) | 0.0559 (8) | −0.0238 (9) | −0.0037 (8) | −0.0226 (8) |
C12 | 0.0765 (10) | 0.0774 (10) | 0.0502 (8) | −0.0329 (8) | 0.0065 (7) | −0.0137 (7) |
C13 | 0.0443 (6) | 0.0483 (6) | 0.0359 (6) | −0.0011 (5) | 0.0050 (5) | −0.0136 (5) |
C14 | 0.0546 (7) | 0.0511 (7) | 0.0450 (6) | −0.0042 (5) | −0.0004 (5) | −0.0148 (5) |
C15 | 0.0754 (9) | 0.0524 (8) | 0.0544 (8) | −0.0132 (7) | 0.0103 (7) | −0.0180 (6) |
C16 | 0.0847 (11) | 0.0482 (7) | 0.0547 (8) | 0.0038 (7) | 0.0147 (7) | −0.0037 (6) |
C17 | 0.0634 (9) | 0.0698 (9) | 0.0517 (8) | 0.0098 (7) | −0.0022 (6) | 0.0007 (7) |
C18 | 0.0489 (7) | 0.0632 (8) | 0.0477 (7) | −0.0033 (6) | −0.0004 (5) | −0.0101 (6) |
C19 | 0.0698 (9) | 0.0651 (8) | 0.0499 (7) | −0.0034 (7) | 0.0078 (6) | −0.0223 (6) |
C20 | 0.0885 (12) | 0.0953 (13) | 0.0677 (10) | −0.0023 (10) | 0.0219 (9) | −0.0361 (9) |
N1 | 0.0537 (6) | 0.0443 (6) | 0.0391 (5) | −0.0011 (5) | 0.0045 (4) | −0.0109 (4) |
C2—N1 | 1.4678 (14) | C10—H10 | 0.9300 |
C2—C13 | 1.5080 (16) | C11—C12 | 1.380 (2) |
C2—C3 | 1.5383 (17) | C11—H11 | 0.9300 |
C2—H2 | 0.9800 | C12—H12 | 0.9300 |
C3—C4 | 1.5287 (18) | C13—C14 | 1.3882 (17) |
C3—C19 | 1.5289 (17) | C13—C18 | 1.3898 (17) |
C3—H3 | 0.9800 | C14—C15 | 1.3760 (18) |
C4—C5 | 1.5209 (18) | C14—H14 | 0.9300 |
C4—H4A | 0.9700 | C15—C16 | 1.376 (2) |
C4—H4B | 0.9700 | C15—H15 | 0.9300 |
C5—C6 | 1.5217 (19) | C16—C17 | 1.371 (2) |
C5—H5A | 0.9700 | C16—H16 | 0.9300 |
C5—H5B | 0.9700 | C17—C18 | 1.382 (2) |
C6—N1 | 1.4631 (15) | C17—H17 | 0.9300 |
C6—C7 | 1.5099 (16) | C18—H18 | 0.9300 |
C6—H6 | 0.9800 | C19—C20 | 1.512 (2) |
C7—C8 | 1.3773 (19) | C19—H19A | 0.9700 |
C7—C12 | 1.3786 (19) | C19—H19B | 0.9700 |
C8—C9 | 1.381 (2) | C20—H20A | 0.9600 |
C8—H8 | 0.9300 | C20—H20B | 0.9600 |
C9—C10 | 1.362 (2) | C20—H20C | 0.9600 |
C9—H9 | 0.9300 | N1—H1 | 0.902 (16) |
C10—C11 | 1.368 (2) | ||
N1—C2—C13 | 108.11 (9) | C11—C10—H10 | 120.4 |
N1—C2—C3 | 109.21 (10) | C10—C11—C12 | 120.54 (14) |
C13—C2—C3 | 113.50 (10) | C10—C11—H11 | 119.7 |
N1—C2—H2 | 108.6 | C12—C11—H11 | 119.7 |
C13—C2—H2 | 108.6 | C7—C12—C11 | 121.02 (14) |
C3—C2—H2 | 108.6 | C7—C12—H12 | 119.5 |
C4—C3—C19 | 112.37 (10) | C11—C12—H12 | 119.5 |
C4—C3—C2 | 109.21 (10) | C14—C13—C18 | 117.86 (12) |
C19—C3—C2 | 111.62 (10) | C14—C13—C2 | 120.10 (10) |
C4—C3—H3 | 107.8 | C18—C13—C2 | 122.01 (11) |
C19—C3—H3 | 107.8 | C15—C14—C13 | 121.05 (12) |
C2—C3—H3 | 107.8 | C15—C14—H14 | 119.5 |
C5—C4—C3 | 112.36 (10) | C13—C14—H14 | 119.5 |
C5—C4—H4A | 109.1 | C16—C15—C14 | 120.39 (14) |
C3—C4—H4A | 109.1 | C16—C15—H15 | 119.8 |
C5—C4—H4B | 109.1 | C14—C15—H15 | 119.8 |
C3—C4—H4B | 109.1 | C17—C16—C15 | 119.47 (13) |
H4A—C4—H4B | 107.9 | C17—C16—H16 | 120.3 |
C4—C5—C6 | 111.12 (11) | C15—C16—H16 | 120.3 |
C4—C5—H5A | 109.4 | C16—C17—C18 | 120.44 (13) |
C6—C5—H5A | 109.4 | C16—C17—H17 | 119.8 |
C4—C5—H5B | 109.4 | C18—C17—H17 | 119.8 |
C6—C5—H5B | 109.4 | C17—C18—C13 | 120.78 (13) |
H5A—C5—H5B | 108.0 | C17—C18—H18 | 119.6 |
N1—C6—C7 | 109.94 (10) | C13—C18—H18 | 119.6 |
N1—C6—C5 | 107.98 (10) | C20—C19—C3 | 114.38 (13) |
C7—C6—C5 | 112.76 (10) | C20—C19—H19A | 108.7 |
N1—C6—H6 | 108.7 | C3—C19—H19A | 108.7 |
C7—C6—H6 | 108.7 | C20—C19—H19B | 108.7 |
C5—C6—H6 | 108.7 | C3—C19—H19B | 108.7 |
C8—C7—C12 | 117.64 (12) | H19A—C19—H19B | 107.6 |
C8—C7—C6 | 121.42 (11) | C19—C20—H20A | 109.5 |
C12—C7—C6 | 120.93 (11) | C19—C20—H20B | 109.5 |
C7—C8—C9 | 121.17 (14) | H20A—C20—H20B | 109.5 |
C7—C8—H8 | 119.4 | C19—C20—H20C | 109.5 |
C9—C8—H8 | 119.4 | H20A—C20—H20C | 109.5 |
C10—C9—C8 | 120.50 (14) | H20B—C20—H20C | 109.5 |
C10—C9—H9 | 119.8 | C6—N1—C2 | 113.77 (9) |
C8—C9—H9 | 119.8 | C6—N1—H1 | 110.9 (10) |
C9—C10—C11 | 119.13 (13) | C2—N1—H1 | 109.8 (10) |
C9—C10—H10 | 120.4 | ||
N1—C2—C3—C4 | 55.09 (13) | C10—C11—C12—C7 | 0.0 (3) |
C13—C2—C3—C4 | 175.78 (10) | N1—C2—C13—C14 | 52.66 (14) |
N1—C2—C3—C19 | 179.96 (10) | C3—C2—C13—C14 | −68.65 (14) |
C13—C2—C3—C19 | −59.35 (14) | N1—C2—C13—C18 | −125.03 (12) |
C19—C3—C4—C5 | −177.17 (12) | C3—C2—C13—C18 | 113.65 (13) |
C2—C3—C4—C5 | −52.74 (15) | C18—C13—C14—C15 | 1.34 (18) |
C3—C4—C5—C6 | 53.94 (16) | C2—C13—C14—C15 | −176.45 (11) |
C4—C5—C6—N1 | −55.80 (14) | C13—C14—C15—C16 | −0.4 (2) |
C4—C5—C6—C7 | −177.47 (11) | C14—C15—C16—C17 | −0.7 (2) |
N1—C6—C7—C8 | 129.57 (13) | C15—C16—C17—C18 | 1.0 (2) |
C5—C6—C7—C8 | −109.88 (14) | C16—C17—C18—C13 | 0.0 (2) |
N1—C6—C7—C12 | −51.55 (16) | C14—C13—C18—C17 | −1.11 (19) |
C5—C6—C7—C12 | 69.00 (16) | C2—C13—C18—C17 | 176.64 (11) |
C12—C7—C8—C9 | −0.7 (2) | C4—C3—C19—C20 | −64.41 (17) |
C6—C7—C8—C9 | 178.18 (13) | C2—C3—C19—C20 | 172.50 (13) |
C7—C8—C9—C10 | 0.7 (2) | C7—C6—N1—C2 | −174.65 (10) |
C8—C9—C10—C11 | −0.3 (2) | C5—C6—N1—C2 | 61.95 (13) |
C9—C10—C11—C12 | −0.1 (2) | C13—C2—N1—C6 | 173.60 (10) |
C8—C7—C12—C11 | 0.4 (2) | C3—C2—N1—C6 | −62.46 (13) |
C6—C7—C12—C11 | −178.57 (14) |
Cg2 and Cg3 are the centroids of the C7–C12 and C13–C18 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5B···Cg2i | 0.97 | 3.14 | 3.893 (2) | 136 |
C10—H10···Cg3ii | 0.93 | 2.92 | 3.702 (2) | 142 |
C20—H20A···Cg3iii | 0.96 | 3.17 | 3.926 (2) | 137 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z. |
Cg2 and Cg3 are the centroids of the C7–C12 and C13–C18 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5B···Cg2i | 0.97 | 3.14 | 3.893 (2) | 135.49 |
C10—H10···Cg3ii | 0.93 | 2.92 | 3.702 (2) | 142.35 |
C20—H20A···Cg3iii | 0.96 | 3.17 | 3.926 (2) | 137.18 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z. |
Acknowledgements
SP thanks the UGC, New Delhi, for financial assistance in the form of a Major Research Project.
References
Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974). Jpn Patent 74–3987. Google Scholar
Nardelli, M. (1983). Acta Cryst. C39, 1141–1142. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ponnuswamy, S., Venkatraj, M., Jeyaraman, R., Suresh Kumar, M., Kumaran, D. & Ponnuswamy, M. N. (2002). Indian J. Chem. Sect. B, 41, 614–627. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Piperidine derivatives are the valued heterocyclic compounds in the field of medicinal chemistry. As an example, piperidines have been found to exhibit blood cholesterol-lowering activities (Nalanishi et al., 1974). Against this background and to ascertain the molecular structure and conformation, the X-ray crystal structure determination of the title compound has been carried out.
The ORTEP plot of the molecule is shown in Fig. 1. The piperidine ring adopts chair conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli,1983) are: q2=0.039 (14) Å, q3 = 0.576 (14) Å, ϕ2 = 1(2)° and Δs (N1& C4)= 0.86 (12)°.
The planar phenyl rings at 2,6- positions of the piperidine ring occupy equatorial orientation as can be seen from the corresponding torsion angles [C4—C3—C2—C13=] 175.8 (1)° & [C4—C5—C6—C7=] -177.5 (1)°, respectively. The dihedral angle between the two phenyl rings is 64.22 (7)°. The ethyl group substituted at 3rd position of the piperdine moiety is in equatorial oreintation.
The molecules are controlled by C—H ··· π type of intermolecular interactions in addition to van der Waals forces. The molecules are stacked one over the other while packing in the unit cell (Fig. 2).