organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Ethyl-cis-2,6-di­phenyl­piperidine

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 11 July 2013; accepted 1 August 2013; online 17 August 2013)

In the title compound, C19H23N, the piperidine ring adopts a chair conformation. The phenyl rings at the 2,6-positions of the piperidine ring occupy equatorial orientations. The crystal structure features C—H⋯π inter­actions.

Related literature

For the biological activity of piperidine derivatives, see: Nalanishi et al. (1974[Nalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974). Jpn Patent 74-3987.]). For the synthesis, see: Ponnuswamy et al. (2002[Ponnuswamy, S., Venkatraj, M., Jeyaraman, R., Suresh Kumar, M., Kumaran, D. & Ponnuswamy, M. N. (2002). Indian J. Chem. Sect. B, 41, 614-627.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) and for asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C19H23N

  • Mr = 265.38

  • Triclinic, [P \overline 1]

  • a = 5.5384 (5) Å

  • b = 9.2717 (9) Å

  • c = 16.0483 (14) Å

  • α = 75.508 (5)°

  • β = 89.474 (5)°

  • γ = 81.625 (5)°

  • V = 789.04 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 293 K

  • 0.20 × 0.19 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.987, Tmax = 0.988

  • 11467 measured reflections

  • 3251 independent reflections

  • 2579 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.124

  • S = 1.03

  • 3251 reflections

  • 185 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C7–C12 and C13–C18 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5BCg2i 0.97 3.14 3.893 (2) 136
C10—H10⋯Cg3ii 0.93 2.92 3.702 (2) 142
C20—H20ACg3iii 0.96 3.17 3.926 (2) 137
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperidine derivatives are the valued heterocyclic compounds in the field of medicinal chemistry. As an example, piperidines have been found to exhibit blood cholesterol-lowering activities (Nalanishi et al., 1974). Against this background and to ascertain the molecular structure and conformation, the X-ray crystal structure determination of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. The piperidine ring adopts chair conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli,1983) are: q2=0.039 (14) Å, q3 = 0.576 (14) Å, ϕ2 = 1(2)° and Δs (N1& C4)= 0.86 (12)°.

The planar phenyl rings at 2,6- positions of the piperidine ring occupy equatorial orientation as can be seen from the corresponding torsion angles [C4—C3—C2—C13=] 175.8 (1)° & [C4—C5—C6—C7=] -177.5 (1)°, respectively. The dihedral angle between the two phenyl rings is 64.22 (7)°. The ethyl group substituted at 3rd position of the piperdine moiety is in equatorial oreintation.

The molecules are controlled by C—H ··· π type of intermolecular interactions in addition to van der Waals forces. The molecules are stacked one over the other while packing in the unit cell (Fig. 2).

Related literature top

For the biological activity of piperidine derivatives, see: Nalanishi et al. (1974). For the synthesis, see: Ponnuswamy et al. (2002). For puckering parameters, see: Cremer & Pople (1975) and for asymmetry parameters, see: Nardelli (1983).

Experimental top

A mixture of piperidin-4-one (10 mM), and 80% hydrazine hydrate (3.1 ml) in diethylene glycol (100 ml) was heated on a steam bath for 2 h. Potassium hydroxide pellets (2.8 g) were added to the mixture and the contents were refluxed for another 2 h. The reaction mixture was cooled (Ponnuswamy et al., 2002). The product formed was filtered and recrystallized from ethanol.

Refinement top

C-bound H atoms were positioned geometrically (C–H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms. The N-bound H was located in a difference Fourier map and was refined with a distance restraint; its temperature factor was refined.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down a axis.
3-Ethyl-cis-2,6-diphenylpiperidine top
Crystal data top
C19H23NZ = 2
Mr = 265.38F(000) = 288
Triclinic, P1Dx = 1.117 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.5384 (5) ÅCell parameters from 2579 reflections
b = 9.2717 (9) Åθ = 1.3–26.5°
c = 16.0483 (14) ŵ = 0.06 mm1
α = 75.508 (5)°T = 293 K
β = 89.474 (5)°Block, colorless
γ = 81.625 (5)°0.20 × 0.19 × 0.19 mm
V = 789.04 (13) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3251 independent reflections
Radiation source: fine-focus sealed tube2579 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and ϕ scansθmax = 26.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 66
Tmin = 0.987, Tmax = 0.988k = 118
11467 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.1238P]
where P = (Fo2 + 2Fc2)/3
3251 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C19H23Nγ = 81.625 (5)°
Mr = 265.38V = 789.04 (13) Å3
Triclinic, P1Z = 2
a = 5.5384 (5) ÅMo Kα radiation
b = 9.2717 (9) ŵ = 0.06 mm1
c = 16.0483 (14) ÅT = 293 K
α = 75.508 (5)°0.20 × 0.19 × 0.19 mm
β = 89.474 (5)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3251 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2579 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.988Rint = 0.025
11467 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.13 e Å3
3251 reflectionsΔρmin = 0.18 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.1613 (2)0.41471 (13)0.23423 (7)0.0434 (3)
H20.01280.37510.22380.052*
C30.3820 (2)0.31957 (13)0.20539 (8)0.0471 (3)
H30.52890.36040.21600.057*
C40.4049 (3)0.15761 (15)0.26061 (9)0.0594 (4)
H4A0.26850.11190.24700.071*
H4B0.55380.10040.24660.071*
C50.4091 (3)0.14914 (15)0.35648 (9)0.0582 (4)
H5A0.55780.18130.37190.070*
H5B0.40890.04560.38880.070*
C60.1893 (2)0.24831 (14)0.38030 (8)0.0484 (3)
H60.04050.21160.36720.058*
C70.1925 (2)0.24838 (13)0.47436 (8)0.0471 (3)
C80.0291 (3)0.17969 (17)0.53029 (9)0.0612 (4)
H80.08880.13470.50950.073*
C90.0372 (3)0.17646 (19)0.61675 (10)0.0708 (4)
H90.07370.12850.65350.085*
C100.2063 (3)0.24306 (17)0.64857 (9)0.0639 (4)
H100.21110.24130.70670.077*
C110.3691 (3)0.31261 (19)0.59385 (10)0.0721 (4)
H110.48520.35850.61500.086*
C120.3625 (3)0.31531 (18)0.50754 (9)0.0663 (4)
H120.47450.36300.47120.080*
C130.1329 (2)0.57950 (13)0.18804 (7)0.0429 (3)
C140.3020 (2)0.66778 (14)0.20280 (8)0.0501 (3)
H140.43730.62330.23890.060*
C150.2726 (3)0.82000 (15)0.16494 (9)0.0596 (4)
H150.38720.87740.17590.071*
C160.0745 (3)0.88777 (16)0.11094 (9)0.0657 (4)
H160.05400.99090.08590.079*
C170.0922 (3)0.80212 (17)0.09430 (9)0.0665 (4)
H170.22500.84720.05720.080*
C180.0642 (2)0.64924 (16)0.13235 (8)0.0545 (3)
H180.17860.59240.12060.065*
C190.3650 (3)0.32871 (17)0.10912 (9)0.0609 (4)
H19A0.22690.28180.09830.073*
H19B0.33340.43390.07780.073*
C200.5909 (3)0.2544 (2)0.07412 (11)0.0823 (5)
H20A0.56650.26490.01360.124*
H20B0.62130.14940.10340.124*
H20C0.72820.30160.08310.124*
N10.1873 (2)0.40159 (11)0.32687 (6)0.0463 (3)
H10.069 (3)0.4663 (17)0.3429 (10)0.064 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0430 (6)0.0478 (6)0.0404 (6)0.0064 (5)0.0015 (5)0.0133 (5)
C30.0495 (7)0.0477 (7)0.0462 (6)0.0048 (5)0.0039 (5)0.0172 (5)
C40.0736 (9)0.0475 (7)0.0576 (8)0.0000 (6)0.0069 (7)0.0194 (6)
C50.0725 (9)0.0444 (7)0.0532 (8)0.0003 (6)0.0024 (6)0.0092 (6)
C60.0534 (7)0.0488 (7)0.0438 (6)0.0120 (5)0.0022 (5)0.0106 (5)
C70.0521 (7)0.0439 (6)0.0435 (6)0.0052 (5)0.0022 (5)0.0085 (5)
C80.0607 (8)0.0709 (9)0.0558 (8)0.0190 (7)0.0106 (6)0.0180 (7)
C90.0776 (10)0.0810 (10)0.0539 (8)0.0192 (8)0.0214 (7)0.0138 (7)
C100.0784 (10)0.0673 (9)0.0432 (7)0.0027 (7)0.0035 (7)0.0163 (6)
C110.0844 (11)0.0823 (11)0.0559 (8)0.0238 (9)0.0037 (8)0.0226 (8)
C120.0765 (10)0.0774 (10)0.0502 (8)0.0329 (8)0.0065 (7)0.0137 (7)
C130.0443 (6)0.0483 (6)0.0359 (6)0.0011 (5)0.0050 (5)0.0136 (5)
C140.0546 (7)0.0511 (7)0.0450 (6)0.0042 (5)0.0004 (5)0.0148 (5)
C150.0754 (9)0.0524 (8)0.0544 (8)0.0132 (7)0.0103 (7)0.0180 (6)
C160.0847 (11)0.0482 (7)0.0547 (8)0.0038 (7)0.0147 (7)0.0037 (6)
C170.0634 (9)0.0698 (9)0.0517 (8)0.0098 (7)0.0022 (6)0.0007 (7)
C180.0489 (7)0.0632 (8)0.0477 (7)0.0033 (6)0.0004 (5)0.0101 (6)
C190.0698 (9)0.0651 (8)0.0499 (7)0.0034 (7)0.0078 (6)0.0223 (6)
C200.0885 (12)0.0953 (13)0.0677 (10)0.0023 (10)0.0219 (9)0.0361 (9)
N10.0537 (6)0.0443 (6)0.0391 (5)0.0011 (5)0.0045 (4)0.0109 (4)
Geometric parameters (Å, º) top
C2—N11.4678 (14)C10—H100.9300
C2—C131.5080 (16)C11—C121.380 (2)
C2—C31.5383 (17)C11—H110.9300
C2—H20.9800C12—H120.9300
C3—C41.5287 (18)C13—C141.3882 (17)
C3—C191.5289 (17)C13—C181.3898 (17)
C3—H30.9800C14—C151.3760 (18)
C4—C51.5209 (18)C14—H140.9300
C4—H4A0.9700C15—C161.376 (2)
C4—H4B0.9700C15—H150.9300
C5—C61.5217 (19)C16—C171.371 (2)
C5—H5A0.9700C16—H160.9300
C5—H5B0.9700C17—C181.382 (2)
C6—N11.4631 (15)C17—H170.9300
C6—C71.5099 (16)C18—H180.9300
C6—H60.9800C19—C201.512 (2)
C7—C81.3773 (19)C19—H19A0.9700
C7—C121.3786 (19)C19—H19B0.9700
C8—C91.381 (2)C20—H20A0.9600
C8—H80.9300C20—H20B0.9600
C9—C101.362 (2)C20—H20C0.9600
C9—H90.9300N1—H10.902 (16)
C10—C111.368 (2)
N1—C2—C13108.11 (9)C11—C10—H10120.4
N1—C2—C3109.21 (10)C10—C11—C12120.54 (14)
C13—C2—C3113.50 (10)C10—C11—H11119.7
N1—C2—H2108.6C12—C11—H11119.7
C13—C2—H2108.6C7—C12—C11121.02 (14)
C3—C2—H2108.6C7—C12—H12119.5
C4—C3—C19112.37 (10)C11—C12—H12119.5
C4—C3—C2109.21 (10)C14—C13—C18117.86 (12)
C19—C3—C2111.62 (10)C14—C13—C2120.10 (10)
C4—C3—H3107.8C18—C13—C2122.01 (11)
C19—C3—H3107.8C15—C14—C13121.05 (12)
C2—C3—H3107.8C15—C14—H14119.5
C5—C4—C3112.36 (10)C13—C14—H14119.5
C5—C4—H4A109.1C16—C15—C14120.39 (14)
C3—C4—H4A109.1C16—C15—H15119.8
C5—C4—H4B109.1C14—C15—H15119.8
C3—C4—H4B109.1C17—C16—C15119.47 (13)
H4A—C4—H4B107.9C17—C16—H16120.3
C4—C5—C6111.12 (11)C15—C16—H16120.3
C4—C5—H5A109.4C16—C17—C18120.44 (13)
C6—C5—H5A109.4C16—C17—H17119.8
C4—C5—H5B109.4C18—C17—H17119.8
C6—C5—H5B109.4C17—C18—C13120.78 (13)
H5A—C5—H5B108.0C17—C18—H18119.6
N1—C6—C7109.94 (10)C13—C18—H18119.6
N1—C6—C5107.98 (10)C20—C19—C3114.38 (13)
C7—C6—C5112.76 (10)C20—C19—H19A108.7
N1—C6—H6108.7C3—C19—H19A108.7
C7—C6—H6108.7C20—C19—H19B108.7
C5—C6—H6108.7C3—C19—H19B108.7
C8—C7—C12117.64 (12)H19A—C19—H19B107.6
C8—C7—C6121.42 (11)C19—C20—H20A109.5
C12—C7—C6120.93 (11)C19—C20—H20B109.5
C7—C8—C9121.17 (14)H20A—C20—H20B109.5
C7—C8—H8119.4C19—C20—H20C109.5
C9—C8—H8119.4H20A—C20—H20C109.5
C10—C9—C8120.50 (14)H20B—C20—H20C109.5
C10—C9—H9119.8C6—N1—C2113.77 (9)
C8—C9—H9119.8C6—N1—H1110.9 (10)
C9—C10—C11119.13 (13)C2—N1—H1109.8 (10)
C9—C10—H10120.4
N1—C2—C3—C455.09 (13)C10—C11—C12—C70.0 (3)
C13—C2—C3—C4175.78 (10)N1—C2—C13—C1452.66 (14)
N1—C2—C3—C19179.96 (10)C3—C2—C13—C1468.65 (14)
C13—C2—C3—C1959.35 (14)N1—C2—C13—C18125.03 (12)
C19—C3—C4—C5177.17 (12)C3—C2—C13—C18113.65 (13)
C2—C3—C4—C552.74 (15)C18—C13—C14—C151.34 (18)
C3—C4—C5—C653.94 (16)C2—C13—C14—C15176.45 (11)
C4—C5—C6—N155.80 (14)C13—C14—C15—C160.4 (2)
C4—C5—C6—C7177.47 (11)C14—C15—C16—C170.7 (2)
N1—C6—C7—C8129.57 (13)C15—C16—C17—C181.0 (2)
C5—C6—C7—C8109.88 (14)C16—C17—C18—C130.0 (2)
N1—C6—C7—C1251.55 (16)C14—C13—C18—C171.11 (19)
C5—C6—C7—C1269.00 (16)C2—C13—C18—C17176.64 (11)
C12—C7—C8—C90.7 (2)C4—C3—C19—C2064.41 (17)
C6—C7—C8—C9178.18 (13)C2—C3—C19—C20172.50 (13)
C7—C8—C9—C100.7 (2)C7—C6—N1—C2174.65 (10)
C8—C9—C10—C110.3 (2)C5—C6—N1—C261.95 (13)
C9—C10—C11—C120.1 (2)C13—C2—N1—C6173.60 (10)
C8—C7—C12—C110.4 (2)C3—C2—N1—C662.46 (13)
C6—C7—C12—C11178.57 (14)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C7–C12 and C13–C18 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5B···Cg2i0.973.143.893 (2)136
C10—H10···Cg3ii0.932.923.702 (2)142
C20—H20A···Cg3iii0.963.173.926 (2)137
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C7–C12 and C13–C18 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5B···Cg2i0.973.143.893 (2)135.49
C10—H10···Cg3ii0.932.923.702 (2)142.35
C20—H20A···Cg3iii0.963.173.926 (2)137.18
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z.
 

Acknowledgements

SP thanks the UGC, New Delhi, for financial assistance in the form of a Major Research Project.

References

First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974). Jpn Patent 74–3987.  Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPonnuswamy, S., Venkatraj, M., Jeyaraman, R., Suresh Kumar, M., Kumaran, D. & Ponnuswamy, M. N. (2002). Indian J. Chem. Sect. B, 41, 614–627.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds