organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Chloro­phenyl­sulfin­yl)-2,4,7-tri­meth­yl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 8 July 2013; accepted 30 July 2013; online 3 August 2013)

In the title compound, C17H15ClO2S, the dihedral angle between the mean plane [r.m.s. deviation = 0.020 (2) Å] of the benzo­furan ring system and the mean plane [r.m.s. deviation = 0.011 (1) Å] of the 4-chloro­phenyl ring is 72.68 (6)°. In the crystal, mol­ecules are linked via pairs of C—H⋯π inter­actions into inversion dimers. These dimers are further packed by C—H⋯O hydrogen bonds into supra­molecular chains running along the a-axis direction. In addition, the crystal structure also exhibits ππ inter­actions between the 4-chloro­phenyl rings of adjacent mol­ecules [centroid–centroid distance = 4.094 (3) Å, inter­planar distance = 3.648 (3) Å and slippage = 1.656 (3) Å].

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2010a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o472.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o2325.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15ClO2S

  • Mr = 318.80

  • Triclinic, [P \overline 1]

  • a = 6.043 (2) Å

  • b = 11.716 (4) Å

  • c = 12.217 (5) Å

  • α = 117.99 (2)°

  • β = 92.00 (2)°

  • γ = 97.42 (2)°

  • V = 752.9 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 173 K

  • 0.31 × 0.24 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.633, Tmax = 0.746

  • 12137 measured reflections

  • 3192 independent reflections

  • 2515 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.128

  • S = 1.12

  • 3192 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1/C2/C7/O1/C8 furan ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O2i 0.98 2.38 3.254 (3) 148
C11—H11BCg1ii 0.98 2.96 3.503 (3) 116
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing study of 2,5,7-trimethyl-1-benzofuran derivatives containing 4-fluorophenylsulfinyl (Choi et al., 2010a) and 4-chlorophenylsulfinyl (Choi et al., 2010b) substituents in 3-postion, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.020 (2) Å from the least-squares plane defined by the nine constituent atoms. The 4-chlorophenyl ring is essentially planar, with a mean deviation of 0.011 (1) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the benzofuran ring system and the 4-chlorophenyl ring is 72.68 (6)°. In the crystal structure (Fig. 2), molecules are connected via pairs of C—H···π interactions into inversion dimers (Table 1, Cg1 is the centroid of the C1/C2/C7/O1/C8 furan ring). These dimers are further packed by C—H···O hydrogen bonds (Table 1) into supramolecular chains running along the a-axis direction. Additionally, the crystal packing (Fig. 2) also exhibits ππ interactions between the 4-chlorophenyl rings of adjacent molecules, with a Cg2···Cg2iii distance of 4.094 (3) Å and an interplanar distance of 3.648 (3) Å resulting in a slippage of 1.656 (3) Å (Cg2 is the centroid of C12–C17 4-chlorophenyl ring).

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2010a,b).

Experimental top

3-Chloroperoxybenzoic acid (77%, 269 mg, 1.2 mmol) was added in small portions to a stirred solution of 3-(4-chlorophenylsulfanyl)-2,4,7-trimethyl-1-benzofuran (333 mg, 1.1 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 4:1 v/v) to afford the title compound as a colorless solid [yield 66%, m.p. 432–433 K; Rf = 0.45 (hexane-ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.99 Å for methyl H atoms, respectively. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O, C—H···π and ππ interactions (dotted lines) in the crystal structure of the title compound. H atoms not participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x + 1, y, z; (ii) - x + 1, - y + 1, - z; (iii) - x + 1, - y, - z; (iv) x - 1, y, z.]
3-(4-Chlorophenylsulfinyl)-2,4,7-trimethyl-1-benzofuran top
Crystal data top
C17H15ClO2SZ = 2
Mr = 318.80F(000) = 332
Triclinic, P1Dx = 1.406 Mg m3
Hall symbol: -P 1Melting point = 432–433 K
a = 6.043 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.716 (4) ÅCell parameters from 4880 reflections
c = 12.217 (5) Åθ = 3.3–28.5°
α = 117.99 (2)°µ = 0.39 mm1
β = 92.00 (2)°T = 173 K
γ = 97.42 (2)°Block, colourless
V = 752.9 (5) Å30.31 × 0.24 × 0.17 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3192 independent reflections
Radiation source: rotating anode2515 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.036
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 1.9°
ϕ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1414
Tmin = 0.633, Tmax = 0.746l = 1515
12137 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.128H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0707P)2 + 0.168P]
where P = (Fo2 + 2Fc2)/3
3192 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
C17H15ClO2Sγ = 97.42 (2)°
Mr = 318.80V = 752.9 (5) Å3
Triclinic, P1Z = 2
a = 6.043 (2) ÅMo Kα radiation
b = 11.716 (4) ŵ = 0.39 mm1
c = 12.217 (5) ÅT = 173 K
α = 117.99 (2)°0.31 × 0.24 × 0.17 mm
β = 92.00 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3192 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2515 reflections with I > 2σ(I)
Tmin = 0.633, Tmax = 0.746Rint = 0.036
12137 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.12Δρmax = 0.48 e Å3
3192 reflectionsΔρmin = 0.55 e Å3
193 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.57368 (11)0.03761 (6)0.34385 (5)0.0487 (2)
S10.33471 (8)0.22715 (5)0.02081 (5)0.03169 (17)
O10.7881 (2)0.53758 (12)0.14079 (13)0.0322 (3)
O20.0894 (2)0.22965 (15)0.02338 (16)0.0456 (4)
C10.4952 (3)0.38358 (17)0.10912 (18)0.0276 (4)
C20.5111 (3)0.48591 (18)0.23757 (18)0.0294 (4)
C30.3881 (4)0.5125 (2)0.3376 (2)0.0366 (5)
C40.4708 (5)0.6281 (2)0.4462 (2)0.0471 (6)
H40.39260.64950.51760.057*
C50.6598 (4)0.7135 (2)0.4561 (2)0.0475 (6)
H50.70660.79020.53370.057*
C60.7820 (4)0.69163 (19)0.3584 (2)0.0392 (5)
C70.6962 (3)0.57630 (18)0.25069 (19)0.0313 (4)
C80.6624 (3)0.42057 (17)0.05637 (18)0.0290 (4)
C90.1778 (4)0.4253 (2)0.3290 (2)0.0486 (6)
H9A0.08520.39880.25090.073*
H9B0.09430.47260.39970.073*
H9C0.21570.34740.33080.073*
C100.9885 (4)0.7807 (2)0.3643 (2)0.0527 (7)
H10A1.01210.86010.44550.079*
H10B0.97020.80460.29800.079*
H10C1.11850.73570.35300.079*
C110.7331 (4)0.36120 (19)0.06862 (19)0.0343 (5)
H11A0.86900.32390.06810.051*
H11B0.76460.42810.09520.051*
H11C0.61320.29170.12660.051*
C120.4109 (3)0.15774 (17)0.11811 (17)0.0270 (4)
C130.6311 (3)0.17380 (19)0.1672 (2)0.0323 (4)
H130.74740.22590.15230.039*
C140.6813 (3)0.1143 (2)0.2374 (2)0.0355 (5)
H140.83070.12690.27280.043*
C150.5108 (4)0.03655 (18)0.25513 (18)0.0319 (5)
C160.2927 (4)0.01659 (19)0.20341 (19)0.0339 (5)
H160.17780.03910.21470.041*
C170.2428 (3)0.07844 (19)0.13485 (18)0.0312 (4)
H170.09320.06600.09970.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0644 (4)0.0447 (3)0.0454 (3)0.0075 (3)0.0040 (3)0.0294 (3)
S10.0320 (3)0.0291 (3)0.0334 (3)0.00004 (19)0.0040 (2)0.0162 (2)
O10.0341 (8)0.0262 (7)0.0362 (8)0.0016 (5)0.0023 (6)0.0159 (6)
O20.0290 (8)0.0526 (9)0.0651 (11)0.0005 (7)0.0084 (7)0.0389 (9)
C10.0292 (10)0.0255 (9)0.0304 (10)0.0061 (7)0.0021 (8)0.0151 (8)
C20.0321 (10)0.0272 (9)0.0318 (10)0.0088 (8)0.0022 (8)0.0158 (8)
C30.0411 (12)0.0387 (11)0.0367 (11)0.0166 (9)0.0097 (9)0.0207 (10)
C40.0590 (15)0.0478 (13)0.0360 (12)0.0222 (12)0.0119 (11)0.0174 (11)
C50.0614 (16)0.0332 (11)0.0367 (13)0.0129 (11)0.0026 (11)0.0068 (10)
C60.0451 (12)0.0273 (10)0.0405 (12)0.0083 (9)0.0046 (10)0.0124 (9)
C70.0353 (11)0.0271 (9)0.0337 (11)0.0086 (8)0.0009 (9)0.0156 (8)
C80.0317 (10)0.0249 (9)0.0330 (10)0.0050 (7)0.0008 (8)0.0162 (8)
C90.0490 (15)0.0514 (14)0.0506 (14)0.0151 (11)0.0204 (12)0.0260 (12)
C100.0501 (15)0.0303 (11)0.0598 (16)0.0017 (10)0.0098 (12)0.0101 (11)
C110.0395 (11)0.0349 (10)0.0353 (11)0.0093 (9)0.0076 (9)0.0212 (9)
C120.0284 (10)0.0221 (8)0.0277 (10)0.0048 (7)0.0019 (8)0.0095 (8)
C130.0253 (10)0.0326 (10)0.0403 (11)0.0033 (8)0.0054 (9)0.0188 (9)
C140.0291 (10)0.0356 (10)0.0423 (12)0.0076 (8)0.0007 (9)0.0187 (9)
C150.0415 (12)0.0267 (9)0.0291 (10)0.0089 (8)0.0056 (9)0.0137 (8)
C160.0350 (11)0.0300 (10)0.0351 (11)0.0003 (8)0.0047 (9)0.0156 (9)
C170.0273 (10)0.0309 (10)0.0331 (11)0.0001 (8)0.0014 (8)0.0146 (9)
Geometric parameters (Å, º) top
Cl1—C151.736 (2)C9—H9A0.9800
S1—O21.4876 (16)C9—H9B0.9800
S1—C11.754 (2)C9—H9C0.9800
S1—C121.803 (2)C10—H10A0.9800
O1—C71.365 (3)C10—H10B0.9800
O1—C81.367 (2)C10—H10C0.9800
C1—C81.348 (3)C11—H11A0.9800
C1—C21.450 (3)C11—H11B0.9800
C2—C31.382 (3)C11—H11C0.9800
C2—C71.386 (3)C12—C171.373 (3)
C3—C41.392 (3)C12—C131.393 (3)
C3—C91.491 (3)C13—C141.383 (3)
C4—C51.379 (4)C13—H130.9500
C4—H40.9500C14—C151.377 (3)
C5—C61.363 (4)C14—H140.9500
C5—H50.9500C15—C161.383 (3)
C6—C71.389 (3)C16—C171.388 (3)
C6—C101.497 (3)C16—H160.9500
C8—C111.457 (3)C17—H170.9500
O2—S1—C1112.31 (9)H9A—C9—H9C109.5
O2—S1—C12106.67 (9)H9B—C9—H9C109.5
C1—S1—C1297.93 (9)C6—C10—H10A109.5
C7—O1—C8106.81 (16)C6—C10—H10B109.5
C8—C1—C2106.85 (17)H10A—C10—H10B109.5
C8—C1—S1117.84 (15)C6—C10—H10C109.5
C2—C1—S1134.94 (16)H10A—C10—H10C109.5
C3—C2—C7118.84 (19)H10B—C10—H10C109.5
C3—C2—C1136.4 (2)C8—C11—H11A109.5
C7—C2—C1104.69 (18)C8—C11—H11B109.5
C2—C3—C4115.3 (2)H11A—C11—H11B109.5
C2—C3—C9122.4 (2)C8—C11—H11C109.5
C4—C3—C9122.2 (2)H11A—C11—H11C109.5
C5—C4—C3123.8 (2)H11B—C11—H11C109.5
C5—C4—H4118.1C17—C12—C13120.27 (18)
C3—C4—H4118.1C17—C12—S1116.75 (15)
C6—C5—C4122.3 (2)C13—C12—S1122.80 (16)
C6—C5—H5118.9C14—C13—C12120.40 (19)
C4—C5—H5118.9C14—C13—H13119.8
C5—C6—C7113.1 (2)C12—C13—H13119.8
C5—C6—C10124.5 (2)C15—C14—C13118.78 (19)
C7—C6—C10122.4 (2)C15—C14—H14120.6
O1—C7—C2110.62 (17)C13—C14—H14120.6
O1—C7—C6122.9 (2)C14—C15—C16121.26 (19)
C2—C7—C6126.5 (2)C14—C15—Cl1118.78 (16)
C1—C8—O1111.01 (18)C16—C15—Cl1119.97 (17)
C1—C8—C11133.18 (18)C15—C16—C17119.65 (19)
O1—C8—C11115.80 (18)C15—C16—H16120.2
C3—C9—H9A109.5C17—C16—H16120.2
C3—C9—H9B109.5C12—C17—C16119.60 (18)
H9A—C9—H9B109.5C12—C17—H17120.2
C3—C9—H9C109.5C16—C17—H17120.2
O2—S1—C1—C8132.20 (15)C10—C6—C7—O12.5 (3)
C12—S1—C1—C8116.06 (16)C5—C6—C7—C22.0 (3)
O2—S1—C1—C255.9 (2)C10—C6—C7—C2177.73 (19)
C12—S1—C1—C255.8 (2)C2—C1—C8—O11.1 (2)
C8—C1—C2—C3175.4 (2)S1—C1—C8—O1172.94 (12)
S1—C1—C2—C312.0 (4)C2—C1—C8—C11179.51 (19)
C8—C1—C2—C71.4 (2)S1—C1—C8—C116.5 (3)
S1—C1—C2—C7171.16 (16)C7—O1—C8—C10.4 (2)
C7—C2—C3—C42.7 (3)C7—O1—C8—C11179.88 (15)
C1—C2—C3—C4179.2 (2)O2—S1—C12—C1723.92 (17)
C7—C2—C3—C9175.67 (19)C1—S1—C12—C17140.15 (16)
C1—C2—C3—C90.8 (4)O2—S1—C12—C13160.93 (16)
C2—C3—C4—C50.9 (3)C1—S1—C12—C1344.70 (18)
C9—C3—C4—C5177.5 (2)C17—C12—C13—C142.6 (3)
C3—C4—C5—C60.5 (4)S1—C12—C13—C14177.56 (15)
C4—C5—C6—C70.1 (3)C12—C13—C14—C151.6 (3)
C4—C5—C6—C10179.8 (2)C13—C14—C15—C160.5 (3)
C8—O1—C7—C20.6 (2)C13—C14—C15—Cl1179.75 (15)
C8—O1—C7—C6179.63 (17)C14—C15—C16—C171.6 (3)
C3—C2—C7—O1176.29 (16)Cl1—C15—C16—C17178.62 (15)
C1—C2—C7—O11.2 (2)C13—C12—C17—C161.4 (3)
C3—C2—C7—C63.5 (3)S1—C12—C17—C16176.70 (15)
C1—C2—C7—C6179.02 (18)C15—C16—C17—C120.6 (3)
C5—C6—C7—O1177.81 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1/C2/C7/O1/C8 furan ring.
D—H···AD—HH···AD···AD—H···A
C11—H11A···O2i0.982.383.254 (3)148
C11—H11B···Cg1ii0.982.963.503 (3)116
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1/C2/C7/O1/C8 furan ring.
D—H···AD—HH···AD···AD—H···A
C11—H11A···O2i0.982.383.254 (3)147.8
C11—H11B···Cg1ii0.982.963.503 (3)116.1
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.
 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan city.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o472.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o2325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds