organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-3-(2-Chloro­benzo[h]quinolin-3-yl)-1-(2-methyl-4-phenyl­quinolin-3-yl)prop-2-en-1-one

aDepartment of Chemistry, BITS, Pilani – K. K. Birla Goa Campus, Goa 403 726, India, bCentre for Organic and Medicinal Chemistry, School of Advanced Sciences, VIT University, Vellore 632 014, India, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 28 July 2013; accepted 1 August 2013; online 7 August 2013)

In the title compound, C32H21ClN2O, an almost planar (r.m.s. deviation = 0.033 Å) prop-2-en-1-one bridge links quinolinyl and benzoquinolinyl residues; the latter are twisted out of the plane of the bridge [dihedral angles = 75.94 (5) and 20.20 (5)°, respectively]. In the crystal, a three-dimensional architecture arises as a result of C—H⋯O, C—H⋯π and ππ [centroid–centroid distances involving pyridine rings = 3.5806 (7)–3.7537 (7) Å] interactions.

Related literature

For biological applications of quinoline derivatives, see: Jörg et al. (2007[Jörg, W., Daniela, G. & Gerhard, R. (2007). Inorg. Chim. Acta, 360, 1935-1942.]); Prasath et al. (2013a[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013a). J. Organomet. Chem. 726, 62-70.]). For a related structure, see: Prasath et al. (2013b[Prasath, R., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o1275.]).

[Scheme 1]

Experimental

Crystal data
  • C32H21ClN2O

  • Mr = 484.96

  • Triclinic, [P \overline 1]

  • a = 7.1354 (3) Å

  • b = 10.1627 (5) Å

  • c = 17.0127 (8) Å

  • α = 78.758 (4)°

  • β = 79.544 (4)°

  • γ = 84.042 (4)°

  • V = 1186.91 (9) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.65 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.870, Tmax = 1.000

  • 8673 measured reflections

  • 4849 independent reflections

  • 4433 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.095

  • S = 1.04

  • 4849 reflections

  • 326 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1-pyridyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10C⋯O1i 0.98 2.54 3.4116 (18) 148
C15—H15⋯Cg1ii 0.95 2.65 3.4695 (15) 145
Symmetry codes: (i) -x, -y, -z+2; (ii) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In connection with the biological potential of quinolinyl derivatives (Jörg et al. 2007; Prasath et al. 2013a), the title compound (I) was prepared and subjected to a crystallographic study.

The molecular structure of (I) (Fig. 1), sees two somewhat splayed [dihedral angle = 61.60 (3)°] quinolinyl and benzoquinolinyl residues connected by the ends of a planar (r.m.s. deviation = 0.033 Å) prop-2-en-1-one bridge. The quinolinyl, especially, and benzoquinolinyl residues are twisted out of the plane of the prop-2-en-1-one bridge forming dihedral angles of 75.94 (5) and 20.20 (5)°, respectively. The phenyl ring is inclined with respect to the quinolinyl residue to which it is attached, forming a dihedral angle of 73.76 (5)°. Finally, the conformation about the ethylene bond [C18C19 = 1.3351 (18) Å] is E.

A similar conformation was reported recently for a related structure having two quinolinyl residues bridged by a prop-2-en-1-one residue, namely (2E)-3-(2-chloro-8-methylquinolin-3-yl)-1-(5,7-dimethylquinolin-6-yl)prop-2-en-1-one (Prasath et al., 2013b) where the dihedral angle between the quinolinyl residues was 83.72 (4)°.

In the crystal packing methyl-CH···O (carbonyl) interactions (Table 1), link molecules into centrosymmetric dimers which are connected into a three dimensional architecture by phenyl-C—H···π(N1-pyridyl) (Table 1), and ππ interactions [inter-centroid distances: Cg(N1-pyridyl)···Cg(C1–C6)i = 3.7537 (7) Å, Cg(N2-pyridyl)···Cg(C22—C23,C28–C31)ii,iii = 3.5806 (7) and 3.7286 (7) Å for i - x, 1 - y, 2 - z, ii 1 - x, -y, 1 - z, iii -x, -y, 1 - z] (Fig. 2).

Related literature top

For biological applications of quinoline derivatives, see: Jörg et al. (2007); Prasath et al. (2013a). For a related structure, see: Prasath et al. (2013b).

Experimental top

A mixture of 3-acetyl-2-methyl-4-phenylquinoline (260 mg, 0.001 M) and 2-chlorobenzoquinoline-3-carbaldehyde (240 mg, 0.001 M) in methanol (20 ml) containing potassium hydroxide (0.2 g) was stirred at room temperature for 12 h. After this, the reaction mixture was neutralized with dilute acetic acid and the resultant solid was filtered, dried and purified by column chromatography using an ethyl acetate - hexane (4:1) mixture to afford the title compound, (I). Re-crystallization was by slow evaporation of an acetone solution of (I), which yielded colourless blocks in 80% yield; M.pt: 460–462 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. View in projection down the a axis of the unit-cell contents of (I). The C—H···O, C—H···π and ππ interactions are shown as orange, purple and blue dashed lines, respectively.
(2E)-3-(2-Chlorobenzo[h]quinolin-3-yl)-1-(2-methyl-4-phenylquinolin-3-yl)prop-2-en-1-one top
Crystal data top
C32H21ClN2OZ = 2
Mr = 484.96F(000) = 504
Triclinic, P1Dx = 1.357 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 7.1354 (3) ÅCell parameters from 5174 reflections
b = 10.1627 (5) Åθ = 2.7–76.5°
c = 17.0127 (8) ŵ = 1.65 mm1
α = 78.758 (4)°T = 100 K
β = 79.544 (4)°Block, colourless
γ = 84.042 (4)°0.30 × 0.25 × 0.20 mm
V = 1186.91 (9) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4849 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4433 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 10.4041 pixels mm-1θmax = 76.6°, θmin = 2.7°
ω scanh = 78
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1012
Tmin = 0.870, Tmax = 1.000l = 1521
8673 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.052P)2 + 0.2928P]
where P = (Fo2 + 2Fc2)/3
4849 reflections(Δ/σ)max = 0.002
326 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C32H21ClN2Oγ = 84.042 (4)°
Mr = 484.96V = 1186.91 (9) Å3
Triclinic, P1Z = 2
a = 7.1354 (3) ÅCu Kα radiation
b = 10.1627 (5) ŵ = 1.65 mm1
c = 17.0127 (8) ÅT = 100 K
α = 78.758 (4)°0.30 × 0.25 × 0.20 mm
β = 79.544 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4849 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
4433 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 1.000Rint = 0.020
8673 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
4849 reflectionsΔρmin = 0.31 e Å3
326 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.32862 (4)0.39004 (3)0.557615 (17)0.02330 (9)
O10.10222 (16)0.11751 (11)0.91090 (6)0.0351 (3)
N10.29529 (16)0.38332 (11)0.94697 (6)0.0245 (2)
N20.31428 (15)0.18592 (10)0.48984 (6)0.0194 (2)
C10.22372 (19)0.51192 (13)0.92151 (7)0.0228 (3)
C20.2945 (2)0.61806 (15)0.94820 (8)0.0295 (3)
H20.39120.59890.98140.035*
C30.2242 (2)0.74768 (15)0.92635 (9)0.0348 (3)
H30.27190.81820.94470.042*
C40.0813 (2)0.77789 (15)0.87687 (9)0.0346 (3)
H40.03110.86820.86340.042*
C50.0143 (2)0.67797 (14)0.84801 (8)0.0283 (3)
H50.07980.69970.81360.034*
C60.08475 (18)0.54237 (13)0.86931 (7)0.0217 (3)
C70.01900 (18)0.43308 (13)0.84298 (7)0.0204 (2)
C80.08610 (18)0.30408 (13)0.87255 (7)0.0208 (3)
C90.22715 (18)0.28343 (13)0.92474 (7)0.0225 (3)
C100.3081 (2)0.14360 (14)0.95496 (9)0.0308 (3)
H10A0.43110.14870.97180.046*
H10B0.32670.09080.91140.046*
H10C0.21920.10041.00140.046*
C110.11840 (18)0.46154 (12)0.78448 (8)0.0210 (2)
C120.05441 (19)0.51971 (13)0.70407 (8)0.0246 (3)
H120.07620.53780.68730.029*
C130.1793 (2)0.55154 (14)0.64831 (8)0.0262 (3)
H130.13370.58960.59340.031*
C140.3710 (2)0.52756 (13)0.67300 (8)0.0259 (3)
H140.45760.55130.63530.031*
C150.43578 (19)0.46909 (14)0.75253 (9)0.0273 (3)
H150.56680.45230.76930.033*
C160.30955 (19)0.43462 (14)0.80842 (8)0.0250 (3)
H160.35430.39290.86270.030*
C170.00319 (19)0.18359 (13)0.85606 (8)0.0224 (3)
C180.04774 (18)0.14195 (13)0.77665 (8)0.0217 (3)
H180.01780.06910.77010.026*
C190.17108 (18)0.19583 (12)0.71255 (8)0.0202 (2)
H190.23670.27020.71680.024*
C200.20927 (17)0.14471 (13)0.63586 (7)0.0194 (2)
C210.28047 (17)0.22343 (12)0.56031 (8)0.0190 (2)
C220.27867 (17)0.05826 (12)0.48717 (7)0.0190 (2)
C230.31445 (17)0.01556 (13)0.40911 (8)0.0211 (3)
C240.38163 (19)0.10284 (14)0.33679 (8)0.0246 (3)
H240.40410.19270.33850.030*
C250.4152 (2)0.05881 (15)0.26338 (9)0.0288 (3)
H250.46040.11830.21480.035*
C260.3824 (2)0.07406 (16)0.26052 (9)0.0297 (3)
H260.40600.10410.20990.036*
C270.31638 (19)0.16072 (15)0.33042 (9)0.0279 (3)
H270.29490.25030.32770.033*
C280.28016 (18)0.11821 (13)0.40624 (8)0.0230 (3)
C290.20946 (19)0.20770 (13)0.47966 (9)0.0256 (3)
H290.18700.29720.47720.031*
C300.17442 (18)0.16655 (13)0.55216 (9)0.0243 (3)
H300.12670.22720.59980.029*
C310.20836 (17)0.03237 (13)0.55800 (8)0.0209 (2)
C320.17548 (17)0.01381 (13)0.63202 (8)0.0208 (2)
H320.12920.04540.68060.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03021 (17)0.01941 (15)0.02004 (15)0.00805 (11)0.00196 (11)0.00167 (11)
O10.0475 (6)0.0300 (5)0.0246 (5)0.0175 (5)0.0085 (4)0.0029 (4)
N10.0274 (6)0.0271 (6)0.0169 (5)0.0041 (4)0.0017 (4)0.0003 (4)
N20.0178 (5)0.0207 (5)0.0196 (5)0.0021 (4)0.0038 (4)0.0022 (4)
C10.0258 (6)0.0256 (6)0.0150 (6)0.0046 (5)0.0015 (5)0.0015 (5)
C20.0380 (8)0.0324 (7)0.0184 (6)0.0089 (6)0.0022 (5)0.0045 (5)
C30.0529 (10)0.0289 (7)0.0241 (7)0.0119 (7)0.0008 (6)0.0091 (6)
C40.0515 (10)0.0225 (7)0.0276 (7)0.0001 (6)0.0015 (6)0.0050 (5)
C50.0343 (7)0.0245 (7)0.0234 (6)0.0005 (5)0.0012 (5)0.0028 (5)
C60.0232 (6)0.0226 (6)0.0160 (6)0.0029 (5)0.0032 (5)0.0010 (5)
C70.0196 (6)0.0223 (6)0.0162 (5)0.0027 (5)0.0026 (4)0.0004 (4)
C80.0215 (6)0.0222 (6)0.0160 (6)0.0038 (5)0.0024 (4)0.0005 (4)
C90.0239 (6)0.0232 (6)0.0170 (6)0.0031 (5)0.0001 (5)0.0021 (5)
C100.0349 (8)0.0256 (7)0.0288 (7)0.0013 (6)0.0074 (6)0.0041 (5)
C110.0222 (6)0.0186 (6)0.0209 (6)0.0011 (5)0.0019 (5)0.0019 (5)
C120.0224 (6)0.0242 (6)0.0237 (6)0.0028 (5)0.0021 (5)0.0025 (5)
C130.0299 (7)0.0252 (6)0.0215 (6)0.0033 (5)0.0048 (5)0.0017 (5)
C140.0275 (7)0.0239 (6)0.0281 (7)0.0002 (5)0.0097 (5)0.0058 (5)
C150.0211 (6)0.0328 (7)0.0296 (7)0.0053 (5)0.0012 (5)0.0099 (6)
C160.0240 (7)0.0290 (7)0.0211 (6)0.0045 (5)0.0003 (5)0.0047 (5)
C170.0239 (6)0.0205 (6)0.0200 (6)0.0029 (5)0.0009 (5)0.0014 (5)
C180.0217 (6)0.0216 (6)0.0212 (6)0.0039 (5)0.0039 (5)0.0010 (5)
C190.0204 (6)0.0198 (6)0.0199 (6)0.0023 (5)0.0051 (5)0.0003 (5)
C200.0152 (6)0.0227 (6)0.0200 (6)0.0024 (4)0.0032 (4)0.0021 (5)
C210.0165 (6)0.0192 (6)0.0212 (6)0.0031 (4)0.0041 (4)0.0012 (5)
C220.0141 (5)0.0215 (6)0.0214 (6)0.0013 (4)0.0039 (4)0.0027 (5)
C230.0153 (6)0.0240 (6)0.0250 (6)0.0002 (5)0.0049 (5)0.0059 (5)
C240.0230 (6)0.0274 (6)0.0238 (6)0.0003 (5)0.0046 (5)0.0055 (5)
C250.0259 (7)0.0367 (8)0.0244 (7)0.0003 (6)0.0047 (5)0.0073 (6)
C260.0239 (7)0.0413 (8)0.0276 (7)0.0011 (6)0.0055 (5)0.0157 (6)
C270.0214 (6)0.0316 (7)0.0350 (7)0.0007 (5)0.0081 (5)0.0150 (6)
C280.0153 (6)0.0261 (6)0.0293 (7)0.0001 (5)0.0053 (5)0.0086 (5)
C290.0201 (6)0.0218 (6)0.0363 (7)0.0024 (5)0.0054 (5)0.0073 (5)
C300.0205 (6)0.0210 (6)0.0304 (7)0.0037 (5)0.0025 (5)0.0023 (5)
C310.0162 (6)0.0215 (6)0.0246 (6)0.0014 (5)0.0039 (5)0.0029 (5)
C320.0179 (6)0.0207 (6)0.0217 (6)0.0038 (5)0.0014 (5)0.0007 (5)
Geometric parameters (Å, º) top
Cl1—C211.7526 (12)C14—C151.383 (2)
O1—C171.2219 (16)C14—H140.9500
N1—C91.3149 (17)C15—C161.3976 (19)
N1—C11.3703 (17)C15—H150.9500
N2—C211.3019 (16)C16—H160.9500
N2—C221.3585 (16)C17—C181.4643 (18)
C1—C21.4187 (19)C18—C191.3351 (18)
C1—C61.4200 (18)C18—H180.9500
C2—C31.366 (2)C19—C201.4671 (17)
C2—H20.9500C19—H190.9500
C3—C41.410 (2)C20—C321.3923 (17)
C3—H30.9500C20—C211.4130 (17)
C4—C51.372 (2)C22—C311.4127 (18)
C4—H40.9500C22—C231.4477 (17)
C5—C61.4180 (18)C23—C241.4067 (19)
C5—H50.9500C23—C281.4176 (18)
C6—C71.4257 (18)C24—C251.3801 (19)
C7—C81.3788 (18)C24—H240.9500
C7—C111.4895 (18)C25—C261.406 (2)
C8—C91.4328 (18)C25—H250.9500
C8—C171.5075 (17)C26—C271.373 (2)
C9—C101.5067 (18)C26—H260.9500
C10—H10A0.9800C27—C281.4108 (19)
C10—H10B0.9800C27—H270.9500
C10—H10C0.9800C28—C291.437 (2)
C11—C161.3905 (18)C29—C301.351 (2)
C11—C121.3940 (18)C29—H290.9500
C12—C131.3877 (19)C30—C311.4347 (17)
C12—H120.9500C30—H300.9500
C13—C141.389 (2)C31—C321.4005 (18)
C13—H130.9500C32—H320.9500
C9—N1—C1118.65 (12)C11—C16—H16120.1
C21—N2—C22117.81 (11)C15—C16—H16120.1
N1—C1—C2117.88 (12)O1—C17—C18118.97 (12)
N1—C1—C6122.75 (12)O1—C17—C8119.05 (12)
C2—C1—C6119.37 (12)C18—C17—C8121.98 (11)
C3—C2—C1120.19 (14)C19—C18—C17126.68 (12)
C3—C2—H2119.9C19—C18—H18116.7
C1—C2—H2119.9C17—C18—H18116.7
C2—C3—C4120.63 (13)C18—C19—C20122.60 (11)
C2—C3—H3119.7C18—C19—H19118.7
C4—C3—H3119.7C20—C19—H19118.7
C5—C4—C3120.53 (14)C32—C20—C21114.63 (11)
C5—C4—H4119.7C32—C20—C19122.08 (11)
C3—C4—H4119.7C21—C20—C19123.29 (11)
C4—C5—C6120.27 (14)N2—C21—C20126.73 (11)
C4—C5—H5119.9N2—C21—Cl1114.54 (9)
C6—C5—H5119.9C20—C21—Cl1118.72 (9)
C5—C6—C1118.95 (12)N2—C22—C31121.81 (11)
C5—C6—C7123.36 (12)N2—C22—C23118.37 (11)
C1—C6—C7117.66 (12)C31—C22—C23119.83 (11)
C8—C7—C6118.52 (12)C24—C23—C28119.61 (12)
C8—C7—C11122.21 (11)C24—C23—C22121.87 (12)
C6—C7—C11119.26 (11)C28—C23—C22118.53 (12)
C7—C8—C9119.66 (12)C25—C24—C23120.44 (13)
C7—C8—C17121.10 (12)C25—C24—H24119.8
C9—C8—C17119.07 (11)C23—C24—H24119.8
N1—C9—C8122.61 (12)C24—C25—C26120.01 (14)
N1—C9—C10116.89 (12)C24—C25—H25120.0
C8—C9—C10120.48 (12)C26—C25—H25120.0
C9—C10—H10A109.5C27—C26—C25120.43 (13)
C9—C10—H10B109.5C27—C26—H26119.8
H10A—C10—H10B109.5C25—C26—H26119.8
C9—C10—H10C109.5C26—C27—C28120.74 (13)
H10A—C10—H10C109.5C26—C27—H27119.6
H10B—C10—H10C109.5C28—C27—H27119.6
C16—C11—C12119.22 (12)C27—C28—C23118.77 (13)
C16—C11—C7121.74 (11)C27—C28—C29121.20 (12)
C12—C11—C7119.03 (11)C23—C28—C29120.03 (12)
C13—C12—C11120.78 (12)C30—C29—C28121.05 (12)
C13—C12—H12119.6C30—C29—H29119.5
C11—C12—H12119.6C28—C29—H29119.5
C12—C13—C14119.79 (13)C29—C30—C31120.81 (13)
C12—C13—H13120.1C29—C30—H30119.6
C14—C13—H13120.1C31—C30—H30119.6
C15—C14—C13119.88 (13)C32—C31—C22117.68 (11)
C15—C14—H14120.1C32—C31—C30122.58 (12)
C13—C14—H14120.1C22—C31—C30119.74 (12)
C14—C15—C16120.41 (12)C20—C32—C31121.34 (12)
C14—C15—H15119.8C20—C32—H32119.3
C16—C15—H15119.8C31—C32—H32119.3
C11—C16—C15119.90 (12)
C9—N1—C1—C2178.03 (12)C9—C8—C17—C18109.35 (14)
C9—N1—C1—C62.71 (18)O1—C17—C18—C19174.33 (14)
N1—C1—C2—C3178.22 (12)C8—C17—C18—C194.6 (2)
C6—C1—C2—C32.5 (2)C17—C18—C19—C20178.53 (12)
C1—C2—C3—C40.3 (2)C18—C19—C20—C3222.79 (19)
C2—C3—C4—C51.8 (2)C18—C19—C20—C21156.45 (12)
C3—C4—C5—C61.5 (2)C22—N2—C21—C200.07 (19)
C4—C5—C6—C10.7 (2)C22—N2—C21—Cl1179.46 (9)
C4—C5—C6—C7178.69 (13)C32—C20—C21—N20.69 (19)
N1—C1—C6—C5178.07 (12)C19—C20—C21—N2178.60 (11)
C2—C1—C6—C52.69 (18)C32—C20—C21—Cl1179.95 (9)
N1—C1—C6—C70.04 (18)C19—C20—C21—Cl10.76 (16)
C2—C1—C6—C7179.20 (12)C21—N2—C22—C310.37 (17)
C5—C6—C7—C8174.86 (12)C21—N2—C22—C23179.59 (11)
C1—C6—C7—C83.16 (17)N2—C22—C23—C240.97 (18)
C5—C6—C7—C115.43 (19)C31—C22—C23—C24179.00 (11)
C1—C6—C7—C11176.55 (11)N2—C22—C23—C28179.08 (11)
C6—C7—C8—C93.58 (18)C31—C22—C23—C280.95 (17)
C11—C7—C8—C9176.12 (11)C28—C23—C24—C250.35 (19)
C6—C7—C8—C17171.82 (11)C22—C23—C24—C25179.70 (12)
C11—C7—C8—C178.49 (18)C23—C24—C25—C260.1 (2)
C1—N1—C9—C82.33 (19)C24—C25—C26—C270.2 (2)
C1—N1—C9—C10179.25 (11)C25—C26—C27—C280.1 (2)
C7—C8—C9—N10.84 (19)C26—C27—C28—C230.46 (19)
C17—C8—C9—N1174.65 (11)C26—C27—C28—C29179.43 (12)
C7—C8—C9—C10177.52 (12)C24—C23—C28—C270.59 (18)
C17—C8—C9—C106.99 (18)C22—C23—C28—C27179.45 (11)
C8—C7—C11—C1673.14 (17)C24—C23—C28—C29179.29 (12)
C6—C7—C11—C16107.17 (14)C22—C23—C28—C290.66 (18)
C8—C7—C11—C12108.44 (14)C27—C28—C29—C30179.82 (12)
C6—C7—C11—C1271.26 (16)C23—C28—C29—C300.07 (19)
C16—C11—C12—C130.4 (2)C28—C29—C30—C310.5 (2)
C7—C11—C12—C13178.03 (12)N2—C22—C31—C320.16 (18)
C11—C12—C13—C141.2 (2)C23—C22—C31—C32179.81 (11)
C12—C13—C14—C151.6 (2)N2—C22—C31—C30179.50 (11)
C13—C14—C15—C160.4 (2)C23—C22—C31—C300.53 (18)
C12—C11—C16—C151.64 (19)C29—C30—C31—C32179.43 (12)
C7—C11—C16—C15176.78 (12)C29—C30—C31—C220.21 (19)
C14—C15—C16—C111.3 (2)C21—C20—C32—C310.87 (18)
C7—C8—C17—O1105.83 (15)C19—C20—C32—C31178.43 (11)
C9—C8—C17—O169.59 (17)C22—C31—C32—C200.50 (18)
C7—C8—C17—C1875.23 (16)C30—C31—C32—C20179.85 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1-pyridyl ring.
D—H···AD—HH···AD···AD—H···A
C10—H10C···O1i0.982.543.4116 (18)148
C15—H15···Cg1ii0.952.653.4695 (15)145
Symmetry codes: (i) x, y, z+2; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1-pyridyl ring.
D—H···AD—HH···AD···AD—H···A
C10—H10C···O1i0.982.543.4116 (18)148
C15—H15···Cg1ii0.952.653.4695 (15)145
Symmetry codes: (i) x, y, z+2; (ii) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: prasad24487@yahoo.co.in.

Acknowledgements

RP gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship (09/919/(0014)/2012 EMR-I). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJörg, W., Daniela, G. & Gerhard, R. (2007). Inorg. Chim. Acta, 360, 1935–1942.  Google Scholar
First citationPrasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013a). J. Organomet. Chem. 726, 62–70.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrasath, R., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o1275.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds