organic compounds
2,3-Xylidinium nitrate
aLaboratoire de chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: houda_marouani@voila.fr
In the 8H12N+·NO3−, the 2,3-xylidinium (2,3-dimethylanilinium) cations are connected to the nitrate anions through bifurcated N—H⋯(O,O) and weak C—H⋯O hydrogen bonds, generating corrugated layers parallel to (001) at z = 0.25 and 0.75. These layers are connected via C—H⋯O interactions, giving rise to a three-dimensional network.
of the title compound, CRelated literature
For related structures, see: Marouani et al. (2010, 2012). For graph-set notation of hydrogen-bonding motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
10.1107/S1600536813023465/pv2645sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813023465/pv2645Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813023465/pv2645Isup3.cml
Single crystals of the title compound were prepared at room temperature from an aqueous mixture of 2,3-xylidine ( 1 mmol) and nitric acid (1 mmol). The mixture was stirred for 15 min then slowly evaporated at room temperature until the formation of good quality pink prismatic single crystals.
All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl), N—H = 0.89 Å with Uiso(H) = 1.2Ueq(C or N).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. An ORTEP view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dotted lines. | |
Fig. 2. Projection of (I) along the b axis. The H-atoms not involved in H-bonding are omitted. | |
Fig. 3. Hydrogen bond motifs in (I). |
C8H12N+·NO3− | F(000) = 784 |
Mr = 184.20 | Dx = 1.307 Mg m−3 |
Orthorhombic, Pbca | Ag Kα radiation, λ = 0.56083 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 25 reflections |
a = 10.889 (2) Å | θ = 8–10° |
b = 10.110 (2) Å | µ = 0.06 mm−1 |
c = 17.010 (3) Å | T = 293 K |
V = 1872.5 (6) Å3 | Prism, pink |
Z = 8 | 0.4 × 0.3 × 0.2 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.056 |
Radiation source: fine-focus sealed tube | θmax = 28.0°, θmin = 2.4° |
Graphite monochromator | h = −18→3 |
non–profiled ω scans | k = −5→16 |
8719 measured reflections | l = −2→28 |
4541 independent reflections | 2 standard reflections every 120 min |
1933 reflections with I > 2σ(I) | intensity decay: 2% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.178 | H-atom parameters constrained |
S = 0.86 | w = 1/[σ2(Fo2) + (0.0586P)2] where P = (Fo2 + 2Fc2)/3 |
4541 reflections | (Δ/σ)max < 0.001 |
121 parameters | Δρmax = 0.13 e Å−3 |
0 restraints | Δρmin = −0.15 e Å−3 |
C8H12N+·NO3− | V = 1872.5 (6) Å3 |
Mr = 184.20 | Z = 8 |
Orthorhombic, Pbca | Ag Kα radiation, λ = 0.56083 Å |
a = 10.889 (2) Å | µ = 0.06 mm−1 |
b = 10.110 (2) Å | T = 293 K |
c = 17.010 (3) Å | 0.4 × 0.3 × 0.2 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.056 |
8719 measured reflections | 2 standard reflections every 120 min |
4541 independent reflections | intensity decay: 2% |
1933 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.060 | 0 restraints |
wR(F2) = 0.178 | H-atom parameters constrained |
S = 0.86 | Δρmax = 0.13 e Å−3 |
4541 reflections | Δρmin = −0.15 e Å−3 |
121 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.10288 (17) | 0.74955 (19) | 0.26311 (10) | 0.0625 (5) | |
O2 | 0.01325 (15) | 0.68356 (15) | 0.24486 (9) | 0.0858 (6) | |
O3 | 0.18890 (15) | 0.69932 (14) | 0.30086 (10) | 0.0812 (5) | |
O1 | 0.11018 (16) | 0.86708 (16) | 0.24375 (10) | 0.0992 (6) | |
C2 | 0.22220 (17) | 0.44029 (17) | 0.46097 (12) | 0.0523 (5) | |
C1 | 0.12753 (19) | 0.39756 (18) | 0.41282 (12) | 0.0517 (5) | |
N2 | 0.13609 (14) | 0.42040 (15) | 0.32795 (10) | 0.0613 (5) | |
H2A | 0.1490 | 0.5060 | 0.3189 | 0.092* | |
H2B | 0.0663 | 0.3956 | 0.3050 | 0.092* | |
H2C | 0.1981 | 0.3735 | 0.3084 | 0.092* | |
C3 | 0.2094 (2) | 0.4186 (2) | 0.54217 (13) | 0.0629 (6) | |
C6 | 0.0239 (2) | 0.33705 (19) | 0.44060 (15) | 0.0668 (6) | |
H6 | −0.0381 | 0.3111 | 0.4063 | 0.080* | |
C7 | 0.33189 (17) | 0.5102 (2) | 0.42887 (14) | 0.0669 (6) | |
H7A | 0.3361 | 0.4968 | 0.3731 | 0.100* | |
H7B | 0.4048 | 0.4756 | 0.4531 | 0.100* | |
H7C | 0.3254 | 0.6030 | 0.4398 | 0.100* | |
C4 | 0.1061 (2) | 0.3555 (2) | 0.56938 (15) | 0.0788 (7) | |
H4 | 0.0986 | 0.3394 | 0.6230 | 0.095* | |
C5 | 0.0131 (2) | 0.3153 (2) | 0.51969 (16) | 0.0792 (8) | |
H5 | −0.0564 | 0.2738 | 0.5398 | 0.095* | |
C8 | 0.3045 (2) | 0.4673 (3) | 0.59902 (15) | 0.0933 (8) | |
H8A | 0.3094 | 0.5619 | 0.5962 | 0.140* | |
H8B | 0.3828 | 0.4297 | 0.5859 | 0.140* | |
H8C | 0.2821 | 0.4413 | 0.6514 | 0.140* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0656 (11) | 0.0694 (12) | 0.0525 (10) | 0.0014 (12) | 0.0011 (10) | 0.0037 (10) |
O2 | 0.0669 (10) | 0.1033 (14) | 0.0872 (12) | −0.0192 (10) | −0.0084 (9) | 0.0135 (9) |
O3 | 0.0770 (10) | 0.0763 (11) | 0.0902 (12) | 0.0059 (9) | −0.0291 (10) | 0.0099 (9) |
O1 | 0.1262 (15) | 0.0573 (9) | 0.1142 (14) | −0.0031 (11) | −0.0345 (13) | 0.0181 (10) |
C2 | 0.0550 (13) | 0.0402 (11) | 0.0615 (13) | 0.0111 (10) | −0.0002 (10) | 0.0052 (10) |
C1 | 0.0564 (12) | 0.0385 (10) | 0.0601 (13) | 0.0065 (10) | 0.0027 (11) | 0.0020 (9) |
N2 | 0.0620 (11) | 0.0539 (10) | 0.0681 (12) | 0.0002 (9) | −0.0070 (9) | −0.0017 (9) |
C3 | 0.0766 (16) | 0.0531 (13) | 0.0590 (14) | 0.0207 (12) | 0.0058 (12) | 0.0057 (11) |
C6 | 0.0624 (14) | 0.0465 (12) | 0.0915 (17) | −0.0005 (12) | 0.0080 (13) | −0.0024 (12) |
C7 | 0.0590 (13) | 0.0721 (14) | 0.0696 (14) | −0.0010 (12) | −0.0089 (11) | 0.0076 (12) |
C4 | 0.104 (2) | 0.0593 (15) | 0.0731 (16) | 0.0218 (15) | 0.0272 (17) | 0.0126 (13) |
C5 | 0.0821 (18) | 0.0518 (15) | 0.104 (2) | 0.0026 (13) | 0.0325 (16) | 0.0089 (14) |
C8 | 0.111 (2) | 0.103 (2) | 0.0656 (15) | 0.0249 (18) | −0.0158 (15) | −0.0014 (14) |
N1—O2 | 1.222 (2) | C3—C8 | 1.500 (3) |
N1—O1 | 1.236 (2) | C6—C5 | 1.368 (3) |
N1—O3 | 1.244 (2) | C6—H6 | 0.9300 |
C2—C1 | 1.386 (3) | C7—H7A | 0.9600 |
C2—C3 | 1.406 (3) | C7—H7B | 0.9600 |
C2—C7 | 1.491 (3) | C7—H7C | 0.9600 |
C1—C6 | 1.368 (3) | C4—C5 | 1.381 (3) |
C1—N2 | 1.465 (2) | C4—H4 | 0.9300 |
N2—H2A | 0.8900 | C5—H5 | 0.9300 |
N2—H2B | 0.8900 | C8—H8A | 0.9600 |
N2—H2C | 0.8900 | C8—H8B | 0.9600 |
C3—C4 | 1.373 (3) | C8—H8C | 0.9600 |
O2—N1—O1 | 120.6 (2) | C5—C6—H6 | 120.6 |
O2—N1—O3 | 120.63 (19) | C2—C7—H7A | 109.5 |
O1—N1—O3 | 118.80 (19) | C2—C7—H7B | 109.5 |
C1—C2—C3 | 117.3 (2) | H7A—C7—H7B | 109.5 |
C1—C2—C7 | 121.81 (19) | C2—C7—H7C | 109.5 |
C3—C2—C7 | 120.9 (2) | H7A—C7—H7C | 109.5 |
C6—C1—C2 | 123.3 (2) | H7B—C7—H7C | 109.5 |
C6—C1—N2 | 117.6 (2) | C3—C4—C5 | 122.1 (2) |
C2—C1—N2 | 119.08 (18) | C3—C4—H4 | 118.9 |
C1—N2—H2A | 109.5 | C5—C4—H4 | 118.9 |
C1—N2—H2B | 109.5 | C6—C5—C4 | 119.4 (2) |
H2A—N2—H2B | 109.5 | C6—C5—H5 | 120.3 |
C1—N2—H2C | 109.5 | C4—C5—H5 | 120.3 |
H2A—N2—H2C | 109.5 | C3—C8—H8A | 109.5 |
H2B—N2—H2C | 109.5 | C3—C8—H8B | 109.5 |
C4—C3—C2 | 119.0 (2) | H8A—C8—H8B | 109.5 |
C4—C3—C8 | 120.0 (2) | C3—C8—H8C | 109.5 |
C2—C3—C8 | 120.9 (2) | H8A—C8—H8C | 109.5 |
C1—C6—C5 | 118.9 (2) | H8B—C8—H8C | 109.5 |
C1—C6—H6 | 120.6 |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O3 | 0.89 | 2.03 | 2.915 (2) | 177 |
N2—H2A···O2 | 0.89 | 2.64 | 3.296 (2) | 131 |
N2—H2B···O1i | 0.89 | 2.11 | 2.995 (2) | 171 |
N2—H2B···O2i | 0.89 | 2.46 | 3.148 (2) | 134 |
N2—H2C···O3ii | 0.89 | 2.15 | 2.973 (2) | 153 |
N2—H2C···O1ii | 0.89 | 2.36 | 3.158 (2) | 149 |
C4—H4···O2iii | 0.93 | 2.57 | 3.439 (3) | 156 |
C7—H7A···O1ii | 0.96 | 2.63 | 3.522 (3) | 155 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x+1/2, y−1/2, z; (iii) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O3 | 0.89 | 2.03 | 2.915 (2) | 176.5 |
N2—H2A···O2 | 0.89 | 2.64 | 3.296 (2) | 130.8 |
N2—H2B···O1i | 0.89 | 2.11 | 2.995 (2) | 170.7 |
N2—H2B···O2i | 0.89 | 2.46 | 3.148 (2) | 134.2 |
N2—H2C···O3ii | 0.89 | 2.15 | 2.973 (2) | 153.1 |
N2—H2C···O1ii | 0.89 | 2.36 | 3.158 (2) | 149.4 |
C4—H4···O2iii | 0.93 | 2.57 | 3.439 (3) | 156.4 |
C7—H7A···O1ii | 0.96 | 2.63 | 3.522 (3) | 155.4 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x+1/2, y−1/2, z; (iii) −x, −y+1, −z+1. |
Acknowledgements
This work was supported by the Tunisian Ministry of HEScR.
References
Bernstein, J., David, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany. Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Marouani, H., Elmi, L., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o535. Web of Science CSD CrossRef IUCr Journals Google Scholar
Marouani, H., Raouafi, N., Toumi Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2012). E-J. Chem. 9, 772–779. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As a part of our study of crystal packing containing the 2,3-xylidinium cation (Marouani, et al., 2010), we report here the preparation and the crystal structure of the title compound (I).
The asymmetric unit of (I) is composed of nitrate anion and 2,3-xylidinium cation (Fig. 1). The bond distances and angles in the anion and the cation agree very well with the corresponding bond distances and angles reported earlier for the anion (Marouani et al., 2012) and the cation (Marouani et al., 2010). The aromatic ring of the cation is essentially planar with an r.m.s deviation of 0.0017 Å. The interplanar distance between the rings of the cations is in the vicinity of 3.569 Å, indicating the formation of π–π interactions.
The cations are connected to the anions through bifurcated N—H···O(O) and weak C7—H7A···O1 hydrogen bonds (Table 1), generating a corrugated layers parallel to the (001) plane at z = 0.25 and 0.75 (Fig. 2). These layers are connected via C4—H4···O2 interactions, giving rise to a three-dimensional network. Each cation is bonded to three different nitrate anions through six N—H···O hydrogen bonds forming R63(12) and R12(4) motifs in the graph-set notation (Fig. 3) (Bernstein et al., 1995). All the hydrogen bonds, the van der Waals contacts, and electrostatic interactions between the different entities give rise to a three-dimensional network in the structure and add stability to the compound.