organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(5-Meth­­oxy-2-methyl-1H-indol-3-yl)-N′-[(1E,2E)-3-phenyl­prop-2-en-1-yl­­idene]acetohydrazide

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq, fDepartment of Organic Chemistry, Faculty of Science, Institute of Biotechnology, Granada University, Granada E-18071, Spain, and gDepartment of Chemistry, Sohag University, 82524 Sohag, Egypt
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 16 August 2013; accepted 23 August 2013; online 31 August 2013)

The title compound, C21H21N3O2, adopts a J-shaped conformation which appears to be at least partially directed by a weak intra­molecular C—H⋯N hydrogen bond. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into R22(8) and R22(14) cyclic dimers, which form a chain running parallel to the b axis.

Related literature

For general background to side-effect toxicity of non-steroidal anti-inflammatory drugs (NSAIDs), see: Agrawal et al. (2010[Agrawal, N., Chandrasekar, M. J. N., Sara, U. V. S. & Rohini, A. (2010). Int. J. Drug Deliv. Tech. 2, 12-17.]); Champion et al. (1997[Champion, G. D., Feng, P. H., Azuma, T., Caughey, D. E., Chan, K. H., Kashiwazaki, S., Liu, H.-C., Nasution, A. R., Hobunaga, M., Prichanond, S., Torralba, T. P., Udom, V. & Yoo, M. C. (1997). Drugs, 53, 61-69.]); Allan & Fletcher (1990[Allan, H. P. & Fletcher, M. (1990). Drugs, 40, 1-11.]). For reduction of GI toxicity attributed to NSAIDs, see: Halen et al. (2009[Halen, P. K., Murumkar, P. R., Giridhar, R. & Yadav, M. R. (2009). Mini Rev. Med. Chem. 9, 124-139.]); Schoen & Vender (1989[Schoen, R. T. & Vender, R. J. (1989). Am. J. Med. 86, 449-458.]); Mitchell & Warner (1999[Mitchell, J. A. & Warner, T. D. (1999). Br. J. Pharmacol. 128, 1121-1132.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21N3O2

  • Mr = 347.41

  • Triclinic, [P \overline 1]

  • a = 8.2786 (9) Å

  • b = 10.1194 (11) Å

  • c = 11.7739 (13) Å

  • α = 93.001 (2)°

  • β = 108.993 (2)°

  • γ = 105.578 (2)°

  • V = 887.76 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.26 × 0.13 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.78, Tmax = 0.99

  • 16303 measured reflections

  • 4574 independent reflections

  • 3675 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.126

  • S = 1.08

  • 4574 reflections

  • 245 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.891 (18) 2.093 (18) 2.9841 (14) 178.1 (9)
N2—H2⋯O2ii 0.903 (16) 2.012 (16) 2.9055 (13) 170.0 (14)
C7—H7⋯N3 0.95 2.54 3.3609 (15) 145
Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x+2, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

Indomethacin as other common anti-inflammatory drugs (NSAIDs) which are widely employed in the treatment of pain and inflammation has been reported to be associated with a number of undesirable effects, in particular gastrointestinal (GI) toxicity and ulceration (Agrawal et al., 2010; Champion et al., 1997; Allan & Fletcher, 1990) which represent a still unsolved therapeutic problem. Topical irritation by the free carboxylic group of Indomethacin is considered an important factor in establishing superficial stomach erosion (Schoen & Vender, 1989; Mitchell & Warner, 1999). Considerable attention has been focused on the development of bio-reversible derivatives of such pro-drugs to temporarily mask the acidic group as a promising means of reducing or abolishing the GI toxicity due to the local action mechanism (Halen et al., 2009). Based on such facts and continue to our on-going study in functionalization of NSAIDs we herein report the synthesis and crystal structure of the title compound.

The molecular conformation adopted by I in the crystal is "J" shaped (Fig. 1) and appears to be at least partially directed by a weak, intramolecular C7—H7···N3 hydrogen bond. The indole ring system is almostly planar [maximum deviations = -0.046 (1) Å for N1, -0.036 (1) Å for C2 and 0.035 (1) Å for C4] and the dihedral angle between it and the terminal phenyl ring is 79.10 (5)°.

In the crystal structure, the N—H···O hydrogen bonding consists of R22(8) rings (Etter et al., 1990) with 2 N2—H2···O2 contacts and R22(14) rings with 2 N1—H1···O2 contacts which form a chain running parallel to the b axis (Table 1, Figs. 2 & 3).

Related literature top

For general background to side-effect toxicity of non-steroidal anti-inflammatory drugs (NSAIDs), see: Agrawal et al. (2010); Champion et al. (1997); Allan & Fletcher (1990). For reduction of GI toxicity attributed to NSAIDs, see: Halen et al. (2009); Schoen & Vender (1989); Mitchell & Warner (1999). For hydrogen-bond motifs, see: Etter et al. (1990).

Experimental top

A mixture of 233 mg (1 mmol) 2-(5-methoxy-2-methyl-1H-indole-3-yl)acetohydrazide and 132 mg (1 mmol) of (2E)-3-phenylprop-2-enal in 50 ml of ethanol containing a few drops of glacial acetic acid was refluxed for 6 hrs. The mixture was cooled to room temperature and the excess solvent was evaporated under vacuum. The resulting solid was collected, washed with ethanol and recrystalized from dioxan to give colourless tablets (M.p. 410–413 K) suitable for X-ray analysis.

IR (KBr cm-1): (C=O amide 1661), (NH 3301), (C=N 1606) (C—H, Ar 3021–3072), (C—H aliphatic 2836–2957). 1H-NMR: (DMSO-d6) δ at 3.6(s, 3H, –OCH3), 2.3(s, 3H, CH3), 3.4(s, 2H, –CH2), 6.5(d,1H, –CH= alkene), 6.6(d,1H, –CH= alkene), 8.2(d, 1H, –CH=N), 11.8(s, 1H, –NH amide), the aromatic protons of indole nuclei and benzene ring were appeared in the range of 7.0–7.9. 13C-NMR: 161(C=O amide), 149(–CH=N), 55(–OCH3), 10(1 C, CH3), 136(–C=C alkene), 125(–C=C alkene).

Refinement top

C-bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.95–0.99 Å, with Uiso(H) = 1.5 Uiso(C) for methyl H atoms and Uiso(H) = 1.2 Uiso(C) for other H atoms. H atoms bonded to N atoms were located in difference Fourier maps [N1—H1 = 0.891 (18) Å and N2—H2 = 0.903 (16) Å] and refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the title molecule with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Partial view of the R22(8) and R22(14) cyclic dimers, down the a axis.
[Figure 3] Fig. 3. Packing of the title molecule viewed down a with the hydrogen bonds shown by dotted lines.
2-(5-Methoxy-2-methyl-1H-indol-3-yl)-N'-[(1E,2E)-3-phenylprop-2-en-1-ylidene]acetohydrazide top
Crystal data top
C21H21N3O2Z = 2
Mr = 347.41F(000) = 368
Triclinic, P1Dx = 1.300 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2786 (9) ÅCell parameters from 8428 reflections
b = 10.1194 (11) Åθ = 2.6–29.1°
c = 11.7739 (13) ŵ = 0.09 mm1
α = 93.001 (2)°T = 150 K
β = 108.993 (2)°Tablet, clear colourless
γ = 105.578 (2)°0.26 × 0.13 × 0.08 mm
V = 887.76 (17) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
4574 independent reflections
Radiation source: fine-focus sealed tube3675 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 8.3660 pixels mm-1θmax = 29.1°, θmin = 1.9°
ϕ and ω scansh = 1110
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1313
Tmin = 0.78, Tmax = 0.99l = 1615
16303 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 W = 1/[Σ2(FO2) + (0.0677P)2 + 0.0983P] WHERE P = (FO2 + 2FC2)/3
S = 1.08(Δ/σ)max = 0.001
4574 reflectionsΔρmax = 0.36 e Å3
245 parametersΔρmin = 0.25 e Å3
0 restraints
Crystal data top
C21H21N3O2γ = 105.578 (2)°
Mr = 347.41V = 887.76 (17) Å3
Triclinic, P1Z = 2
a = 8.2786 (9) ÅMo Kα radiation
b = 10.1194 (11) ŵ = 0.09 mm1
c = 11.7739 (13) ÅT = 150 K
α = 93.001 (2)°0.26 × 0.13 × 0.08 mm
β = 108.993 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4574 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
3675 reflections with I > 2σ(I)
Tmin = 0.78, Tmax = 0.99Rint = 0.041
16303 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.36 e Å3
4574 reflectionsΔρmin = 0.25 e Å3
245 parameters
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at ϕ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in ϕ, collected at ω = -30.00 and 210.00°. The scan time was 15 sec/frame.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28193 (13)0.03509 (10)0.57833 (8)0.0383 (3)
O21.01220 (10)0.33474 (8)1.05582 (8)0.0235 (3)
N10.76159 (13)0.14643 (9)0.92901 (9)0.0233 (3)
N20.76767 (12)0.39782 (9)0.96609 (9)0.0198 (3)
N30.58483 (12)0.37175 (9)0.92778 (9)0.0213 (3)
C10.1780 (2)0.04316 (16)0.46126 (12)0.0406 (4)
C20.40353 (16)0.01850 (12)0.65687 (11)0.0261 (3)
C30.44402 (17)0.13776 (12)0.62313 (11)0.0289 (3)
C40.56565 (16)0.18727 (11)0.70752 (11)0.0264 (3)
C50.64546 (14)0.11740 (10)0.82602 (11)0.0210 (3)
C60.61147 (14)0.00623 (10)0.85962 (10)0.0190 (3)
C70.48756 (14)0.05444 (11)0.77385 (10)0.0216 (3)
C80.92662 (16)0.04883 (12)1.14821 (11)0.0266 (3)
C90.80675 (14)0.04222 (11)1.02468 (11)0.0212 (3)
C100.71796 (14)0.05319 (10)0.98586 (10)0.0190 (3)
C110.73269 (15)0.18427 (10)1.06001 (10)0.0203 (3)
C120.84755 (14)0.31009 (10)1.02798 (10)0.0184 (3)
C130.52187 (15)0.45707 (11)0.86269 (10)0.0217 (3)
C140.33089 (15)0.43345 (11)0.81838 (11)0.0235 (3)
C150.24928 (15)0.51098 (12)0.74611 (11)0.0245 (3)
C160.05663 (15)0.49356 (11)0.70035 (10)0.0223 (3)
C170.06817 (16)0.38488 (12)0.72362 (11)0.0257 (3)
C180.24894 (16)0.37336 (13)0.68079 (11)0.0289 (3)
C190.30851 (17)0.47052 (15)0.61408 (12)0.0342 (4)
C200.18776 (18)0.57806 (15)0.58911 (12)0.0350 (4)
C210.00671 (17)0.58889 (13)0.63135 (11)0.0291 (3)
H10.827 (2)0.2041 (17)0.9322 (15)0.044 (4)*
H1A0.257300.051900.416900.0610*
H1B0.093700.004100.416400.0610*
H1C0.111200.135700.469600.0610*
H20.838 (2)0.4754 (16)0.9519 (13)0.032 (4)*
H30.387600.184800.541800.0350*
H40.593800.267400.684700.0320*
H70.461400.136000.795500.0260*
H8A0.982400.044901.195000.0400*
H8B1.020000.087801.141400.0400*
H8C0.856400.107901.189600.0400*
H11A0.786400.179501.147500.0240*
H11B0.611600.193401.044600.0240*
H130.599400.533800.844300.0260*
H140.258800.358100.842100.0280*
H150.323200.584700.722000.0290*
H170.028200.318000.769500.0310*
H180.332100.298800.697200.0350*
H190.432400.463300.585500.0410*
H200.228700.644500.543000.0420*
H210.075300.662400.612900.0350*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0382 (5)0.0443 (5)0.0258 (5)0.0207 (4)0.0034 (4)0.0015 (4)
O20.0174 (4)0.0182 (4)0.0346 (5)0.0081 (3)0.0066 (3)0.0048 (3)
N10.0215 (5)0.0171 (4)0.0333 (5)0.0093 (4)0.0093 (4)0.0057 (4)
N20.0159 (4)0.0161 (4)0.0280 (5)0.0064 (3)0.0072 (4)0.0047 (4)
N30.0161 (4)0.0197 (4)0.0277 (5)0.0069 (3)0.0064 (4)0.0016 (4)
C10.0359 (8)0.0526 (8)0.0244 (7)0.0121 (6)0.0006 (6)0.0028 (6)
C20.0228 (6)0.0271 (5)0.0261 (6)0.0082 (4)0.0052 (5)0.0048 (5)
C30.0302 (6)0.0265 (6)0.0257 (6)0.0048 (5)0.0083 (5)0.0029 (5)
C40.0277 (6)0.0190 (5)0.0338 (7)0.0063 (4)0.0138 (5)0.0002 (4)
C50.0181 (5)0.0161 (5)0.0297 (6)0.0054 (4)0.0095 (4)0.0040 (4)
C60.0162 (5)0.0162 (4)0.0252 (6)0.0045 (4)0.0084 (4)0.0034 (4)
C70.0201 (5)0.0191 (5)0.0264 (6)0.0074 (4)0.0078 (5)0.0041 (4)
C80.0227 (6)0.0250 (5)0.0329 (6)0.0098 (4)0.0076 (5)0.0126 (5)
C90.0174 (5)0.0180 (5)0.0285 (6)0.0057 (4)0.0075 (4)0.0071 (4)
C100.0165 (5)0.0163 (4)0.0244 (5)0.0054 (4)0.0068 (4)0.0048 (4)
C110.0210 (5)0.0183 (5)0.0227 (5)0.0075 (4)0.0076 (4)0.0044 (4)
C120.0190 (5)0.0159 (4)0.0206 (5)0.0075 (4)0.0059 (4)0.0004 (4)
C130.0205 (5)0.0191 (5)0.0265 (6)0.0085 (4)0.0076 (5)0.0024 (4)
C140.0199 (5)0.0220 (5)0.0278 (6)0.0080 (4)0.0065 (5)0.0021 (4)
C150.0204 (5)0.0242 (5)0.0301 (6)0.0088 (4)0.0084 (5)0.0059 (4)
C160.0212 (5)0.0248 (5)0.0223 (5)0.0115 (4)0.0059 (4)0.0019 (4)
C170.0239 (6)0.0260 (5)0.0281 (6)0.0116 (4)0.0071 (5)0.0043 (5)
C180.0230 (6)0.0335 (6)0.0282 (6)0.0074 (5)0.0082 (5)0.0003 (5)
C190.0224 (6)0.0487 (8)0.0317 (7)0.0172 (5)0.0049 (5)0.0051 (6)
C200.0320 (7)0.0429 (7)0.0341 (7)0.0226 (6)0.0066 (6)0.0131 (6)
C210.0272 (6)0.0319 (6)0.0307 (6)0.0136 (5)0.0089 (5)0.0095 (5)
Geometric parameters (Å, º) top
O1—C11.4195 (17)C16—C171.3991 (17)
O1—C21.3793 (16)C17—C181.384 (2)
O2—C121.2432 (15)C18—C191.3842 (19)
N1—C51.3824 (16)C19—C201.382 (2)
N1—C91.3822 (15)C20—C211.388 (2)
N2—N31.3758 (15)C1—H1A0.9800
N2—C121.3512 (15)C1—H1B0.9800
N3—C131.2866 (15)C1—H1C0.9800
N1—H10.891 (18)C3—H30.9500
N2—H20.903 (16)C4—H40.9500
C2—C71.3856 (16)C7—H70.9500
C2—C31.4073 (18)C8—H8A0.9800
C3—C41.3871 (18)C8—H8B0.9800
C4—C51.3888 (17)C8—H8C0.9800
C5—C61.4179 (15)C11—H11A0.9900
C6—C101.4354 (16)C11—H11B0.9900
C6—C71.3986 (16)C13—H130.9500
C8—C91.4869 (17)C14—H140.9500
C9—C101.3748 (16)C15—H150.9500
C10—C111.5030 (15)C17—H170.9500
C11—C121.5169 (15)C18—H180.9500
C13—C141.4409 (19)C19—H190.9500
C14—C151.3328 (17)C20—H200.9500
C15—C161.4645 (19)C21—H210.9500
C16—C211.3936 (17)
C1—O1—C2117.79 (11)C16—C21—C20121.01 (13)
C5—N1—C9109.03 (9)O1—C1—H1A109.00
N3—N2—C12121.25 (9)O1—C1—H1B109.00
N2—N3—C13116.02 (10)O1—C1—H1C109.00
C9—N1—H1121.1 (11)H1A—C1—H1B109.00
C5—N1—H1127.1 (11)H1A—C1—H1C109.00
N3—N2—H2120.7 (11)H1B—C1—H1C109.00
C12—N2—H2118.1 (11)C2—C3—H3120.00
O1—C2—C3123.67 (11)C4—C3—H3120.00
O1—C2—C7115.35 (11)C3—C4—H4121.00
C3—C2—C7120.98 (12)C5—C4—H4121.00
C2—C3—C4120.58 (11)C2—C7—H7121.00
C3—C4—C5118.66 (11)C6—C7—H7120.00
C4—C5—C6121.15 (11)C9—C8—H8A109.00
N1—C5—C6107.51 (10)C9—C8—H8B109.00
N1—C5—C4131.34 (10)C9—C8—H8C109.00
C5—C6—C10106.84 (10)H8A—C8—H8B109.00
C7—C6—C10133.62 (10)H8A—C8—H8C109.00
C5—C6—C7119.50 (10)H8B—C8—H8C109.00
C2—C7—C6119.01 (11)C10—C11—H11A109.00
N1—C9—C8120.64 (10)C10—C11—H11B109.00
N1—C9—C10109.46 (10)C12—C11—H11A109.00
C8—C9—C10129.81 (11)C12—C11—H11B109.00
C6—C10—C11126.11 (10)H11A—C11—H11B108.00
C9—C10—C11126.77 (10)N3—C13—H13121.00
C6—C10—C9107.10 (10)C14—C13—H13121.00
C10—C11—C12110.76 (10)C13—C14—H14118.00
N2—C12—C11118.76 (11)C15—C14—H14118.00
O2—C12—N2118.88 (10)C14—C15—H15117.00
O2—C12—C11122.36 (10)C16—C15—H15117.00
N3—C13—C14118.40 (11)C16—C17—H17119.00
C13—C14—C15123.95 (11)C18—C17—H17120.00
C14—C15—C16126.31 (11)C17—C18—H18120.00
C15—C16—C17122.69 (11)C19—C18—H18120.00
C15—C16—C21119.29 (11)C18—C19—H19120.00
C17—C16—C21118.02 (12)C20—C19—H19120.00
C16—C17—C18121.03 (11)C19—C20—H20120.00
C17—C18—C19119.96 (12)C21—C20—H20120.00
C18—C19—C20119.99 (14)C16—C21—H21119.00
C19—C20—C21119.99 (13)C20—C21—H21120.00
C1—O1—C2—C37.23 (19)C5—C6—C10—C11176.91 (11)
C1—O1—C2—C7173.47 (12)C7—C6—C10—C9176.05 (13)
C9—N1—C5—C4178.38 (13)C7—C6—C10—C115.5 (2)
C9—N1—C5—C62.32 (13)N1—C9—C10—C60.16 (14)
C5—N1—C9—C8178.24 (11)N1—C9—C10—C11178.30 (11)
C5—N1—C9—C101.36 (14)C8—C9—C10—C6176.35 (12)
C12—N2—N3—C13175.51 (10)C8—C9—C10—C115.2 (2)
N3—N2—C12—O2176.74 (10)C6—C10—C11—C1274.62 (15)
N3—N2—C12—C112.72 (16)C9—C10—C11—C12103.55 (13)
N2—N3—C13—C14179.00 (10)C10—C11—C12—O270.23 (14)
O1—C2—C3—C4178.89 (12)C10—C11—C12—N2109.21 (12)
C7—C2—C3—C41.8 (2)N3—C13—C14—C15177.08 (12)
O1—C2—C7—C6179.33 (11)C13—C14—C15—C16178.72 (11)
C3—C2—C7—C61.35 (19)C14—C15—C16—C173.5 (2)
C2—C3—C4—C50.5 (2)C14—C15—C16—C21176.09 (12)
C3—C4—C5—N1175.97 (13)C15—C16—C17—C18178.73 (11)
C3—C4—C5—C63.25 (19)C21—C16—C17—C180.85 (18)
N1—C5—C6—C7175.64 (11)C15—C16—C21—C20178.26 (12)
N1—C5—C6—C102.37 (13)C17—C16—C21—C201.33 (18)
C4—C5—C6—C73.75 (18)C16—C17—C18—C190.17 (19)
C4—C5—C6—C10178.25 (11)C17—C18—C19—C200.7 (2)
C5—C6—C7—C21.38 (17)C18—C19—C20—C210.3 (2)
C10—C6—C7—C2178.75 (13)C19—C20—C21—C160.8 (2)
C5—C6—C10—C91.55 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.891 (18)2.093 (18)2.9841 (14)178.1 (9)
N2—H2···O2ii0.903 (16)2.012 (16)2.9055 (13)170.0 (14)
C7—H7···N30.952.543.3609 (15)145
C11—H11B···N30.992.342.7996 (15)107
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.891 (18)2.093 (18)2.9841 (14)178.1 (9)
N2—H2···O2ii0.903 (16)2.012 (16)2.9055 (13)170.0 (14)
C7—H7···N30.952.543.3609 (15)145
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y+1, z+2.
 

Acknowledgements

Manchester Metropolitan University, Tulane University and Erciyes University are gratefully acknowledged for supporting this study.

References

First citationAgrawal, N., Chandrasekar, M. J. N., Sara, U. V. S. & Rohini, A. (2010). Int. J. Drug Deliv. Tech. 2, 12–17.  Google Scholar
First citationAllan, H. P. & Fletcher, M. (1990). Drugs, 40, 1–11.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChampion, G. D., Feng, P. H., Azuma, T., Caughey, D. E., Chan, K. H., Kashiwazaki, S., Liu, H.-C., Nasution, A. R., Hobunaga, M., Prichanond, S., Torralba, T. P., Udom, V. & Yoo, M. C. (1997). Drugs, 53, 61–69.  CrossRef Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHalen, P. K., Murumkar, P. R., Giridhar, R. & Yadav, M. R. (2009). Mini Rev. Med. Chem. 9, 124–139.  CrossRef PubMed CAS Google Scholar
First citationMitchell, J. A. & Warner, T. D. (1999). Br. J. Pharmacol. 128, 1121–1132.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchoen, R. T. & Vender, R. J. (1989). Am. J. Med. 86, 449–458.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds