organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4′-(1H-Imidazol-2-yl)-3′-[(1H-indol-3-yl)carbon­yl]-1′-methyl-2-oxo­spiro­[indoline-3,2′-pyrrolidine]-3′-carbo­nitrile 0.15-hydrate

aSri Ram Engineering College, Chennai 602 024, India, bOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India, and cDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 1 August 2013; accepted 19 August 2013; online 31 August 2013)

In the title compound, C25H20N6O2·0.15H2O, the dihedral angles between the least-squares planes of the indole and pyrrolidine rings and between the oxindole and imidazole rings are 77.66 (7) and 45.31 (7)°, respectively. The pyrrolidine ring and the fused five-membered pyrrolidine ring of the oxindole moiety exhibit twisted conformations. The amide N atom is involved in both intra- and inter­molecular hydrogen bonding, having a bifurcated character. The mol­ecular structure is characterized by an intra­molecular N—H⋯O hydrogen bond, which generates an S(7) ring motif while an inter­molecular N—H⋯O hydrogen bond links the organic and solvent water mol­ecules. In the crystal, N—H⋯N hydrogen bonds generate a zigzag chain running parallel to c-axis direction. The H atoms of the solvent water mol­ecule were not located.

Related literature

For background to indole derivatives and their biological activity, see: Rudrangi et al. (2011[Rudrangi, S. R. S., Bontha, V. K., Manda, V. R. & Bethi, S. (2011). Asian J. Res. Chem. 4, 335-338.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a related structure, see: Inglebert et al. (2013[Inglebert, S. A., Arun, Y., Sethusankar, K. & Perumal, P. T. (2013). Acta Cryst. E69, o1328-o1329.]).

[Scheme 1]

Experimental

Crystal data
  • C25H20N6O2·0.15H2O

  • Mr = 439.17

  • Monoclinic, P 21 /n

  • a = 8.650 (5) Å

  • b = 16.952 (5) Å

  • c = 14.438 (5) Å

  • β = 97.161 (5)°

  • V = 2100.6 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.977

  • 22198 measured reflections

  • 4819 independent reflections

  • 3757 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.110

  • S = 1.03

  • 4819 reflections

  • 320 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N5i 0.89 (1) 2.13 (1) 2.9889 (19) 164 (2)
N6—H6A⋯O1W 0.90 (1) 1.98 (2) 2.714 (8) 138 (2)
N6—H6A⋯O1 0.90 (1) 2.57 (2) 3.064 (2) 116 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Oxindoles are endogenous aromatic organic compounds that are found in the tissues and body fluids of mammals and in the natural products of some plants. Oxindoles exhibit an extensive range of biological effects, which include anticancer, anti–inflammatory, antiviral, antibacterial, antihypertensive and anticonvulsant activities. Oxindoles are also used to inhibit the replication of HIV and combat the infections that are caused by drug–resistant, drug–sensitive and mutant strains of HIV (Rudrangi et al., 2011).

The title compound consists of a pyrrolidine ring connected to an imidazole at C11, an oxindole ring system at C15, a methyl group at N3 and an indole unit at C10 via carbonyl group. In addition, the asymmetric unit contains a 0.15 occupancy water molecule. The H atoms of the partial occupancy water molecules are neither located nor included in the refinement. The title structure exhibits structural similarities with the previously reported structure (Inglebert et al., 2013).

The pyrrolidine ring adopts a twisted conformation with puckering parameters q(2) = 0.4351 (14)Å and ϕ(2) = 309.66 (19)°. Pyrrole ring in the oxindole unit also having twisted conformation with puckering parameters q(2) = 0.0931 (15)Å and ϕ(2) = 304.2 (9)°. The least square plane of oxindole unit makes dihedral angles of 78.50 (4)° and 44.28 (5)° with the pyrrolidine and imidazole, respectively. The indole unit is essentially planar - maximum deviation = 0.0138 (17)Å for the C2 atom] and is oriented at a least square plane that makes dihedral angles of 51.42 (4)°, 39.92 (4)° and 70.15 (4)°, with the oxindole unit, pyrrolidine and imidazole rings, respectively.

The cyano bond distance C13N2 agrees well with the reported value of 1.138 (7)Å (Allen et al., 1987). The sum of the angle around atom N3 (340.14 (35)°) is in accordance with sp3 hybridization. The amide N atom shows bifurcated intramolecular hydrogen bond (N—H···O) with an O atom of the carbonyl group and an intermolecuar hydrogen (N—H···O) bond with the 0.15 occupancy solvent water molecule. In addition, the classical intermolecular N—H···N hydrogen bonds generate a zigzag chain running parallel to c axis.

Related literature top

For background to indole derivatives and their biological activity, see: Rudrangi et al. (2011). For puckering parameters, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For graph-set notation, see: Bernstein et al. (1995). For a related structure, see: Inglebert et al. (2013).

Experimental top

A mixture of isatin (1 mmol), sarcosine (1.2 mmol) and 3-(1H-imidazol-2-yl)-2-(1H-indole-3-carbonyl)acrylonitrile (1 mmol) were refluxed in ethanol (30 ml). After completion of the reaction as evidenced by TLC analysis, the reaction mixture was poured into ice–water, the resulting solid was filtered off and purified by column chromatography using ethyl acetate : petroleum ether (6 : 4) as an eluent to afford pure product.

Refinement top

Positions of hydrogen atoms were localized from the difference electron density maps and their distances were geometrically constrained. The H atoms bound to the C atoms were treated as riding atoms with d(C—H) = 0.93Å for aromatic H, d(C—H) = 0.97Å for methylene H with Uiso(H) = 1.2Ueq(C) and and d(C—H) = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms. The rotation angles for methyl groups were optimized by least squares. The N bonded H atoms were refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atom numbering scheme. Displacement ellipsoids drawn at the 30% probability level. H atoms are presented as asmall spheres of arbitrary radius. H atoms of water molecule are not found.
[Figure 2] Fig. 2. The packing diagram of the title compound viewed along the a axis. H atoms have omited for clarity.
4'-(1H-Imidazol-2-yl)-3'-[(1H-indol-3-yl)carbonyl]-1'-methyl-2-oxospiro[indoline-3,2'-pyrrolidine]-3'-carbonitrile 0.15-hydrate top
Crystal data top
C25H20N6O2·0.15H2OF(000) = 916.8
Mr = 439.17Dx = 1.389 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4819 reflections
a = 8.650 (5) Åθ = 2.4–27.5°
b = 16.952 (5) ŵ = 0.09 mm1
c = 14.438 (5) ÅT = 295 K
β = 97.161 (5)°Block, colourless
V = 2100.6 (15) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4819 independent reflections
Radiation source: fine–focus sealed tube3757 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1110
Tmin = 0.968, Tmax = 0.977k = 2122
22198 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.5356P]
where P = (Fo2 + 2Fc2)/3
4819 reflections(Δ/σ)max < 0.001
320 parametersΔρmax = 0.21 e Å3
3 restraintsΔρmin = 0.18 e Å3
Crystal data top
C25H20N6O2·0.15H2OV = 2100.6 (15) Å3
Mr = 439.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.650 (5) ŵ = 0.09 mm1
b = 16.952 (5) ÅT = 295 K
c = 14.438 (5) Å0.35 × 0.30 × 0.25 mm
β = 97.161 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4819 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3757 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.977Rint = 0.024
22198 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0403 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.21 e Å3
4819 reflectionsΔρmin = 0.18 e Å3
320 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.37937 (14)0.07447 (6)0.49050 (7)0.0487 (3)
O20.60471 (12)0.18182 (6)0.64371 (8)0.0489 (3)
N30.33938 (14)0.30031 (7)0.63558 (8)0.0366 (3)
N20.66582 (14)0.25656 (8)0.52028 (9)0.0406 (3)
N10.38442 (14)0.21594 (7)0.22422 (8)0.0380 (3)
C150.40978 (15)0.26985 (7)0.55702 (9)0.0315 (3)
C100.28828 (14)0.20355 (7)0.52052 (9)0.0292 (3)
N60.12101 (15)0.03867 (7)0.61150 (9)0.0432 (3)
N50.02773 (15)0.14222 (8)0.61946 (11)0.0508 (3)
C10.42119 (15)0.09829 (8)0.29638 (9)0.0318 (3)
C160.44630 (15)0.33152 (8)0.48826 (9)0.0340 (3)
C110.25875 (15)0.16641 (8)0.61571 (9)0.0326 (3)
H110.34660.13090.63430.039*
C60.43006 (16)0.13884 (8)0.21219 (9)0.0352 (3)
C90.34886 (14)0.13897 (8)0.45599 (9)0.0313 (3)
C80.36716 (15)0.15545 (8)0.36003 (9)0.0316 (3)
C120.27540 (17)0.23523 (8)0.68508 (10)0.0399 (3)
H12A0.17490.24940.70340.048*
H12B0.34520.22130.74060.048*
C70.34692 (16)0.22545 (8)0.31089 (9)0.0359 (3)
H70.31230.27240.33450.043*
C210.59667 (16)0.31921 (8)0.46655 (10)0.0368 (3)
C20.46065 (17)0.01848 (8)0.30176 (10)0.0386 (3)
H20.45690.00960.35680.046*
C220.57128 (15)0.22878 (8)0.58113 (10)0.0359 (3)
C130.14541 (16)0.24026 (8)0.47441 (9)0.0361 (3)
C30.50525 (19)0.01783 (9)0.22397 (11)0.0478 (4)
H30.52990.07120.22660.057*
C230.11522 (16)0.11799 (8)0.61483 (9)0.0351 (3)
C190.5689 (2)0.42550 (10)0.36056 (12)0.0552 (4)
H190.60790.45690.31600.066*
N40.03167 (16)0.26634 (9)0.43965 (10)0.0581 (4)
C50.47677 (19)0.10239 (10)0.13400 (10)0.0467 (4)
H50.48240.13020.07900.056*
C200.66026 (19)0.36546 (10)0.40259 (11)0.0476 (4)
H200.76070.35660.38830.057*
C40.5143 (2)0.02372 (10)0.14131 (11)0.0512 (4)
H40.54620.00230.09030.061*
C170.35815 (18)0.39336 (8)0.44843 (11)0.0424 (3)
H170.25940.40360.46480.051*
C180.4207 (2)0.44015 (9)0.38310 (12)0.0524 (4)
H180.36250.48150.35440.063*
C250.1158 (2)0.07419 (10)0.61833 (14)0.0584 (5)
H250.22270.07280.62070.070*
C140.4324 (2)0.35557 (10)0.69609 (12)0.0555 (4)
H14A0.51800.32810.73060.083*
H14B0.36900.37900.73870.083*
H14C0.47180.39610.65890.083*
C240.0261 (2)0.01074 (10)0.61340 (12)0.0513 (4)
H240.05760.04180.61160.062*
O1W0.2610 (10)0.0987 (6)0.5729 (7)0.082 (3)0.15
H2A0.7632 (12)0.2407 (9)0.5205 (12)0.052 (5)*
H1A0.393 (2)0.2564 (8)0.1861 (11)0.061 (5)*
H6A0.2060 (17)0.0112 (11)0.6021 (15)0.075 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0721 (8)0.0369 (6)0.0403 (5)0.0139 (5)0.0190 (5)0.0060 (4)
O20.0363 (6)0.0479 (6)0.0605 (7)0.0013 (5)0.0018 (5)0.0177 (5)
N30.0386 (6)0.0330 (6)0.0384 (6)0.0033 (5)0.0063 (5)0.0054 (5)
N20.0267 (6)0.0464 (7)0.0486 (7)0.0010 (5)0.0047 (5)0.0038 (5)
N10.0448 (7)0.0351 (6)0.0344 (6)0.0017 (5)0.0053 (5)0.0064 (5)
C150.0275 (6)0.0294 (6)0.0374 (6)0.0001 (5)0.0035 (5)0.0001 (5)
C100.0257 (6)0.0300 (6)0.0324 (6)0.0002 (5)0.0053 (5)0.0000 (5)
N60.0462 (8)0.0346 (7)0.0494 (7)0.0044 (6)0.0088 (6)0.0035 (5)
N50.0386 (7)0.0406 (7)0.0776 (9)0.0088 (6)0.0247 (6)0.0085 (6)
C10.0292 (6)0.0354 (7)0.0315 (6)0.0020 (5)0.0064 (5)0.0007 (5)
C160.0333 (7)0.0297 (7)0.0389 (7)0.0044 (5)0.0041 (5)0.0004 (5)
C110.0324 (7)0.0348 (7)0.0316 (6)0.0025 (5)0.0077 (5)0.0014 (5)
C60.0350 (7)0.0360 (7)0.0350 (7)0.0007 (6)0.0059 (5)0.0028 (5)
C90.0294 (6)0.0312 (7)0.0339 (6)0.0005 (5)0.0060 (5)0.0006 (5)
C80.0295 (6)0.0323 (7)0.0334 (6)0.0004 (5)0.0059 (5)0.0003 (5)
C120.0425 (8)0.0419 (8)0.0364 (7)0.0086 (6)0.0098 (6)0.0073 (6)
C70.0355 (7)0.0358 (7)0.0361 (7)0.0022 (6)0.0027 (5)0.0003 (5)
C210.0346 (7)0.0364 (7)0.0393 (7)0.0054 (6)0.0043 (5)0.0027 (6)
C20.0435 (8)0.0353 (7)0.0384 (7)0.0014 (6)0.0103 (6)0.0040 (6)
C220.0288 (7)0.0349 (7)0.0428 (7)0.0029 (5)0.0006 (5)0.0002 (6)
C130.0313 (7)0.0401 (8)0.0371 (7)0.0006 (6)0.0054 (5)0.0046 (6)
C30.0597 (10)0.0378 (8)0.0474 (8)0.0095 (7)0.0127 (7)0.0012 (6)
C230.0393 (8)0.0335 (7)0.0343 (6)0.0058 (6)0.0117 (5)0.0038 (5)
C190.0660 (11)0.0504 (10)0.0516 (9)0.0112 (8)0.0166 (8)0.0112 (7)
N40.0386 (7)0.0737 (10)0.0595 (8)0.0149 (7)0.0037 (6)0.0056 (7)
C50.0568 (9)0.0520 (9)0.0331 (7)0.0037 (7)0.0129 (6)0.0051 (6)
C200.0454 (9)0.0515 (9)0.0480 (8)0.0071 (7)0.0141 (7)0.0021 (7)
C40.0645 (11)0.0526 (10)0.0391 (8)0.0101 (8)0.0165 (7)0.0054 (7)
C170.0436 (8)0.0324 (7)0.0513 (8)0.0022 (6)0.0066 (6)0.0023 (6)
C180.0642 (11)0.0359 (8)0.0564 (9)0.0003 (7)0.0048 (8)0.0115 (7)
C250.0441 (9)0.0502 (10)0.0849 (13)0.0177 (8)0.0239 (8)0.0101 (9)
C140.0714 (11)0.0435 (9)0.0515 (9)0.0174 (8)0.0078 (8)0.0134 (7)
C240.0586 (10)0.0394 (8)0.0569 (9)0.0187 (8)0.0116 (7)0.0048 (7)
O1W0.063 (5)0.070 (6)0.102 (7)0.036 (5)0.028 (5)0.039 (5)
Geometric parameters (Å, º) top
O1—C91.2168 (16)C11—H110.9800
O2—C221.2119 (17)C6—C51.390 (2)
N3—C151.4478 (17)C9—C81.4413 (18)
N3—C141.4538 (19)C8—C71.3826 (19)
N3—C121.4604 (18)C12—H12A0.9700
N2—C221.3570 (19)C12—H12B0.9700
N2—C211.4043 (19)C7—H70.9300
N2—H2A0.884 (9)C21—C201.377 (2)
N1—C71.3410 (18)C2—C31.377 (2)
N1—C61.3825 (19)C2—H20.9300
N1—H1A0.888 (9)C13—N41.1367 (19)
C15—C161.5022 (18)C3—C41.396 (2)
C15—C221.561 (2)C3—H30.9300
C15—C101.5835 (18)C19—C201.382 (2)
C10—C131.4671 (19)C19—C181.383 (3)
C10—C111.5615 (18)C19—H190.9300
C10—C91.5693 (18)C5—C41.373 (2)
N6—C231.3467 (19)C5—H50.9300
N6—C241.361 (2)C20—H200.9300
N6—H6A0.895 (9)C4—H40.9300
N5—C231.313 (2)C17—C181.393 (2)
N5—C251.381 (2)C17—H170.9300
C1—C21.395 (2)C18—H180.9300
C1—C61.4068 (18)C25—C241.333 (2)
C1—C81.4522 (18)C25—H250.9300
C16—C171.3790 (19)C14—H14A0.9600
C16—C211.391 (2)C14—H14B0.9600
C11—C231.4871 (19)C14—H14C0.9600
C11—C121.5325 (19)C24—H240.9300
C15—N3—C14116.43 (12)H12A—C12—H12B108.8
C15—N3—C12109.63 (11)N1—C7—C8110.23 (12)
C14—N3—C12114.08 (12)N1—C7—H7124.9
C22—N2—C21111.75 (12)C8—C7—H7124.9
C22—N2—H2A122.9 (11)C20—C21—C16121.90 (14)
C21—N2—H2A124.9 (11)C20—C21—N2128.52 (14)
C7—N1—C6109.69 (11)C16—C21—N2109.56 (12)
C7—N1—H1A122.3 (12)C3—C2—C1118.65 (13)
C6—N1—H1A127.3 (12)C3—C2—H2120.7
N3—C15—C16114.40 (11)C1—C2—H2120.7
N3—C15—C22115.88 (11)O2—C22—N2127.13 (13)
C16—C15—C22101.64 (10)O2—C22—C15125.67 (13)
N3—C15—C10100.80 (10)N2—C22—C15107.20 (12)
C16—C15—C10117.35 (11)N4—C13—C10177.44 (16)
C22—C15—C10107.23 (10)C2—C3—C4121.51 (14)
C13—C10—C11110.45 (11)C2—C3—H3119.2
C13—C10—C9110.56 (10)C4—C3—H3119.2
C11—C10—C9110.16 (10)N5—C23—N6110.71 (12)
C13—C10—C15109.67 (11)N5—C23—C11128.15 (13)
C11—C10—C1599.66 (10)N6—C23—C11121.11 (13)
C9—C10—C15115.84 (10)C20—C19—C18121.66 (15)
C23—N6—C24107.91 (13)C20—C19—H19119.2
C23—N6—H6A124.1 (14)C18—C19—H19119.2
C24—N6—H6A127.6 (14)C4—C5—C6117.31 (13)
C23—N5—C25105.06 (14)C4—C5—H5121.3
C2—C1—C6118.86 (12)C6—C5—H5121.3
C2—C1—C8135.04 (12)C21—C20—C19117.34 (15)
C6—C1—C8106.10 (12)C21—C20—H20121.3
C17—C16—C21120.26 (13)C19—C20—H20121.3
C17—C16—C15130.83 (13)C5—C4—C3121.18 (14)
C21—C16—C15108.91 (12)C5—C4—H4119.4
C23—C11—C12115.86 (11)C3—C4—H4119.4
C23—C11—C10116.30 (11)C16—C17—C18118.30 (15)
C12—C11—C10104.83 (11)C16—C17—H17120.9
C23—C11—H11106.4C18—C17—H17120.9
C12—C11—H11106.4C19—C18—C17120.45 (15)
C10—C11—H11106.4C19—C18—H18119.8
N1—C6—C5129.68 (13)C17—C18—H18119.8
N1—C6—C1107.83 (12)C24—C25—N5110.53 (15)
C5—C6—C1122.49 (13)C24—C25—H25124.7
O1—C9—C8121.56 (12)N5—C25—H25124.7
O1—C9—C10117.08 (11)N3—C14—H14A109.5
C8—C9—C10121.35 (11)N3—C14—H14B109.5
C7—C8—C9129.61 (12)H14A—C14—H14B109.5
C7—C8—C1106.14 (11)N3—C14—H14C109.5
C9—C8—C1124.17 (12)H14A—C14—H14C109.5
N3—C12—C11105.41 (11)H14B—C14—H14C109.5
N3—C12—H12A110.7C25—C24—N6105.79 (14)
C11—C12—H12A110.7C25—C24—H24127.1
N3—C12—H12B110.7N6—C24—H24127.1
C11—C12—H12B110.7
C14—N3—C15—C1662.11 (16)C15—N3—C12—C1119.05 (14)
C12—N3—C15—C16166.52 (11)C14—N3—C12—C11151.66 (13)
C14—N3—C15—C2255.69 (16)C23—C11—C12—N3139.92 (12)
C12—N3—C15—C2275.69 (14)C10—C11—C12—N310.31 (14)
C14—N3—C15—C10171.01 (12)C6—N1—C7—C80.44 (16)
C12—N3—C15—C1039.64 (13)C9—C8—C7—N1176.60 (13)
N3—C15—C10—C1372.92 (12)C1—C8—C7—N10.36 (15)
C16—C15—C10—C1351.98 (14)C17—C16—C21—C202.7 (2)
C22—C15—C10—C13165.45 (11)C15—C16—C21—C20177.84 (13)
N3—C15—C10—C1143.01 (11)C17—C16—C21—N2175.99 (12)
C16—C15—C10—C11167.91 (11)C15—C16—C21—N23.47 (15)
C22—C15—C10—C1178.62 (12)C22—N2—C21—C20175.24 (14)
N3—C15—C10—C9161.10 (10)C22—N2—C21—C163.34 (16)
C16—C15—C10—C974.00 (14)C6—C1—C2—C30.7 (2)
C22—C15—C10—C939.47 (14)C8—C1—C2—C3178.51 (15)
N3—C15—C16—C1745.93 (19)C21—N2—C22—O2170.64 (14)
C22—C15—C16—C17171.58 (14)C21—N2—C22—C158.35 (15)
C10—C15—C16—C1771.86 (19)N3—C15—C22—O244.68 (19)
N3—C15—C16—C21133.45 (12)C16—C15—C22—O2169.35 (14)
C22—C15—C16—C217.80 (14)C10—C15—C22—O266.94 (17)
C10—C15—C16—C21108.75 (13)N3—C15—C22—N2134.34 (12)
C13—C10—C11—C2346.36 (16)C16—C15—C22—N29.67 (13)
C9—C10—C11—C2376.07 (14)C10—C15—C22—N2114.04 (12)
C15—C10—C11—C23161.69 (11)C1—C2—C3—C41.2 (2)
C13—C10—C11—C1282.99 (13)C25—N5—C23—N60.39 (18)
C9—C10—C11—C12154.58 (11)C25—N5—C23—C11178.58 (14)
C15—C10—C11—C1232.35 (12)C24—N6—C23—N50.46 (17)
C7—N1—C6—C5179.16 (15)C24—N6—C23—C11178.79 (12)
C7—N1—C6—C10.33 (16)C12—C11—C23—N541.7 (2)
C2—C1—C6—N1179.51 (12)C10—C11—C23—N582.13 (18)
C8—C1—C6—N10.10 (15)C12—C11—C23—N6136.32 (14)
C2—C1—C6—C50.0 (2)C10—C11—C23—N699.85 (15)
C8—C1—C6—C5179.43 (13)N1—C6—C5—C4179.14 (15)
C13—C10—C9—O1129.88 (13)C1—C6—C5—C40.3 (2)
C11—C10—C9—O17.51 (16)C16—C21—C20—C190.3 (2)
C15—C10—C9—O1104.60 (14)N2—C21—C20—C19178.08 (15)
C13—C10—C9—C850.01 (16)C18—C19—C20—C211.5 (3)
C11—C10—C9—C8172.37 (11)C6—C5—C4—C30.2 (3)
C15—C10—C9—C875.52 (15)C2—C3—C4—C50.9 (3)
O1—C9—C8—C7176.01 (14)C21—C16—C17—C183.1 (2)
C10—C9—C8—C74.1 (2)C15—C16—C17—C18177.58 (14)
O1—C9—C8—C10.5 (2)C20—C19—C18—C171.1 (3)
C10—C9—C8—C1179.41 (11)C16—C17—C18—C191.3 (2)
C2—C1—C8—C7179.12 (15)C23—N5—C25—C240.2 (2)
C6—C1—C8—C70.15 (14)N5—C25—C24—N60.1 (2)
C2—C1—C8—C93.7 (2)C23—N6—C24—C250.32 (19)
C6—C1—C8—C9177.02 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N5i0.89 (1)2.13 (1)2.9889 (19)164 (2)
N6—H6A···O1W0.90 (1)1.98 (2)2.714 (8)138 (2)
N6—H6A···O10.90 (1)2.57 (2)3.064 (2)116 (2)
Symmetry code: (i) x+1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N5i0.888 (9)2.126 (10)2.9889 (19)163.9 (17)
N6—H6A···O1W0.895 (9)1.981 (17)2.714 (8)138.2 (18)
N6—H6A···O10.895 (9)2.569 (19)3.064 (2)115.6 (16)
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The authors gratefully acknowledge Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationInglebert, S. A., Arun, Y., Sethusankar, K. & Perumal, P. T. (2013). Acta Cryst. E69, o1328–o1329.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRudrangi, S. R. S., Bontha, V. K., Manda, V. R. & Bethi, S. (2011). Asian J. Res. Chem. 4, 335–338.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds