metal-organic compounds
1-(2,3-Dimethylphenyl)piperazine-1,4-diium tetrachloridocuprate(II)
aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: sonia.abid@fsb.rnu.tn
In the title salt, (C12H20N2)[CuCl4], the CuII atom occupies a general position in a flattened tetrahedral environment by Cl ligands, characterized by Cl—Cu—Cl angles of 134.04 (3) and 137.18 (4)°. The six-membered piperazinediium ring adopts a chair conformation. The organic cation and inorganic anion interact through N—H⋯Cl and C—H⋯Cl hydrogen bonds, forming a three-dimensional network.
Related literature
For general background to the properties of tetrahalidocuprate(II) compounds, see: Solomon et al. (1992); Kim et al. (2001); Panja et al. (2005); Lee et al. (2004); Turnbull et al. (2005); Shapiro et al. (2007). For general background to the geometry of the tetrahalidocuprate(II) species, see: Halvorson et al. (1990). For puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
10.1107/S1600536813021454/ru2053sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813021454/ru2053Isup2.hkl
To an aqueous solution (10 ml) of HCl (0.2M) was added 1-(2,3-dimethylphenyl)piperazine (0.19 g, 1 mmol). To the obtained solution, a blue aqueous solution (10 ml) of CuCl2.6H2O (0.170 g, 1 mmol) was added slowly with stirring. The resulting solution was submitted to a slow evaporation at room temperature until the formation of yellow crystals of the title compound.
H atoms were placed in their calculated positions and then refined using the riding model with atom-H lengths of 0.93 Å (CH), 0.97 Å (CH2), 0.96 Å (CH3), 0.91 Å (NH) and 0.90 Å (NH3). Uiso were set to 1.2 (CH, CH2), 1.5 (CH3) or 1.20 (NH) times Ueq of the parent atom.
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids. Dashed lines indicate C—H···Cl. | |
Fig. 2. Perspective view of the three-dimensional network of (I), showing the intermolecular hydrogen bonds (dashed solid lines) interactions. |
(C12H20N2)[CuCl4] | Z = 2 |
Mr = 397.64 | F(000) = 406 |
Triclinic, P1 | Dx = 1.588 Mg m−3 |
Hall symbol: -P 1 | Ag Kα radiation, λ = 0.56087 Å |
a = 7.1986 (15) Å | Cell parameters from 25 reflections |
b = 7.7611 (11) Å | θ = 9.0–10.7° |
c = 15.635 (4) Å | µ = 1.01 mm−1 |
α = 77.035 (16)° | T = 293 K |
β = 79.311 (19)° | Prism, yellow |
γ = 81.845 (14)° | 0.25 × 0.20 × 0.15 mm |
V = 831.9 (3) Å3 |
Nonius MACH-3 diffractometer | 4600 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.020 |
Graphite monochromator | θmax = 28.0°, θmin = 2.1° |
non–profiled ω scans | h = −12→11 |
Absorption correction: part of the (Walker & Stuart, 1983) | model (ΔF) k = −12→12 |
Tmin = 0.786, Tmax = 0.863 | l = −26→2 |
9228 measured reflections | 2 standard reflections every 120 min |
8079 independent reflections | intensity decay: 7% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0614P)2 + 0.0435P] where P = (Fo2 + 2Fc2)/3 |
8079 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.87 e Å−3 |
0 restraints | Δρmin = −0.68 e Å−3 |
0 constraints |
(C12H20N2)[CuCl4] | γ = 81.845 (14)° |
Mr = 397.64 | V = 831.9 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.1986 (15) Å | Ag Kα radiation, λ = 0.56087 Å |
b = 7.7611 (11) Å | µ = 1.01 mm−1 |
c = 15.635 (4) Å | T = 293 K |
α = 77.035 (16)° | 0.25 × 0.20 × 0.15 mm |
β = 79.311 (19)° |
Nonius MACH-3 diffractometer | 4600 reflections with I > 2σ(I) |
Absorption correction: part of the (Walker & Stuart, 1983) | model (ΔF) Rint = 0.020 |
Tmin = 0.786, Tmax = 0.863 | 2 standard reflections every 120 min |
9228 measured reflections | intensity decay: 7% |
8079 independent reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.87 e Å−3 |
8079 reflections | Δρmin = −0.68 e Å−3 |
172 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.28980 (4) | 0.31174 (4) | 0.166012 (19) | 0.03259 (8) | |
Cl3 | 0.56150 (8) | 0.21183 (7) | 0.22023 (4) | 0.03825 (13) | |
Cl2 | 0.20878 (9) | 0.53035 (8) | 0.05406 (4) | 0.04152 (14) | |
Cl1 | 0.27357 (11) | 0.07141 (8) | 0.10849 (5) | 0.04717 (16) | |
Cl4 | 0.13588 (11) | 0.43179 (10) | 0.27862 (5) | 0.05472 (19) | |
N1 | 0.6470 (2) | 0.7932 (2) | 0.25996 (11) | 0.0256 (3) | |
H1 | 0.5611 | 0.8853 | 0.2411 | 0.031* | |
C5 | 0.6198 (3) | 0.7639 (3) | 0.35900 (14) | 0.0287 (4) | |
C10 | 0.4411 (3) | 0.8116 (3) | 0.40409 (15) | 0.0307 (4) | |
C4 | 0.8414 (3) | 0.8412 (3) | 0.21292 (15) | 0.0298 (4) | |
H4A | 0.8718 | 0.9435 | 0.2317 | 0.036* | |
H4B | 0.9365 | 0.7426 | 0.2283 | 0.036* | |
N2 | 0.7973 (3) | 0.7293 (3) | 0.08360 (13) | 0.0342 (4) | |
H2A | 0.8894 | 0.6389 | 0.0928 | 0.041* | |
H2B | 0.7938 | 0.7594 | 0.0248 | 0.041* | |
C9 | 0.4213 (3) | 0.7840 (3) | 0.49714 (16) | 0.0342 (5) | |
C1 | 0.6039 (3) | 0.6330 (3) | 0.23052 (15) | 0.0337 (4) | |
H1A | 0.4785 | 0.6019 | 0.2598 | 0.040* | |
H1B | 0.6956 | 0.5328 | 0.2479 | 0.040* | |
C2 | 0.6112 (3) | 0.6693 (3) | 0.13116 (16) | 0.0359 (5) | |
H2C | 0.5914 | 0.5621 | 0.1135 | 0.043* | |
H2D | 0.5098 | 0.7603 | 0.1146 | 0.043* | |
C6 | 0.7721 (3) | 0.6850 (3) | 0.40122 (16) | 0.0365 (5) | |
H6 | 0.8884 | 0.6514 | 0.3688 | 0.044* | |
C3 | 0.8434 (3) | 0.8834 (3) | 0.11406 (15) | 0.0337 (4) | |
H3A | 0.7513 | 0.9847 | 0.0988 | 0.040* | |
H3B | 0.9680 | 0.9148 | 0.0839 | 0.040* | |
C7 | 0.7467 (4) | 0.6570 (4) | 0.49343 (17) | 0.0436 (6) | |
H7 | 0.8462 | 0.6033 | 0.5238 | 0.052* | |
C8 | 0.5736 (4) | 0.7093 (3) | 0.53963 (17) | 0.0420 (5) | |
H8 | 0.5590 | 0.6937 | 0.6012 | 0.050* | |
C11 | 0.2342 (4) | 0.8368 (4) | 0.55160 (19) | 0.0506 (7) | |
H70 | 0.2526 | 0.8319 | 0.6114 | 0.076* | |
H72 | 0.1441 | 0.7564 | 0.5520 | 0.076* | |
H71 | 0.1871 | 0.9556 | 0.5260 | 0.076* | |
C12 | 0.2729 (3) | 0.8866 (4) | 0.35844 (18) | 0.0450 (6) | |
H12A | 0.1645 | 0.9099 | 0.4019 | 0.067* | |
H12B | 0.2459 | 0.8026 | 0.3269 | 0.067* | |
H12C | 0.3005 | 0.9953 | 0.3173 | 0.067* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.03341 (14) | 0.03084 (14) | 0.03585 (16) | 0.00481 (10) | −0.01015 (11) | −0.01292 (11) |
Cl3 | 0.0377 (3) | 0.0295 (2) | 0.0513 (3) | 0.0060 (2) | −0.0183 (2) | −0.0128 (2) |
Cl2 | 0.0450 (3) | 0.0395 (3) | 0.0405 (3) | 0.0100 (2) | −0.0159 (3) | −0.0105 (2) |
Cl1 | 0.0676 (4) | 0.0333 (3) | 0.0480 (4) | −0.0068 (3) | −0.0224 (3) | −0.0121 (3) |
Cl4 | 0.0545 (4) | 0.0622 (4) | 0.0416 (3) | 0.0228 (3) | −0.0035 (3) | −0.0199 (3) |
N1 | 0.0264 (8) | 0.0238 (7) | 0.0260 (8) | 0.0000 (6) | −0.0036 (6) | −0.0058 (6) |
C5 | 0.0346 (10) | 0.0263 (9) | 0.0254 (9) | −0.0014 (7) | −0.0033 (8) | −0.0081 (7) |
C10 | 0.0313 (10) | 0.0303 (10) | 0.0301 (10) | −0.0023 (8) | −0.0025 (8) | −0.0078 (8) |
C4 | 0.0278 (9) | 0.0309 (10) | 0.0312 (10) | −0.0033 (7) | −0.0045 (8) | −0.0072 (8) |
N2 | 0.0353 (9) | 0.0381 (10) | 0.0304 (9) | 0.0012 (7) | −0.0043 (8) | −0.0129 (8) |
C9 | 0.0373 (11) | 0.0330 (10) | 0.0309 (11) | −0.0076 (9) | 0.0033 (9) | −0.0082 (9) |
C1 | 0.0394 (11) | 0.0300 (10) | 0.0345 (11) | −0.0097 (8) | −0.0031 (9) | −0.0109 (9) |
C2 | 0.0376 (11) | 0.0412 (12) | 0.0325 (11) | −0.0069 (9) | −0.0060 (9) | −0.0130 (9) |
C6 | 0.0361 (11) | 0.0398 (12) | 0.0335 (11) | 0.0076 (9) | −0.0078 (9) | −0.0123 (9) |
C3 | 0.0345 (11) | 0.0351 (11) | 0.0314 (11) | −0.0086 (9) | −0.0004 (9) | −0.0072 (9) |
C7 | 0.0475 (14) | 0.0492 (14) | 0.0334 (12) | 0.0070 (11) | −0.0133 (11) | −0.0090 (11) |
C8 | 0.0550 (15) | 0.0419 (13) | 0.0290 (11) | −0.0022 (11) | −0.0065 (10) | −0.0092 (10) |
C11 | 0.0481 (15) | 0.0613 (17) | 0.0385 (14) | −0.0070 (13) | 0.0094 (12) | −0.0145 (13) |
C12 | 0.0295 (11) | 0.0605 (16) | 0.0396 (13) | −0.0013 (11) | −0.0021 (10) | −0.0040 (12) |
Cu1—Cl4 | 2.2170 (9) | C9—C11 | 1.510 (3) |
Cu1—Cl3 | 2.2439 (8) | C1—C2 | 1.508 (3) |
Cu1—Cl2 | 2.2467 (8) | C1—H1A | 0.9700 |
Cu1—Cl1 | 2.2704 (7) | C1—H1B | 0.9700 |
N1—C5 | 1.493 (3) | C2—H2C | 0.9700 |
N1—C1 | 1.507 (3) | C2—H2D | 0.9700 |
N1—C4 | 1.511 (3) | C6—C7 | 1.390 (3) |
N1—H1 | 0.9100 | C6—H6 | 0.9300 |
C5—C6 | 1.382 (3) | C3—H3A | 0.9700 |
C5—C10 | 1.391 (3) | C3—H3B | 0.9700 |
C10—C9 | 1.405 (3) | C7—C8 | 1.376 (4) |
C10—C12 | 1.499 (3) | C7—H7 | 0.9300 |
C4—C3 | 1.504 (3) | C8—H8 | 0.9300 |
C4—H4A | 0.9700 | C11—H70 | 0.9600 |
C4—H4B | 0.9700 | C11—H72 | 0.9600 |
N2—C3 | 1.481 (3) | C11—H71 | 0.9600 |
N2—C2 | 1.488 (3) | C12—H12A | 0.9600 |
N2—H2A | 0.9000 | C12—H12B | 0.9600 |
N2—H2B | 0.9000 | C12—H12C | 0.9600 |
C9—C8 | 1.377 (4) | ||
Cl4—Cu1—Cl3 | 97.87 (3) | N1—C1—H1B | 109.4 |
Cl4—Cu1—Cl2 | 98.37 (3) | C2—C1—H1B | 109.4 |
Cl3—Cu1—Cl2 | 134.04 (3) | H1A—C1—H1B | 108.0 |
Cl4—Cu1—Cl1 | 137.18 (4) | N2—C2—C1 | 111.22 (19) |
Cl3—Cu1—Cl1 | 96.67 (3) | N2—C2—H2C | 109.4 |
Cl2—Cu1—Cl1 | 99.83 (3) | C1—C2—H2C | 109.4 |
C5—N1—C1 | 111.00 (16) | N2—C2—H2D | 109.4 |
C5—N1—C4 | 115.08 (16) | C1—C2—H2D | 109.4 |
C1—N1—C4 | 108.77 (16) | H2C—C2—H2D | 108.0 |
C5—N1—H1 | 107.2 | C5—C6—C7 | 118.2 (2) |
C1—N1—H1 | 107.2 | C5—C6—H6 | 120.9 |
C4—N1—H1 | 107.2 | C7—C6—H6 | 120.9 |
C6—C5—C10 | 123.4 (2) | N2—C3—C4 | 110.92 (18) |
C6—C5—N1 | 118.13 (19) | N2—C3—H3A | 109.5 |
C10—C5—N1 | 118.40 (19) | C4—C3—H3A | 109.5 |
C5—C10—C9 | 116.8 (2) | N2—C3—H3B | 109.5 |
C5—C10—C12 | 123.3 (2) | C4—C3—H3B | 109.5 |
C9—C10—C12 | 119.9 (2) | H3A—C3—H3B | 108.0 |
C3—C4—N1 | 109.47 (17) | C8—C7—C6 | 119.7 (2) |
C3—C4—H4A | 109.8 | C8—C7—H7 | 120.1 |
N1—C4—H4A | 109.8 | C6—C7—H7 | 120.1 |
C3—C4—H4B | 109.8 | C7—C8—C9 | 121.7 (2) |
N1—C4—H4B | 109.8 | C7—C8—H8 | 119.1 |
H4A—C4—H4B | 108.2 | C9—C8—H8 | 119.1 |
C3—N2—C2 | 111.79 (17) | C9—C11—H70 | 109.5 |
C3—N2—H2A | 109.3 | C9—C11—H72 | 109.5 |
C2—N2—H2A | 109.3 | H70—C11—H72 | 109.5 |
C3—N2—H2B | 109.3 | C9—C11—H71 | 109.5 |
C2—N2—H2B | 109.3 | H70—C11—H71 | 109.5 |
H2A—N2—H2B | 107.9 | H72—C11—H71 | 109.5 |
C8—C9—C10 | 120.1 (2) | C10—C12—H12A | 109.5 |
C8—C9—C11 | 119.2 (2) | C10—C12—H12B | 109.5 |
C10—C9—C11 | 120.6 (2) | H12A—C12—H12B | 109.5 |
N1—C1—C2 | 111.01 (18) | C10—C12—H12C | 109.5 |
N1—C1—H1A | 109.4 | H12A—C12—H12C | 109.5 |
C2—C1—H1A | 109.4 | H12B—C12—H12C | 109.5 |
C1—N1—C5—C6 | 88.3 (2) | C12—C10—C9—C11 | −2.8 (4) |
C4—N1—C5—C6 | −35.8 (3) | C5—N1—C1—C2 | 174.05 (18) |
C1—N1—C5—C10 | −89.5 (2) | C4—N1—C1—C2 | −58.4 (2) |
C4—N1—C5—C10 | 146.48 (19) | C3—N2—C2—C1 | −53.9 (3) |
C6—C5—C10—C9 | 3.1 (3) | N1—C1—C2—N2 | 55.3 (3) |
N1—C5—C10—C9 | −179.34 (19) | C10—C5—C6—C7 | −2.1 (4) |
C6—C5—C10—C12 | −176.0 (2) | N1—C5—C6—C7 | −179.7 (2) |
N1—C5—C10—C12 | 1.6 (3) | C2—N2—C3—C4 | 56.3 (2) |
C5—N1—C4—C3 | −174.74 (17) | N1—C4—C3—N2 | −59.4 (2) |
C1—N1—C4—C3 | 60.0 (2) | C5—C6—C7—C8 | −0.5 (4) |
C5—C10—C9—C8 | −1.4 (3) | C6—C7—C8—C9 | 2.1 (4) |
C12—C10—C9—C8 | 177.7 (2) | C10—C9—C8—C7 | −1.1 (4) |
C5—C10—C9—C11 | 178.2 (2) | C11—C9—C8—C7 | 179.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl3i | 0.91 | 2.48 | 3.1610 (18) | 132 |
N2—H2A···Cl2ii | 0.90 | 2.35 | 3.144 (2) | 147 |
N2—H2B···Cl1iii | 0.90 | 2.30 | 3.152 (2) | 159 |
N2—H2B···Cl2iii | 0.90 | 2.80 | 3.271 (2) | 114 |
C2—H2D···Cl1i | 0.97 | 2.74 | 3.666 (3) | 159 |
C3—H3B···Cl1iv | 0.97 | 2.78 | 3.585 (2) | 141 |
C4—H4B···Cl4ii | 0.97 | 2.66 | 3.616 (2) | 168 |
C6—H6···Cl4ii | 0.93 | 2.71 | 3.572 (2) | 154 |
C12—H12C···Cl3i | 0.96 | 2.71 | 3.568 (3) | 149 |
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) −x+1, −y+1, −z; (iv) x+1, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl3i | 0.91 | 2.48 | 3.1610 (18) | 131.7 |
N2—H2A···Cl2ii | 0.90 | 2.35 | 3.144 (2) | 147.0 |
N2—H2B···Cl1iii | 0.90 | 2.30 | 3.152 (2) | 158.8 |
N2—H2B···Cl2iii | 0.90 | 2.80 | 3.271 (2) | 113.9 |
C2—H2D···Cl1i | 0.97 | 2.74 | 3.666 (3) | 159.4 |
C3—H3B···Cl1iv | 0.97 | 2.78 | 3.585 (2) | 140.5 |
C4—H4B···Cl4ii | 0.97 | 2.66 | 3.616 (2) | 168.0 |
C6—H6···Cl4ii | 0.93 | 2.71 | 3.572 (2) | 154.2 |
C12—H12C···Cl3i | 0.96 | 2.71 | 3.568 (3) | 148.9 |
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) −x+1, −y+1, −z; (iv) x+1, y+1, z. |
Acknowledgements
This work was supported by the Tunisian Ministry of HEScR.
References
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Halvorson, K. E., Patterson, C. & Willett, R. D. (1990). Acta Cryst. B46, 508–519. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany. Google Scholar
Kim, Y. J., Kim, S. O., Kim, Y. I. & Choi, S. N. (2001). Inorg. Chem. 40, 4481–4484. Web of Science CSD CrossRef PubMed CAS Google Scholar
Lee, Y. K., Park, S. M., Kang, S. K., Kim, Y. I. & Choi, S. N. (2004). Bull. Korean Chem. Soc. 25, 823–828. CAS Google Scholar
Panja, A., Goswami, S., Shaikh, N., Roy, P., Manassero, M., Butcher, R. J. & Banerjee, P. (2005). Polyhedron, 24, 2921–2932. Web of Science CSD CrossRef CAS Google Scholar
Shapiro, A., Landee, C. P., Turnbull, M. M., Jornet, J., Deumal, M., Novoa, J. J., Robb, M. A. & Lewis, W. (2007). J. Am. Chem. Soc. 129, 952–959. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Solomon, E. I., Baldwin, M. J. & Lowery, M. D. (1992). Chem. Rev. 92, 521–542. CrossRef CAS Web of Science Google Scholar
Turnbull, M. M., Landee, C. P. & Wells, B. M. (2005). Coord. Chem. Rev. 249, 2567–2576. Web of Science CrossRef CAS Google Scholar
Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166. CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Cuprates are chemical compounds in which copper forms complex anions where the overall charge is negative. In such complexes, the ligands are generally cyanides, hydroxides or halides. Due to their important properties, the cuprates still constitute a research axis in many laboratories (Solomon et al., 1992; Kim et al., 2001; Lee et al., 2004; Panja et al., 2005; Turnbull et al., 2005; Shapiro et al., 2007). We report here synthesis and crystal structure of a new cuprate, (C12H20N2)[CuCl4] (I). Crystal structure of (I) gives another illustration of this type of material. The asymmetric unit within the unit cell is build of one tetrahedral [CuCl4]2- anion and one 1-(2,3-dimethylphenyl)piperazine-1,4-diium cation (Fig. 1). The copper(II) anion exhibits a coordination geometry intermediate between tetrahedral and square–planar. However we can tell that the configuration adopted by this anion is a flattened tetrahedral where the two trans bond angles, Cl(1)—Cu—Cl(4) = 137.18 (4)° and Cl(2)—Cu—Cl(3) = 134.04 (3)°, are very near to the minimum of the potential curve describing the angular deformation of isolated [CuCl4]2- anion (θ min = 135.95°) (Halvorson et al., 1990). The phenyl ring (C5—C10) of 1-(2,3-dimethylphenyl)piperazine-1,4-diium is planar with an r.m.s. deviation of 0.0111. The 6-membered piperazinium ring adopts a chair conformation, with puckering parameters (Cremer & Pople, 1975) QT = 0.581 (2) Å, θ = 5.3 (2)° and ϕ = 328 (3)°. The dihedral angle between the piperazine (N1–N2/C1–C4) ring and the benzene (C5–C10) ring is 65.41 (7) °. In the crystal, neighboring molecules are linked by N—H···Cl and C—H···Cl hydrogen bonds, forming a three-dimensional network (Figure 2).