metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,3-Di­methyl­phen­yl)piperazine-1,4-diium tetra­chlorido­cuprate(II)

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: sonia.abid@fsb.rnu.tn

(Received 26 June 2013; accepted 1 August 2013; online 10 August 2013)

In the title salt, (C12H20N2)[CuCl4], the CuII atom occupies a general position in a flattened tetra­hedral environment by Cl ligands, characterized by Cl—Cu—Cl angles of 134.04 (3) and 137.18 (4)°. The six-membered piperazinediium ring adopts a chair conformation. The organic cation and inorganic anion inter­act through N—H⋯Cl and C—H⋯Cl hydrogen bonds, forming a three-dimensional network.

Related literature

For general background to the properties of tetra­halido­cuprate(II) compounds, see: Solomon et al. (1992[Solomon, E. I., Baldwin, M. J. & Lowery, M. D. (1992). Chem. Rev. 92, 521-542.]); Kim et al. (2001[Kim, Y. J., Kim, S. O., Kim, Y. I. & Choi, S. N. (2001). Inorg. Chem. 40, 4481-4484.]); Panja et al. (2005[Panja, A., Goswami, S., Shaikh, N., Roy, P., Manassero, M., Butcher, R. J. & Banerjee, P. (2005). Polyhedron, 24, 2921-2932.]); Lee et al. (2004[Lee, Y. K., Park, S. M., Kang, S. K., Kim, Y. I. & Choi, S. N. (2004). Bull. Korean Chem. Soc. 25, 823-828.]); Turnbull et al. (2005[Turnbull, M. M., Landee, C. P. & Wells, B. M. (2005). Coord. Chem. Rev. 249, 2567-2576.]); Shapiro et al. (2007[Shapiro, A., Landee, C. P., Turnbull, M. M., Jornet, J., Deumal, M., Novoa, J. J., Robb, M. A. & Lewis, W. (2007). J. Am. Chem. Soc. 129, 952-959.]). For general background to the geometry of the tetra­halidocuprate(II) species, see: Halvorson et al. (1990[Halvorson, K. E., Patterson, C. & Willett, R. D. (1990). Acta Cryst. B46, 508-519.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H20N2)[CuCl4]

  • Mr = 397.64

  • Triclinic, [P \overline 1]

  • a = 7.1986 (15) Å

  • b = 7.7611 (11) Å

  • c = 15.635 (4) Å

  • α = 77.035 (16)°

  • β = 79.311 (19)°

  • γ = 81.845 (14)°

  • V = 831.9 (3) Å3

  • Z = 2

  • Ag Kα radiation

  • λ = 0.56087 Å

  • μ = 1.01 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Nonius MACH-3 diffractometer

  • Absorption correction: part of the refinement model (ΔF) (Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.]) Tmin = 0.786, Tmax = 0.863

  • 9228 measured reflections

  • 8079 independent reflections

  • 4600 reflections with I > 2σ(I)

  • Rint = 0.020

  • 2 standard reflections every 120 min intensity decay: 7%

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.129

  • S = 1.00

  • 8079 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl3i 0.91 2.48 3.1610 (18) 132
N2—H2A⋯Cl2ii 0.90 2.35 3.144 (2) 147
N2—H2B⋯Cl1iii 0.90 2.30 3.152 (2) 159
N2—H2B⋯Cl2iii 0.90 2.80 3.271 (2) 114
C2—H2D⋯Cl1i 0.97 2.74 3.666 (3) 159
C3—H3B⋯Cl1iv 0.97 2.78 3.585 (2) 141
C4—H4B⋯Cl4ii 0.97 2.66 3.616 (2) 168
C6—H6⋯Cl4ii 0.93 2.71 3.572 (2) 154
C12—H12C⋯Cl3i 0.96 2.71 3.568 (3) 149
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) -x+1, -y+1, -z; (iv) x+1, y+1, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Cuprates are chemical compounds in which copper forms complex anions where the overall charge is negative. In such complexes, the ligands are generally cyanides, hydroxides or halides. Due to their important properties, the cuprates still constitute a research axis in many laboratories (Solomon et al., 1992; Kim et al., 2001; Lee et al., 2004; Panja et al., 2005; Turnbull et al., 2005; Shapiro et al., 2007). We report here synthesis and crystal structure of a new cuprate, (C12H20N2)[CuCl4] (I). Crystal structure of (I) gives another illustration of this type of material. The asymmetric unit within the unit cell is build of one tetrahedral [CuCl4]2- anion and one 1-(2,3-dimethylphenyl)piperazine-1,4-diium cation (Fig. 1). The copper(II) anion exhibits a coordination geometry intermediate between tetrahedral and square–planar. However we can tell that the configuration adopted by this anion is a flattened tetrahedral where the two trans bond angles, Cl(1)—Cu—Cl(4) = 137.18 (4)° and Cl(2)—Cu—Cl(3) = 134.04 (3)°, are very near to the minimum of the potential curve describing the angular deformation of isolated [CuCl4]2- anion (θ min = 135.95°) (Halvorson et al., 1990). The phenyl ring (C5—C10) of 1-(2,3-dimethylphenyl)piperazine-1,4-diium is planar with an r.m.s. deviation of 0.0111. The 6-membered piperazinium ring adopts a chair conformation, with puckering parameters (Cremer & Pople, 1975) QT = 0.581 (2) Å, θ = 5.3 (2)° and ϕ = 328 (3)°. The dihedral angle between the piperazine (N1–N2/C1–C4) ring and the benzene (C5–C10) ring is 65.41 (7) °. In the crystal, neighboring molecules are linked by N—H···Cl and C—H···Cl hydrogen bonds, forming a three-dimensional network (Figure 2).

Related literature top

For general background to the properties of tetrahalidocuprate(II) compounds, see: Solomon et al. (1992); Kim et al. (2001); Panja et al. (2005); Lee et al. (2004); Turnbull et al. (2005); Shapiro et al. (2007). For general background to the geometry of the tetrahalidocuprate(II) species, see: Halvorson et al. (1990). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

To an aqueous solution (10 ml) of HCl (0.2M) was added 1-(2,3-dimethylphenyl)piperazine (0.19 g, 1 mmol). To the obtained solution, a blue aqueous solution (10 ml) of CuCl2.6H2O (0.170 g, 1 mmol) was added slowly with stirring. The resulting solution was submitted to a slow evaporation at room temperature until the formation of yellow crystals of the title compound.

Refinement top

H atoms were placed in their calculated positions and then refined using the riding model with atom-H lengths of 0.93 Å (CH), 0.97 Å (CH2), 0.96 Å (CH3), 0.91 Å (NH) and 0.90 Å (NH3). Uiso were set to 1.2 (CH, CH2), 1.5 (CH3) or 1.20 (NH) times Ueq of the parent atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids. Dashed lines indicate C—H···Cl.
[Figure 2] Fig. 2. Perspective view of the three-dimensional network of (I), showing the intermolecular hydrogen bonds (dashed solid lines) interactions.
1-(2,3-Dimethylphenyl)piperazine-1,4-diium tetrachloridocuprate(II) top
Crystal data top
(C12H20N2)[CuCl4]Z = 2
Mr = 397.64F(000) = 406
Triclinic, P1Dx = 1.588 Mg m3
Hall symbol: -P 1Ag Kα radiation, λ = 0.56087 Å
a = 7.1986 (15) ÅCell parameters from 25 reflections
b = 7.7611 (11) Åθ = 9.0–10.7°
c = 15.635 (4) ŵ = 1.01 mm1
α = 77.035 (16)°T = 293 K
β = 79.311 (19)°Prism, yellow
γ = 81.845 (14)°0.25 × 0.20 × 0.15 mm
V = 831.9 (3) Å3
Data collection top
Nonius MACH-3
diffractometer
4600 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 28.0°, θmin = 2.1°
non–profiled ω scansh = 1211
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
k = 1212
Tmin = 0.786, Tmax = 0.863l = 262
9228 measured reflections2 standard reflections every 120 min
8079 independent reflections intensity decay: 7%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.0435P]
where P = (Fo2 + 2Fc2)/3
8079 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.68 e Å3
0 constraints
Crystal data top
(C12H20N2)[CuCl4]γ = 81.845 (14)°
Mr = 397.64V = 831.9 (3) Å3
Triclinic, P1Z = 2
a = 7.1986 (15) ÅAg Kα radiation, λ = 0.56087 Å
b = 7.7611 (11) ŵ = 1.01 mm1
c = 15.635 (4) ÅT = 293 K
α = 77.035 (16)°0.25 × 0.20 × 0.15 mm
β = 79.311 (19)°
Data collection top
Nonius MACH-3
diffractometer
4600 reflections with I > 2σ(I)
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
Rint = 0.020
Tmin = 0.786, Tmax = 0.8632 standard reflections every 120 min
9228 measured reflections intensity decay: 7%
8079 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.00Δρmax = 0.87 e Å3
8079 reflectionsΔρmin = 0.68 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.28980 (4)0.31174 (4)0.166012 (19)0.03259 (8)
Cl30.56150 (8)0.21183 (7)0.22023 (4)0.03825 (13)
Cl20.20878 (9)0.53035 (8)0.05406 (4)0.04152 (14)
Cl10.27357 (11)0.07141 (8)0.10849 (5)0.04717 (16)
Cl40.13588 (11)0.43179 (10)0.27862 (5)0.05472 (19)
N10.6470 (2)0.7932 (2)0.25996 (11)0.0256 (3)
H10.56110.88530.24110.031*
C50.6198 (3)0.7639 (3)0.35900 (14)0.0287 (4)
C100.4411 (3)0.8116 (3)0.40409 (15)0.0307 (4)
C40.8414 (3)0.8412 (3)0.21292 (15)0.0298 (4)
H4A0.87180.94350.23170.036*
H4B0.93650.74260.22830.036*
N20.7973 (3)0.7293 (3)0.08360 (13)0.0342 (4)
H2A0.88940.63890.09280.041*
H2B0.79380.75940.02480.041*
C90.4213 (3)0.7840 (3)0.49714 (16)0.0342 (5)
C10.6039 (3)0.6330 (3)0.23052 (15)0.0337 (4)
H1A0.47850.60190.25980.040*
H1B0.69560.53280.24790.040*
C20.6112 (3)0.6693 (3)0.13116 (16)0.0359 (5)
H2C0.59140.56210.11350.043*
H2D0.50980.76030.11460.043*
C60.7721 (3)0.6850 (3)0.40122 (16)0.0365 (5)
H60.88840.65140.36880.044*
C30.8434 (3)0.8834 (3)0.11406 (15)0.0337 (4)
H3A0.75130.98470.09880.040*
H3B0.96800.91480.08390.040*
C70.7467 (4)0.6570 (4)0.49343 (17)0.0436 (6)
H70.84620.60330.52380.052*
C80.5736 (4)0.7093 (3)0.53963 (17)0.0420 (5)
H80.55900.69370.60120.050*
C110.2342 (4)0.8368 (4)0.55160 (19)0.0506 (7)
H700.25260.83190.61140.076*
H720.14410.75640.55200.076*
H710.18710.95560.52600.076*
C120.2729 (3)0.8866 (4)0.35844 (18)0.0450 (6)
H12A0.16450.90990.40190.067*
H12B0.24590.80260.32690.067*
H12C0.30050.99530.31730.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03341 (14)0.03084 (14)0.03585 (16)0.00481 (10)0.01015 (11)0.01292 (11)
Cl30.0377 (3)0.0295 (2)0.0513 (3)0.0060 (2)0.0183 (2)0.0128 (2)
Cl20.0450 (3)0.0395 (3)0.0405 (3)0.0100 (2)0.0159 (3)0.0105 (2)
Cl10.0676 (4)0.0333 (3)0.0480 (4)0.0068 (3)0.0224 (3)0.0121 (3)
Cl40.0545 (4)0.0622 (4)0.0416 (3)0.0228 (3)0.0035 (3)0.0199 (3)
N10.0264 (8)0.0238 (7)0.0260 (8)0.0000 (6)0.0036 (6)0.0058 (6)
C50.0346 (10)0.0263 (9)0.0254 (9)0.0014 (7)0.0033 (8)0.0081 (7)
C100.0313 (10)0.0303 (10)0.0301 (10)0.0023 (8)0.0025 (8)0.0078 (8)
C40.0278 (9)0.0309 (10)0.0312 (10)0.0033 (7)0.0045 (8)0.0072 (8)
N20.0353 (9)0.0381 (10)0.0304 (9)0.0012 (7)0.0043 (8)0.0129 (8)
C90.0373 (11)0.0330 (10)0.0309 (11)0.0076 (9)0.0033 (9)0.0082 (9)
C10.0394 (11)0.0300 (10)0.0345 (11)0.0097 (8)0.0031 (9)0.0109 (9)
C20.0376 (11)0.0412 (12)0.0325 (11)0.0069 (9)0.0060 (9)0.0130 (9)
C60.0361 (11)0.0398 (12)0.0335 (11)0.0076 (9)0.0078 (9)0.0123 (9)
C30.0345 (11)0.0351 (11)0.0314 (11)0.0086 (9)0.0004 (9)0.0072 (9)
C70.0475 (14)0.0492 (14)0.0334 (12)0.0070 (11)0.0133 (11)0.0090 (11)
C80.0550 (15)0.0419 (13)0.0290 (11)0.0022 (11)0.0065 (10)0.0092 (10)
C110.0481 (15)0.0613 (17)0.0385 (14)0.0070 (13)0.0094 (12)0.0145 (13)
C120.0295 (11)0.0605 (16)0.0396 (13)0.0013 (11)0.0021 (10)0.0040 (12)
Geometric parameters (Å, º) top
Cu1—Cl42.2170 (9)C9—C111.510 (3)
Cu1—Cl32.2439 (8)C1—C21.508 (3)
Cu1—Cl22.2467 (8)C1—H1A0.9700
Cu1—Cl12.2704 (7)C1—H1B0.9700
N1—C51.493 (3)C2—H2C0.9700
N1—C11.507 (3)C2—H2D0.9700
N1—C41.511 (3)C6—C71.390 (3)
N1—H10.9100C6—H60.9300
C5—C61.382 (3)C3—H3A0.9700
C5—C101.391 (3)C3—H3B0.9700
C10—C91.405 (3)C7—C81.376 (4)
C10—C121.499 (3)C7—H70.9300
C4—C31.504 (3)C8—H80.9300
C4—H4A0.9700C11—H700.9600
C4—H4B0.9700C11—H720.9600
N2—C31.481 (3)C11—H710.9600
N2—C21.488 (3)C12—H12A0.9600
N2—H2A0.9000C12—H12B0.9600
N2—H2B0.9000C12—H12C0.9600
C9—C81.377 (4)
Cl4—Cu1—Cl397.87 (3)N1—C1—H1B109.4
Cl4—Cu1—Cl298.37 (3)C2—C1—H1B109.4
Cl3—Cu1—Cl2134.04 (3)H1A—C1—H1B108.0
Cl4—Cu1—Cl1137.18 (4)N2—C2—C1111.22 (19)
Cl3—Cu1—Cl196.67 (3)N2—C2—H2C109.4
Cl2—Cu1—Cl199.83 (3)C1—C2—H2C109.4
C5—N1—C1111.00 (16)N2—C2—H2D109.4
C5—N1—C4115.08 (16)C1—C2—H2D109.4
C1—N1—C4108.77 (16)H2C—C2—H2D108.0
C5—N1—H1107.2C5—C6—C7118.2 (2)
C1—N1—H1107.2C5—C6—H6120.9
C4—N1—H1107.2C7—C6—H6120.9
C6—C5—C10123.4 (2)N2—C3—C4110.92 (18)
C6—C5—N1118.13 (19)N2—C3—H3A109.5
C10—C5—N1118.40 (19)C4—C3—H3A109.5
C5—C10—C9116.8 (2)N2—C3—H3B109.5
C5—C10—C12123.3 (2)C4—C3—H3B109.5
C9—C10—C12119.9 (2)H3A—C3—H3B108.0
C3—C4—N1109.47 (17)C8—C7—C6119.7 (2)
C3—C4—H4A109.8C8—C7—H7120.1
N1—C4—H4A109.8C6—C7—H7120.1
C3—C4—H4B109.8C7—C8—C9121.7 (2)
N1—C4—H4B109.8C7—C8—H8119.1
H4A—C4—H4B108.2C9—C8—H8119.1
C3—N2—C2111.79 (17)C9—C11—H70109.5
C3—N2—H2A109.3C9—C11—H72109.5
C2—N2—H2A109.3H70—C11—H72109.5
C3—N2—H2B109.3C9—C11—H71109.5
C2—N2—H2B109.3H70—C11—H71109.5
H2A—N2—H2B107.9H72—C11—H71109.5
C8—C9—C10120.1 (2)C10—C12—H12A109.5
C8—C9—C11119.2 (2)C10—C12—H12B109.5
C10—C9—C11120.6 (2)H12A—C12—H12B109.5
N1—C1—C2111.01 (18)C10—C12—H12C109.5
N1—C1—H1A109.4H12A—C12—H12C109.5
C2—C1—H1A109.4H12B—C12—H12C109.5
C1—N1—C5—C688.3 (2)C12—C10—C9—C112.8 (4)
C4—N1—C5—C635.8 (3)C5—N1—C1—C2174.05 (18)
C1—N1—C5—C1089.5 (2)C4—N1—C1—C258.4 (2)
C4—N1—C5—C10146.48 (19)C3—N2—C2—C153.9 (3)
C6—C5—C10—C93.1 (3)N1—C1—C2—N255.3 (3)
N1—C5—C10—C9179.34 (19)C10—C5—C6—C72.1 (4)
C6—C5—C10—C12176.0 (2)N1—C5—C6—C7179.7 (2)
N1—C5—C10—C121.6 (3)C2—N2—C3—C456.3 (2)
C5—N1—C4—C3174.74 (17)N1—C4—C3—N259.4 (2)
C1—N1—C4—C360.0 (2)C5—C6—C7—C80.5 (4)
C5—C10—C9—C81.4 (3)C6—C7—C8—C92.1 (4)
C12—C10—C9—C8177.7 (2)C10—C9—C8—C71.1 (4)
C5—C10—C9—C11178.2 (2)C11—C9—C8—C7179.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl3i0.912.483.1610 (18)132
N2—H2A···Cl2ii0.902.353.144 (2)147
N2—H2B···Cl1iii0.902.303.152 (2)159
N2—H2B···Cl2iii0.902.803.271 (2)114
C2—H2D···Cl1i0.972.743.666 (3)159
C3—H3B···Cl1iv0.972.783.585 (2)141
C4—H4B···Cl4ii0.972.663.616 (2)168
C6—H6···Cl4ii0.932.713.572 (2)154
C12—H12C···Cl3i0.962.713.568 (3)149
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl3i0.912.483.1610 (18)131.7
N2—H2A···Cl2ii0.902.353.144 (2)147.0
N2—H2B···Cl1iii0.902.303.152 (2)158.8
N2—H2B···Cl2iii0.902.803.271 (2)113.9
C2—H2D···Cl1i0.972.743.666 (3)159.4
C3—H3B···Cl1iv0.972.783.585 (2)140.5
C4—H4B···Cl4ii0.972.663.616 (2)168.0
C6—H6···Cl4ii0.932.713.572 (2)154.2
C12—H12C···Cl3i0.962.713.568 (3)148.9
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z.
 

Acknowledgements

This work was supported by the Tunisian Ministry of HEScR.

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHalvorson, K. E., Patterson, C. & Willett, R. D. (1990). Acta Cryst. B46, 508–519.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKim, Y. J., Kim, S. O., Kim, Y. I. & Choi, S. N. (2001). Inorg. Chem. 40, 4481–4484.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLee, Y. K., Park, S. M., Kang, S. K., Kim, Y. I. & Choi, S. N. (2004). Bull. Korean Chem. Soc. 25, 823–828.  CAS Google Scholar
First citationPanja, A., Goswami, S., Shaikh, N., Roy, P., Manassero, M., Butcher, R. J. & Banerjee, P. (2005). Polyhedron, 24, 2921–2932.  Web of Science CSD CrossRef CAS Google Scholar
First citationShapiro, A., Landee, C. P., Turnbull, M. M., Jornet, J., Deumal, M., Novoa, J. J., Robb, M. A. & Lewis, W. (2007). J. Am. Chem. Soc. 129, 952–959.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolomon, E. I., Baldwin, M. J. & Lowery, M. D. (1992). Chem. Rev. 92, 521–542.  CrossRef CAS Web of Science Google Scholar
First citationTurnbull, M. M., Landee, C. P. & Wells, B. M. (2005). Coord. Chem. Rev. 249, 2567–2576.  Web of Science CrossRef CAS Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds