metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages m495-m496

Bis(4-amino­pyridine){2,2′-[1,2-phenyl­enebis(nitrilo­methanylyl­­idene)]diphen­ol­ato}cobalt(III) nitrate

aDepartment of Bio & Nano Chemistry, College of Natural Sciences, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702, Republic of Korea
*Correspondence e-mail: yoona@kookmin.ac.kr

(Received 25 June 2013; accepted 27 July 2013; online 17 August 2013)

In the title compound, [Co(C20H14N2O2)(C5H6N2)2]NO3, the CoIII atom is coordinated in a slightly elongated octa­hedral geometry by the N2O2 donor set of the tetra­dentate Schiff base ligand and by the pyridine N atoms of two trans-arranged monodentate 4-amino­pyridine mol­ecules. The pyridine rings are aligned nearly perpendicularly to each other [dihedral angle = 82.28 (13)°]. The phen­oxy rings form dihedral angles of 12.37 (12) and 12.16 (14)° with the phenyl­ene ring. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds link the ions into a three-dimensional network.

Related literature

For transition metal Schiff-base complexes with a tetra­dentate N2O2 ligand, see: Schenk et al. (2007[Schenk, K. J., Meghdadi, S., Amirnasr, M., Habibi, M. H., Amiri, A., Salehi, M. & Kashi, A. (2007). Polyhedron, 26, 5448-5457.]); Yamada et al. (1999[Yamada, S. (1999). Coord. Chem. Rev. 190-192, 537-555.]); Polson et al. (1997[Polson, S. M., Cini, R., Pifferi, C. & Marzilli, L. G. (1997). Inorg. Chem. 36, 314-322.]); Hirota et al. (1998[Hirota, S., Kosugi, E., Marzilli, L. G. & Yamauchi, O. (1998). Inorg. Chim. Acta. 275-276, 90-97.]). For related cobalt complexes, see: Amirnasr et al. (2001[Amirnasr, M., Schenk, K. J., Gorji, A. & Vafazadeh, R. (2001). Polyhedron, 20, 695-702.]); Khandar et al. (2007[Khandar, A. A., Shaabani, B., Belaj, F. & Bakhtiari, A. (2007). Inorg. Chim. Acta, 360, 3255-3264.]); Salehi et al. (2009[Salehi, M., Meghdadi, S., Amirnasr, M. & Mereiter, K. (2009). Acta Cryst. E65, m942-m943.]). For related dimeric cobalt complexes, see: Shimakoshi et al. (2005[Shimakoshi, H., Takemoto, T., Aritome, I. & Hisaeda, Y. (2005). Inorg. Chem, 44, 9136-9136.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C20H14N2O2)(C5H6N2)2]NO3

  • Mr = 623.51

  • Monoclinic, P 21 /c

  • a = 13.072 (3) Å

  • b = 15.136 (3) Å

  • c = 17.192 (6) Å

  • β = 125.14 (2)°

  • V = 2781.6 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 293 K

  • 0.21 × 0.17 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.826, Tmax = 1.00

  • 20500 measured reflections

  • 6917 independent reflections

  • 2486 reflections with I > 2σ(I)

  • Rint = 0.110

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.084

  • S = 0.71

  • 6917 reflections

  • 404 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O3 0.93 2.55 3.470 (4) 169
C26—H26⋯O3i 0.93 2.52 3.171 (5) 128
C44—H44⋯O3 0.93 2.36 3.217 (5) 152
C46—H46⋯O5 0.93 2.56 3.388 (5) 148
N5—H51A⋯O4ii 0.86 (2) 2.44 (3) 3.269 (5) 162 (4)
N5—H51A⋯O5ii 0.86 (2) 2.36 (3) 3.078 (5) 142 (4)
N5—H52A⋯O4iii 0.87 (2) 2.02 (2) 2.868 (5) 166 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cobalt complexes containing Schiff base ligands are interesting synthetic models for cobalamine (B12) enzymes (Polson et al., 1997; Hirota et al., 1998). Among the various Schiff base ligated metal complexes, cobalt complexes with two axial amines show antimicrobial activities (Amirnasr et al., 2001; Khandar et al., 2007; Salehi et al., 2009). Herein we report the synthesis and crystal structure of a new octahedrally coordinated cobalt(III) complex.

The molecular structure of the title compound is shown in Fig. 1. The equatorial positions of the slightly elongated octahedron are occupied by two oxygen and two nitrogen atoms of the Schiff base, and the axial positions by the nitrogen atoms of two 4-aminopyridine molecules. A nitrate anion is present in the lattice to balance the charge of the complex. The pyridine rings are mutually nearly perpendicular to each other, forming a dihedral angle of 82.28 (13)°. The distances between cobalt and the axial nitrogen atoms (1.960 (3) and 1.959 (3)Å) are longer than the equatorial Co—N bonds (1.890 (3) Å), and are comparable with the corresponding values observed in {[Co(III)(salophen)(dipyridine)]ClO4}, where salophen is 2,2'-[o-phenylenebis(nitrilomethylidyne)]diphenolato (Salehi et al., 2009). In the Schiff base ligand, the C15–C20 and C45–C50 phenoxy rings are tilted with respect to the phenylene ring by 12.37 (12) and 12.16 (14)° respectively. In the crystal structure (Fig. 2), the ions are linked into a three-dimensional network by interionic N—H···O and C—H···O hydrogen bonding interactions (Table 1).

Related literature top

For transition metal Schiff-base complexes with a tetradentate N2O2 ligand, see: Schenk et al. (2007); Yamada et al. (1999); Polson et al. (1997); Hirota et al. (1998). For related cobalt complexes, see: Amirnasr et al. (2001); Khandar et al. (2007); Salehi et al. (2009). For related dimeric cobalt complexes, see: Shimakoshi et al. (2005).

Experimental top

To a mixture of the Schiff base ligand (0.108 g, 0.343 mmol ) and triethylamine (0.105 mL) in MeOH, (Co(NO3)2.6H2O (0.100 g, 0.343 mmol) was added and heated to 70°C. After two hours, 4-aminopyridine (0.064 g, 0.680 mmol) was added and heating and stirring continued for two hours. The resulting dark reddish-brown solid was crystallized in acetonitrile-diethyl ether (1:1 v/v) by diffusion method. Yield = 0.090 g (47 %). 1H-NMR (DMSO-d6, δ): 8.87 (s, 2H), 8.30 (d, J = 5.7, 4H), 7.41 (m, 2H), 7.30 (m, 4H), 7.15 (m, 2H), 6.81 (m, 4H), 6.26 (d, J = 5.7, 4H). FT-IR (KBr, cm-1): 3470 (m), 3393(w), 3364(m), 3203(s), 3062(w), 3020(w), 2966(w), 1630 (s), 1607(s), 1571(s), 1517(s), 1488(m), 1464(m), 1436(m), 1329(s), 1204(s), 1181(m), 1145(s), 1056(m), 1021(m), 968(w), 920(w), 826(m), 749(s), 566(w), 542(m).

Refinement top

Hydrogen atoms bound to N were located in a difference Fourier map and refined isotropically with distance restraints (N—H = 0.86-0.87 Å) and Uiso(H) = 1.5Ueq(N). All other H atoms were introduced at their calculated positions and were then refined as riding, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(N) for aromatic H atoms. The crystals of the title compound systematically diffracted very poorly, resulting in a low observed/unique reflection ratio (36%).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids drawn at the 50% probability level. H atoms are omitted for clarity.
[Figure 2] Fig. 2. Partial packing diagram of the title compound showing the hydrogen bonding network (dotted lines).
Bis(4-aminopyridine){2,2'-[1,2-phenylenebis(nitrilomethanylylidene)]diphenolato}cobalt(III) nitrate top
Crystal data top
[Co(C20H14N2O2)(C5H6N2)2]NO3F(000) = 1288
Mr = 623.51Dx = 1.489 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2630 reflections
a = 13.072 (3) Åθ = 2.3–24.3°
b = 15.136 (3) ŵ = 0.67 mm1
c = 17.192 (6) ÅT = 293 K
β = 125.14 (2)°Block, red
V = 2781.6 (15) Å30.21 × 0.17 × 0.11 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
6917 independent reflections
Radiation source: fine-focus sealed tube2486 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
ϕ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1717
Tmin = 0.826, Tmax = 1.00k = 2017
20500 measured reflectionsl = 2219
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 0.71 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
6917 reflections(Δ/σ)max = 0.001
404 parametersΔρmax = 0.79 e Å3
2 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Co(C20H14N2O2)(C5H6N2)2]NO3V = 2781.6 (15) Å3
Mr = 623.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.072 (3) ŵ = 0.67 mm1
b = 15.136 (3) ÅT = 293 K
c = 17.192 (6) Å0.21 × 0.17 × 0.11 mm
β = 125.14 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6917 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2486 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 1.00Rint = 0.110
20500 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0502 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 0.71Δρmax = 0.79 e Å3
6917 reflectionsΔρmin = 0.70 e Å3
404 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.36975 (4)0.75435 (4)0.33861 (3)0.02774 (14)
O10.5005 (2)0.83721 (16)0.40079 (16)0.0318 (7)
O20.3029 (2)0.83328 (16)0.23490 (16)0.0338 (7)
N10.4376 (2)0.67753 (19)0.44404 (19)0.0241 (8)
N20.2362 (3)0.6726 (2)0.2758 (2)0.0260 (8)
N30.2806 (3)0.8170 (2)0.3824 (2)0.0282 (8)
N40.4594 (3)0.6910 (2)0.29547 (19)0.0273 (8)
N50.0804 (4)0.9424 (3)0.4717 (3)0.0423 (11)
N60.6508 (5)0.5547 (4)0.2043 (3)0.0591 (14)
C80.3526 (3)0.6096 (2)0.4287 (2)0.0244 (9)
C90.3708 (3)0.5500 (2)0.4972 (3)0.0305 (10)
H90.44290.55260.55890.037*
C100.2805 (3)0.4866 (3)0.4726 (3)0.0329 (10)
H100.29340.44560.51770.039*
C110.1713 (3)0.4837 (3)0.3816 (3)0.0346 (11)
H110.11060.44140.36590.041*
C120.1533 (3)0.5433 (2)0.3149 (2)0.0307 (10)
H120.08000.54120.25380.037*
C130.2432 (3)0.6070 (3)0.3372 (2)0.0256 (9)
C140.1437 (3)0.6764 (3)0.1850 (2)0.0297 (10)
H140.08800.62910.15970.036*
C150.1218 (3)0.7465 (3)0.1223 (2)0.0291 (9)
C160.0092 (3)0.7426 (3)0.0285 (2)0.0420 (11)
H160.04280.69360.01030.050*
C170.0232 (4)0.8088 (3)0.0344 (3)0.0529 (14)
H170.09700.80540.09520.063*
C180.0543 (4)0.8822 (3)0.0077 (3)0.0660 (16)
H180.03230.92740.05130.079*
C190.1629 (4)0.8887 (3)0.0820 (3)0.0520 (13)
H190.21300.93840.09830.062*
C200.1996 (3)0.8220 (3)0.1496 (3)0.0324 (10)
C210.3351 (3)0.8436 (2)0.4730 (2)0.0351 (11)
H210.42080.83470.51600.042*
C220.2729 (3)0.8826 (3)0.5055 (3)0.0344 (11)
H220.31620.89860.56920.041*
C230.1447 (3)0.8989 (3)0.4443 (3)0.0294 (10)
C240.0876 (3)0.8706 (2)0.3502 (2)0.0306 (10)
H240.00200.87810.30590.037*
C250.1568 (3)0.8324 (3)0.3237 (2)0.0334 (10)
H250.11580.81550.26040.040*
C260.4613 (3)0.6024 (3)0.2911 (2)0.0288 (10)
H260.41710.57070.30910.035*
C270.5235 (3)0.5549 (3)0.2622 (2)0.0325 (10)
H270.52080.49350.26100.039*
C280.5905 (4)0.6002 (3)0.2347 (3)0.0367 (11)
C290.5908 (4)0.6917 (3)0.2400 (3)0.0384 (11)
H290.63580.72460.22360.046*
C300.5258 (3)0.7341 (3)0.2689 (2)0.0347 (10)
H300.52710.79550.27050.042*
C440.5503 (3)0.6828 (2)0.5221 (2)0.0266 (9)
H440.57560.63890.56760.032*
C450.6375 (3)0.7514 (3)0.5425 (2)0.0248 (8)
C460.7566 (3)0.7467 (3)0.6315 (2)0.0328 (9)
H460.77520.69860.67130.039*
C470.8436 (3)0.8113 (3)0.6593 (3)0.0383 (11)
H470.92070.80790.71790.046*
C480.8154 (3)0.8826 (3)0.5988 (3)0.0438 (12)
H480.87480.92670.61720.053*
C490.7023 (3)0.8888 (3)0.5131 (3)0.0379 (11)
H490.68640.93690.47400.045*
C500.6088 (3)0.8243 (3)0.4824 (3)0.0269 (10)
O30.6426 (2)0.59009 (18)0.72076 (18)0.0473 (8)
O50.8220 (3)0.6406 (2)0.8288 (2)0.0772 (11)
O40.7833 (3)0.5069 (2)0.83658 (19)0.0651 (10)
N250.7482 (3)0.5781 (2)0.7972 (2)0.0341 (9)
H50A0.694 (3)0.581 (3)0.190 (3)0.052 (16)*
H49A0.646 (4)0.4993 (19)0.201 (3)0.08 (2)*
H52A0.112 (3)0.957 (2)0.5305 (17)0.041 (14)*
H51A0.000 (2)0.943 (3)0.440 (2)0.070 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0255 (3)0.0291 (3)0.0242 (3)0.0007 (3)0.0117 (2)0.0000 (3)
O10.0255 (15)0.0332 (18)0.0296 (16)0.0010 (13)0.0117 (13)0.0021 (14)
O20.0329 (15)0.0356 (18)0.0245 (15)0.0007 (14)0.0118 (13)0.0053 (14)
N10.0184 (17)0.028 (2)0.0200 (17)0.0034 (15)0.0074 (14)0.0052 (15)
N20.0246 (18)0.030 (2)0.0220 (18)0.0071 (16)0.0129 (15)0.0025 (16)
N30.0247 (18)0.025 (2)0.0253 (18)0.0041 (16)0.0089 (15)0.0037 (16)
N40.0257 (18)0.025 (2)0.0263 (19)0.0034 (16)0.0120 (15)0.0042 (16)
N50.034 (3)0.055 (3)0.038 (3)0.005 (2)0.021 (2)0.011 (2)
N60.067 (3)0.058 (4)0.081 (4)0.004 (3)0.059 (3)0.003 (3)
C80.023 (2)0.024 (2)0.026 (2)0.0028 (19)0.0146 (18)0.0009 (19)
C90.026 (2)0.036 (3)0.028 (2)0.004 (2)0.0145 (19)0.001 (2)
C100.041 (3)0.029 (3)0.038 (3)0.000 (2)0.028 (2)0.006 (2)
C110.029 (2)0.033 (3)0.035 (3)0.005 (2)0.015 (2)0.004 (2)
C120.024 (2)0.035 (3)0.024 (2)0.001 (2)0.0085 (18)0.005 (2)
C130.022 (2)0.026 (2)0.024 (2)0.0083 (19)0.0107 (18)0.0052 (19)
C140.026 (2)0.029 (3)0.032 (2)0.004 (2)0.015 (2)0.002 (2)
C150.034 (2)0.029 (2)0.024 (2)0.002 (2)0.0167 (18)0.002 (2)
C160.035 (2)0.047 (3)0.028 (2)0.007 (3)0.0094 (19)0.003 (3)
C170.049 (3)0.058 (4)0.024 (3)0.001 (3)0.005 (2)0.015 (3)
C180.067 (4)0.068 (4)0.037 (3)0.011 (3)0.014 (3)0.014 (3)
C190.055 (3)0.046 (3)0.038 (3)0.013 (3)0.017 (2)0.009 (3)
C200.037 (3)0.030 (3)0.024 (2)0.000 (2)0.014 (2)0.003 (2)
C210.024 (2)0.038 (3)0.024 (2)0.004 (2)0.0025 (19)0.010 (2)
C220.035 (3)0.038 (3)0.026 (2)0.004 (2)0.015 (2)0.005 (2)
C230.027 (2)0.031 (3)0.028 (2)0.002 (2)0.014 (2)0.001 (2)
C240.021 (2)0.036 (3)0.024 (2)0.006 (2)0.0067 (18)0.002 (2)
C250.027 (2)0.042 (3)0.023 (2)0.006 (2)0.0094 (19)0.002 (2)
C260.028 (2)0.035 (3)0.022 (2)0.003 (2)0.0133 (19)0.006 (2)
C270.031 (2)0.036 (3)0.030 (2)0.002 (2)0.017 (2)0.000 (2)
C280.032 (3)0.047 (3)0.030 (3)0.007 (2)0.017 (2)0.005 (2)
C290.040 (3)0.049 (3)0.037 (3)0.001 (2)0.028 (2)0.006 (2)
C300.033 (2)0.038 (3)0.030 (2)0.009 (2)0.0167 (19)0.003 (2)
C440.028 (2)0.028 (3)0.024 (2)0.002 (2)0.0153 (19)0.0018 (19)
C450.0214 (19)0.025 (2)0.029 (2)0.002 (2)0.0147 (17)0.002 (2)
C460.025 (2)0.039 (3)0.033 (2)0.005 (2)0.0166 (18)0.003 (2)
C470.018 (2)0.044 (3)0.037 (3)0.003 (2)0.0072 (19)0.000 (2)
C480.023 (2)0.038 (3)0.051 (3)0.007 (2)0.010 (2)0.004 (2)
C490.028 (2)0.036 (3)0.041 (3)0.010 (2)0.015 (2)0.000 (2)
C500.025 (2)0.027 (3)0.030 (2)0.004 (2)0.0161 (19)0.001 (2)
O30.0328 (17)0.050 (2)0.0330 (17)0.0014 (16)0.0039 (14)0.0093 (16)
O50.054 (2)0.074 (3)0.065 (2)0.014 (2)0.0121 (18)0.006 (2)
O40.085 (2)0.038 (2)0.040 (2)0.0086 (19)0.0172 (18)0.0079 (17)
N250.034 (2)0.030 (2)0.033 (2)0.0099 (19)0.0157 (19)0.0033 (19)
Geometric parameters (Å, º) top
Co1—O11.880 (2)C17—C181.391 (5)
Co1—N21.890 (3)C17—H170.9300
Co1—N11.890 (3)C18—C191.372 (5)
Co1—O21.891 (2)C18—H180.9300
Co1—N31.959 (3)C19—C201.399 (5)
Co1—N41.960 (3)C19—H190.9300
O1—C501.312 (4)C21—C221.358 (4)
O2—C201.313 (4)C21—H210.9300
N1—C441.304 (4)C22—C231.395 (4)
N1—C81.423 (4)C22—H220.9300
N2—C141.316 (4)C23—C241.402 (4)
N2—C131.414 (4)C24—C251.356 (4)
N3—C251.346 (4)C24—H240.9300
N3—C211.348 (4)C25—H250.9300
N4—C261.344 (4)C26—C271.375 (5)
N4—C301.358 (4)C26—H260.9300
N5—C231.348 (5)C27—C281.392 (5)
N5—H52A0.87 (2)C27—H270.9300
N5—H51A0.86 (2)C28—C291.387 (5)
N6—C281.357 (5)C29—C301.367 (5)
N6—H50A0.83 (3)C29—H290.9300
N6—H49A0.84 (3)C30—H300.9300
C8—C131.390 (4)C44—C451.429 (5)
C8—C91.391 (5)C44—H440.9300
C9—C101.384 (5)C45—C501.407 (5)
C9—H90.9300C45—C461.424 (4)
C10—C111.385 (4)C46—C471.361 (5)
C10—H100.9300C46—H460.9300
C11—C121.369 (5)C47—C481.394 (5)
C11—H110.9300C47—H470.9300
C12—C131.392 (5)C48—C491.363 (4)
C12—H120.9300C48—H480.9300
C14—C151.420 (5)C49—C501.408 (5)
C14—H140.9300C49—H490.9300
C15—C201.417 (5)O3—N251.256 (4)
C15—C161.428 (4)O5—N251.231 (4)
C16—C171.350 (5)O4—N251.214 (4)
C16—H160.9300
O1—Co1—N2178.95 (12)C18—C17—H17120.2
O1—Co1—N195.39 (11)C19—C18—C17120.9 (4)
N2—Co1—N185.08 (13)C19—C18—H18119.5
O1—Co1—O283.70 (11)C17—C18—H18119.5
N2—Co1—O295.82 (12)C18—C19—C20121.4 (4)
N1—Co1—O2178.78 (12)C18—C19—H19119.3
O1—Co1—N390.33 (12)C20—C19—H19119.3
N2—Co1—N388.74 (12)O2—C20—C19118.3 (4)
N1—Co1—N389.07 (12)O2—C20—C15123.7 (4)
O2—Co1—N390.13 (12)C19—C20—C15117.9 (3)
O1—Co1—N489.75 (12)N3—C21—C22124.1 (3)
N2—Co1—N491.18 (12)N3—C21—H21117.9
N1—Co1—N490.52 (12)C22—C21—H21117.9
O2—Co1—N490.28 (12)C21—C22—C23120.8 (4)
N3—Co1—N4179.59 (13)C21—C22—H22119.6
C50—O1—Co1125.2 (2)C23—C22—H22119.6
C20—O2—Co1126.2 (3)N5—C23—C22122.9 (4)
C44—N1—C8122.3 (3)N5—C23—C24121.8 (4)
C44—N1—Co1125.3 (3)C22—C23—C24115.2 (4)
C8—N1—Co1112.4 (2)C25—C24—C23120.3 (3)
C14—N2—C13122.5 (3)C25—C24—H24119.9
C14—N2—Co1124.4 (3)C23—C24—H24119.9
C13—N2—Co1113.1 (2)N3—C25—C24124.6 (4)
C25—N3—C21115.1 (3)N3—C25—H25117.7
C25—N3—Co1121.3 (3)C24—C25—H25117.7
C21—N3—Co1123.5 (2)N4—C26—C27125.2 (4)
C26—N4—C30115.1 (3)N4—C26—H26117.4
C26—N4—Co1122.9 (3)C27—C26—H26117.4
C30—N4—Co1122.0 (3)C26—C27—C28118.9 (4)
C23—N5—H52A123 (2)C26—C27—H27120.5
C23—N5—H51A124 (3)C28—C27—H27120.5
H52A—N5—H51A110 (3)N6—C28—C29123.4 (4)
C28—N6—H50A121 (3)N6—C28—C27119.9 (5)
C28—N6—H49A120 (3)C29—C28—C27116.6 (4)
H50A—N6—H49A119 (4)C30—C29—C28120.9 (4)
C13—C8—C9120.2 (4)C30—C29—H29119.6
C13—C8—N1114.5 (3)C28—C29—H29119.6
C9—C8—N1125.3 (3)N4—C30—C29123.3 (4)
C10—C9—C8119.4 (3)N4—C30—H30118.4
C10—C9—H9120.3C29—C30—H30118.4
C8—C9—H9120.3N1—C44—C45124.5 (4)
C9—C10—C11120.7 (4)N1—C44—H44117.7
C9—C10—H10119.6C45—C44—H44117.7
C11—C10—H10119.6C50—C45—C46119.6 (4)
C12—C11—C10119.5 (4)C50—C45—C44123.5 (3)
C12—C11—H11120.2C46—C45—C44116.8 (4)
C10—C11—H11120.2C47—C46—C45121.1 (4)
C11—C12—C13121.0 (3)C47—C46—H46119.4
C11—C12—H12119.5C45—C46—H46119.4
C13—C12—H12119.5C46—C47—C48119.1 (3)
C8—C13—C12119.1 (4)C46—C47—H47120.5
C8—C13—N2114.0 (3)C48—C47—H47120.5
C12—C13—N2126.8 (3)C49—C48—C47121.1 (4)
N2—C14—C15125.4 (4)C49—C48—H48119.5
N2—C14—H14117.3C47—C48—H48119.5
C15—C14—H14117.3C48—C49—C50121.7 (4)
C20—C15—C14124.0 (3)C48—C49—H49119.2
C20—C15—C16118.9 (4)C50—C49—H49119.2
C14—C15—C16116.9 (4)O1—C50—C45124.7 (3)
C17—C16—C15121.2 (4)O1—C50—C49117.8 (4)
C17—C16—H16119.4C45—C50—C49117.4 (3)
C15—C16—H16119.4O4—N25—O5119.2 (4)
C16—C17—C18119.6 (4)O4—N25—O3123.1 (4)
C16—C17—H17120.2O5—N25—O3117.4 (4)
N1—Co1—O1—C5013.0 (3)C14—N2—C13—C125.4 (6)
O2—Co1—O1—C50167.8 (3)Co1—N2—C13—C12173.1 (3)
N3—Co1—O1—C50102.1 (3)C13—N2—C14—C15171.2 (3)
N4—Co1—O1—C5077.5 (3)Co1—N2—C14—C157.2 (5)
O1—Co1—O2—C20177.3 (3)N2—C14—C15—C201.4 (6)
N2—Co1—O2—C203.7 (3)N2—C14—C15—C16173.8 (3)
N3—Co1—O2—C2092.4 (3)C20—C15—C16—C170.7 (6)
N4—Co1—O2—C2087.5 (3)C14—C15—C16—C17176.2 (4)
O1—Co1—N1—C4410.6 (3)C15—C16—C17—C180.2 (7)
N2—Co1—N1—C44170.3 (3)C16—C17—C18—C190.6 (8)
N3—Co1—N1—C44100.9 (3)C17—C18—C19—C200.2 (8)
N4—Co1—N1—C4479.2 (3)Co1—O2—C20—C19178.6 (3)
O1—Co1—N1—C8171.1 (2)Co1—O2—C20—C150.4 (5)
N2—Co1—N1—C88.0 (2)C18—C19—C20—O2178.3 (4)
N3—Co1—N1—C880.8 (2)C18—C19—C20—C150.7 (7)
N4—Co1—N1—C899.1 (2)C14—C15—C20—O22.8 (6)
N1—Co1—N2—C14173.5 (3)C16—C15—C20—O2177.8 (3)
O2—Co1—N2—C147.3 (3)C14—C15—C20—C19176.2 (4)
N3—Co1—N2—C1497.3 (3)C16—C15—C20—C191.1 (6)
N4—Co1—N2—C1483.1 (3)C25—N3—C21—C220.5 (6)
N1—Co1—N2—C138.0 (2)Co1—N3—C21—C22176.1 (3)
O2—Co1—N2—C13171.2 (2)N3—C21—C22—C230.9 (6)
N3—Co1—N2—C1381.2 (2)C21—C22—C23—N5175.7 (4)
N4—Co1—N2—C1398.4 (2)C21—C22—C23—C241.3 (6)
O1—Co1—N3—C25136.1 (3)N5—C23—C24—C25175.6 (4)
N2—Co1—N3—C2543.4 (3)C22—C23—C24—C251.5 (6)
N1—Co1—N3—C25128.5 (3)C21—N3—C25—C240.7 (6)
O2—Co1—N3—C2552.4 (3)Co1—N3—C25—C24176.0 (3)
O1—Co1—N3—C2147.6 (3)C23—C24—C25—N31.2 (6)
N2—Co1—N3—C21132.9 (3)C30—N4—C26—C270.3 (5)
N1—Co1—N3—C2147.8 (3)Co1—N4—C26—C27179.4 (3)
O2—Co1—N3—C21131.3 (3)N4—C26—C27—C280.1 (6)
O1—Co1—N4—C26141.8 (3)C26—C27—C28—N6178.8 (4)
N2—Co1—N4—C2638.7 (3)C26—C27—C28—C290.9 (5)
N1—Co1—N4—C2646.4 (3)N6—C28—C29—C30178.3 (4)
O2—Co1—N4—C26134.5 (3)C27—C28—C29—C301.3 (6)
O1—Co1—N4—C3037.3 (3)C26—N4—C30—C290.2 (5)
N2—Co1—N4—C30142.2 (3)Co1—N4—C30—C29178.9 (3)
N1—Co1—N4—C30132.7 (3)C28—C29—C30—N41.1 (6)
O2—Co1—N4—C3046.4 (3)C8—N1—C44—C45177.6 (3)
C44—N1—C8—C13171.8 (3)Co1—N1—C44—C454.3 (5)
Co1—N1—C8—C136.5 (4)N1—C44—C45—C503.8 (6)
C44—N1—C8—C99.5 (6)N1—C44—C45—C46179.9 (3)
Co1—N1—C8—C9172.2 (3)C50—C45—C46—C470.4 (6)
C13—C8—C9—C101.7 (6)C44—C45—C46—C47176.7 (3)
N1—C8—C9—C10179.7 (3)C45—C46—C47—C480.7 (6)
C8—C9—C10—C111.7 (6)C46—C47—C48—C490.6 (6)
C9—C10—C11—C120.9 (6)C47—C48—C49—C500.6 (7)
C10—C11—C12—C130.1 (6)Co1—O1—C50—C459.3 (5)
C9—C8—C13—C120.9 (6)Co1—O1—C50—C49172.0 (3)
N1—C8—C13—C12179.6 (3)C46—C45—C50—O1177.1 (3)
C9—C8—C13—N2178.6 (3)C44—C45—C50—O11.1 (6)
N1—C8—C13—N20.1 (5)C46—C45—C50—C491.6 (5)
C11—C12—C13—C80.0 (6)C44—C45—C50—C49177.5 (3)
C11—C12—C13—N2179.4 (3)C48—C49—C50—O1177.1 (4)
C14—N2—C13—C8175.1 (3)C48—C49—C50—C451.7 (6)
Co1—N2—C13—C86.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O30.932.553.470 (4)169
C26—H26···O3i0.932.523.171 (5)128
C44—H44···O30.932.363.217 (5)152
C46—H46···O50.932.563.388 (5)148
N5—H51A···O4ii0.86 (2)2.44 (3)3.269 (5)162 (4)
N5—H51A···O5ii0.86 (2)2.36 (3)3.078 (5)142 (4)
N5—H52A···O4iii0.87 (2)2.02 (2)2.868 (5)166 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+3/2, z1/2; (iii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O30.932.553.470 (4)169
C26—H26···O3i0.932.523.171 (5)128
C44—H44···O30.932.363.217 (5)152
C46—H46···O50.932.563.388 (5)148
N5—H51A···O4ii0.86 (2)2.44 (3)3.269 (5)162 (4)
N5—H51A···O5ii0.86 (2)2.36 (3)3.078 (5)142 (4)
N5—H52A···O4iii0.87 (2)2.02 (2)2.868 (5)166 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+3/2, z1/2; (iii) x+1, y+1/2, z+3/2.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0012349).

References

First citationAmirnasr, M., Schenk, K. J., Gorji, A. & Vafazadeh, R. (2001). Polyhedron, 20, 695–702.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHirota, S., Kosugi, E., Marzilli, L. G. & Yamauchi, O. (1998). Inorg. Chim. Acta. 275–276, 90–97.  CrossRef CAS Google Scholar
First citationKhandar, A. A., Shaabani, B., Belaj, F. & Bakhtiari, A. (2007). Inorg. Chim. Acta, 360, 3255–3264.  Web of Science CSD CrossRef CAS Google Scholar
First citationPolson, S. M., Cini, R., Pifferi, C. & Marzilli, L. G. (1997). Inorg. Chem. 36, 314–322.  CSD CrossRef CAS Web of Science Google Scholar
First citationSalehi, M., Meghdadi, S., Amirnasr, M. & Mereiter, K. (2009). Acta Cryst. E65, m942–m943.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchenk, K. J., Meghdadi, S., Amirnasr, M., Habibi, M. H., Amiri, A., Salehi, M. & Kashi, A. (2007). Polyhedron, 26, 5448–5457.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimakoshi, H., Takemoto, T., Aritome, I. & Hisaeda, Y. (2005). Inorg. Chem, 44, 9136–9136.  Web of Science CSD CrossRef Google Scholar
First citationYamada, S. (1999). Coord. Chem. Rev. 190–192, 537–555.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages m495-m496
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds