organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[2-(5-Bromo­thio­phen-2-yl)-4,5-di­phenyl-1H-imidazol-1-yl]-3-phenyl­propan-1-ol

aSchool of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: henangongda@yahoo.com

(Received 29 June 2013; accepted 28 July 2013; online 3 August 2013)

In the title compound, C28H23BrN2OS, the dihedral angles formed by the imidazole ring with the 5-bromo­thio­phenyl and phenyl rings are 76.90 (8), 34.02 (10) and 80.93 (11)°, respectively. The chiral centre maintains the S configuration of the L-phenyl­alaninol starting material. In the crystal, mol­ecules are linked by O—H⋯N hydrogen bonds, forming chains running parallel to the a-axis direction.

Related literature

For the synthesis of imidazole rings, see: Jiang et al. (2009[Jiang, B., Wang, X., Shi, F., Tu, S., Ai, T., Ballew, A. & Li, G. (2009). J. Org. Chem. 74, 9486-9489.]); Wu et al. (2010[Wu, X., Jiang, R., Xu, X., Su, X., Lu, W. & Ji, S. (2010). J. Comb. Chem. 12, 829-835.]); Eseola et al. (2010[Eseola, A. O., Zhang, M., Xiang, J., Zuo, W., Li, Y., Woods, J. A. O. & Sun, W. (2010). Inorg. Chim. Acta, 363, 1970-1978.]). For related compounds synthesized by our group, see: Mao et al. (2010[Mao, P., Cai, Y., Xiao, Y., Yang, L., Xue, Y. & Song, M. (2010). Phosphorus Sulfur Silicon Relat. Elem. 185, 2418-2425.]); Yang et al. (2012[Yang, L., Xiao, Y., He, K., Yuan, J. & Mao, P. (2012). Acta Cryst. E68, o1670.]); Xiao et al. (2012[Xiao, Y., Yang, L., He, K., Yuan, J. & Mao, P. (2012). Acta Cryst. E68, o264.]).

[Scheme 1]

Experimental

Crystal data
  • C28H23BrN2OS

  • Mr = 515.45

  • Orthorhombic, P 21 21 21

  • a = 9.36677 (18) Å

  • b = 15.8434 (3) Å

  • c = 16.1452 (3) Å

  • V = 2395.97 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.33 mm−1

  • T = 291 K

  • 0.3 × 0.28 × 0.26 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]) Tmin = 0.853, Tmax = 1.000

  • 8866 measured reflections

  • 4264 independent reflections

  • 4033 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.085

  • S = 1.03

  • 4264 reflections

  • 302 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.44 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); 1834 Friedel pairs

  • Absolute structure parameter: −0.004 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.83 (4) 2.04 (4) 2.838 (3) 162 (4)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The development of imidazoles with an heterocyclic substituent in 2-position from readily available inexpensive starting materials has been an active topic in modern organic chemistry (Jiang et al., 2009; Wu et al., 2010; Eseola et al., 2010). Our group is interested in the research of chiral imidazolium derivatives derived from natural amino acids (Mao et al., 2010; Yang et al., 2012; Xiao et al., 2012). A convenient and highly efficient one-pot-multicomponent protocol has been developed for the synthesis of the title compound from L-phenylalaninol, 5-bromothiophene-2-carbaldehyde, dibenzoyl and ammonium acetate.

The molecular structure of the title compound is shown in Figure 1. As expected, the imidazole core (C7/C8/N2/C24/N1) is essentially planar, the maximum deviation being 0.008 (3) Å for atom C24. The dihedral angle between the 5-bromothiophenyl ring and imidazole ring is 76.90 (8)°. The dihedral angles between the two phenyl substituents (C1–C6, C9–C14) and the imidazole ring are 34.02 (10)° and 80.93 (11)°, respectively. The chiral C22 carbon atom maintains the S configuration of the L-phenylalaninol starting material. In the crystal, intermolecular O—H···N hydrogen bonds (Table 1) link molecules into chains running parallel to the a axis.

Related literature top

For the synthesis of imidazole rings, see: Jiang et al. (2009); Wu et al. (2010); Eseola et al. (2010). For related compounds synthesized by our group, see: Mao et al. (2010); Yang et al. (2012); Xiao et al. (2012).

Experimental top

The starting materials, L-phenylalaninol, benzil, ammonium acetate and 5-bromothiophene-2-carbaldehyde, are commercially available. In a three-neck round-bottomed flask fitted with a reflux condenser, L-phenylalaninol (0.76 g, 5 mmol), molar equivalents benzil, ammonium acetate and 5-bromothiophene-2-carbaldehyde were dissolved in CH3OH (30 mL). The mixture was kept at 65°C for 12 h. The resulting solution was cooled to room temperature and evaporation of the solvent gave the crude product. Crystallization of the crude product in CH3OH afforded colourless crystals of the title compound.

Refinement top

The hydroxy H atom was located in a difference Fourier map and refined freely. All other H atoms were placed geometrically and refined as riding, with C—H = 0.93-0.98 Å, and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids. Aromatic, methylene and methyne hydrogen atoms are omitted for clarity.
2-[2-(5-Bromothiophen-2-yl)-4,5-diphenyl-1H-imidazol-1-yl]-3-phenylpropan-1-ol top
Crystal data top
C28H23BrN2OSF(000) = 1056
Mr = 515.45Dx = 1.429 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P 2ac 2abCell parameters from 4493 reflections
a = 9.36677 (18) Åθ = 3.9–72.3°
b = 15.8434 (3) ŵ = 3.33 mm1
c = 16.1452 (3) ÅT = 291 K
V = 2395.97 (8) Å3Block, colourless
Z = 40.3 × 0.28 × 0.26 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
4264 independent reflections
Radiation source: Enhance (Cu) X-ray Source4033 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 16.2312 pixels mm-1θmax = 67.1°, θmin = 3.9°
ω scansh = 117
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1818
Tmin = 0.853, Tmax = 1.000l = 1919
8866 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.2535P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4264 reflectionsΔρmax = 0.22 e Å3
302 parametersΔρmin = 0.44 e Å3
0 restraintsAbsolute structure: Flack (1983); 1834 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (16)
Crystal data top
C28H23BrN2OSV = 2395.97 (8) Å3
Mr = 515.45Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.36677 (18) ŵ = 3.33 mm1
b = 15.8434 (3) ÅT = 291 K
c = 16.1452 (3) Å0.3 × 0.28 × 0.26 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
4264 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4033 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 1.000Rint = 0.019
8866 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085Δρmax = 0.22 e Å3
S = 1.03Δρmin = 0.44 e Å3
4264 reflectionsAbsolute structure: Flack (1983); 1834 Friedel pairs
302 parametersAbsolute structure parameter: 0.004 (16)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.26010 (5)0.97884 (3)0.26215 (3)0.08774 (14)
S10.29866 (8)0.83956 (5)0.39570 (5)0.06109 (18)
O10.5090 (3)0.60857 (15)0.42808 (18)0.0755 (7)
H10.537 (4)0.658 (3)0.428 (3)0.093 (14)*
N10.1628 (2)0.73730 (13)0.56318 (13)0.0467 (4)
N20.2202 (2)0.62572 (12)0.48784 (12)0.0422 (4)
C10.1975 (3)0.75939 (19)0.74105 (18)0.0607 (6)
H1A0.23480.80220.70820.073*
C20.1762 (4)0.7731 (2)0.8247 (2)0.0731 (9)
H20.20110.82460.84810.088*
C30.1178 (4)0.7098 (2)0.87404 (18)0.0737 (9)
H30.10260.71920.93020.088*
C40.0831 (4)0.6345 (2)0.83955 (19)0.0667 (8)
H40.04350.59230.87230.080*
C50.1059 (3)0.61977 (17)0.75615 (17)0.0561 (6)
H50.08250.56750.73370.067*
C60.1632 (3)0.68165 (16)0.70573 (15)0.0464 (5)
C70.1817 (2)0.67005 (15)0.61521 (14)0.0429 (5)
C80.2177 (2)0.59945 (14)0.57013 (14)0.0412 (5)
C90.2546 (3)0.51201 (13)0.59565 (14)0.0445 (5)
C100.3964 (3)0.48806 (18)0.6020 (2)0.0628 (7)
H100.46820.52640.58920.075*
C110.4316 (5)0.4072 (2)0.6272 (3)0.0819 (11)
H110.52690.39130.63130.098*
C120.3253 (5)0.3500 (2)0.6463 (2)0.0811 (11)
H120.34880.29590.66410.097*
C130.1856 (5)0.3734 (2)0.6388 (2)0.0772 (10)
H130.11390.33480.65120.093*
C140.1495 (3)0.45393 (19)0.61287 (19)0.0601 (7)
H140.05390.46880.60710.072*
C150.0418 (3)0.41288 (18)0.4051 (2)0.0625 (7)
H150.12580.38860.38560.075*
C160.0611 (4)0.3619 (2)0.4394 (2)0.0754 (9)
H160.04650.30400.44270.091*
C170.1868 (4)0.3970 (3)0.4690 (2)0.0799 (10)
H170.25710.36270.49190.096*
C180.2062 (4)0.4825 (3)0.4643 (2)0.0789 (9)
H180.28970.50670.48450.095*
C190.1017 (3)0.5331 (2)0.42947 (19)0.0636 (7)
H190.11620.59110.42670.076*
C200.0242 (3)0.49927 (17)0.39859 (16)0.0512 (6)
C210.1378 (3)0.55276 (18)0.35912 (15)0.0514 (6)
H21A0.09560.60560.34120.062*
H21B0.17370.52400.31040.062*
C220.2629 (3)0.57177 (13)0.41736 (14)0.0440 (5)
H220.29250.51760.44100.053*
C230.3935 (3)0.60763 (16)0.37267 (17)0.0515 (6)
H23A0.41640.57300.32500.062*
H23B0.37360.66450.35350.062*
C240.1849 (3)0.70913 (15)0.48779 (15)0.0440 (5)
C250.1707 (3)0.76397 (15)0.41474 (15)0.0479 (5)
C260.0587 (4)0.7737 (2)0.3627 (2)0.0661 (8)
H260.02140.73910.36390.079*
C270.0743 (4)0.8412 (2)0.3063 (2)0.0672 (8)
H270.00690.85580.26650.081*
C280.1975 (3)0.88144 (18)0.31747 (17)0.0582 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0876 (2)0.0822 (2)0.0934 (3)0.00601 (19)0.0010 (2)0.04352 (19)
S10.0579 (4)0.0608 (4)0.0646 (4)0.0061 (3)0.0146 (3)0.0179 (3)
O10.0605 (12)0.0598 (12)0.1062 (19)0.0204 (10)0.0170 (12)0.0204 (13)
N10.0503 (11)0.0417 (10)0.0482 (10)0.0091 (9)0.0002 (9)0.0031 (8)
N20.0445 (10)0.0396 (9)0.0424 (9)0.0005 (8)0.0027 (8)0.0058 (7)
C10.0658 (15)0.0574 (14)0.0588 (15)0.0018 (13)0.0066 (13)0.0128 (13)
C20.082 (2)0.0712 (19)0.0659 (18)0.0060 (17)0.0016 (16)0.0252 (16)
C30.089 (2)0.086 (2)0.0468 (14)0.0267 (19)0.0031 (15)0.0161 (15)
C40.081 (2)0.0697 (19)0.0492 (15)0.0164 (16)0.0028 (15)0.0049 (14)
C50.0658 (15)0.0532 (14)0.0493 (14)0.0095 (12)0.0009 (13)0.0003 (12)
C60.0430 (12)0.0497 (13)0.0465 (12)0.0116 (10)0.0045 (10)0.0066 (10)
C70.0429 (11)0.0438 (11)0.0419 (11)0.0059 (10)0.0007 (9)0.0027 (10)
C80.0394 (12)0.0403 (10)0.0438 (11)0.0012 (9)0.0037 (9)0.0025 (9)
C90.0522 (12)0.0398 (10)0.0416 (10)0.0021 (10)0.0035 (10)0.0058 (8)
C100.0583 (16)0.0536 (15)0.0765 (18)0.0071 (13)0.0085 (15)0.0030 (15)
C110.085 (2)0.070 (2)0.092 (3)0.0318 (19)0.016 (2)0.0027 (19)
C120.135 (3)0.0417 (14)0.0667 (19)0.0170 (19)0.007 (2)0.0008 (14)
C130.112 (3)0.0451 (15)0.074 (2)0.0154 (17)0.003 (2)0.0015 (14)
C140.0639 (17)0.0530 (14)0.0633 (16)0.0069 (13)0.0005 (14)0.0037 (13)
C150.0645 (17)0.0576 (16)0.0654 (17)0.0092 (13)0.0040 (14)0.0081 (14)
C160.093 (2)0.0605 (18)0.073 (2)0.0212 (17)0.0041 (19)0.0017 (15)
C170.075 (2)0.099 (3)0.0658 (19)0.035 (2)0.0058 (17)0.0093 (18)
C180.0549 (17)0.110 (3)0.0721 (19)0.0020 (18)0.0054 (14)0.0033 (19)
C190.0636 (17)0.0641 (17)0.0633 (16)0.0032 (14)0.0007 (14)0.0025 (14)
C200.0532 (14)0.0564 (14)0.0441 (12)0.0059 (11)0.0097 (11)0.0081 (11)
C210.0592 (15)0.0526 (14)0.0426 (12)0.0050 (12)0.0050 (11)0.0059 (11)
C220.0501 (12)0.0370 (9)0.0451 (11)0.0024 (10)0.0006 (11)0.0057 (8)
C230.0566 (15)0.0424 (12)0.0556 (14)0.0028 (11)0.0051 (12)0.0070 (11)
C240.0435 (12)0.0419 (11)0.0466 (12)0.0026 (10)0.0036 (10)0.0005 (10)
C250.0509 (13)0.0442 (12)0.0486 (12)0.0049 (10)0.0007 (11)0.0029 (10)
C260.0626 (17)0.0566 (15)0.079 (2)0.0013 (13)0.0202 (16)0.0057 (15)
C270.0716 (19)0.0643 (17)0.0658 (18)0.0079 (16)0.0233 (15)0.0063 (15)
C280.0672 (17)0.0532 (14)0.0544 (14)0.0103 (13)0.0025 (13)0.0117 (12)
Geometric parameters (Å, º) top
Br1—C281.877 (3)C12—H120.9300
S1—C251.722 (3)C12—C131.366 (6)
S1—C281.713 (3)C13—H130.9300
O1—H10.83 (4)C13—C141.385 (5)
O1—C231.404 (4)C14—H140.9300
N1—C71.368 (3)C15—H150.9300
N1—C241.313 (3)C15—C161.374 (5)
N2—C81.392 (3)C15—C201.383 (4)
N2—C221.478 (3)C16—H160.9300
N2—C241.362 (3)C16—C171.386 (6)
C1—H1A0.9300C17—H170.9300
C1—C21.383 (4)C17—C181.370 (5)
C1—C61.395 (4)C18—H180.9300
C2—H20.9300C18—C191.383 (5)
C2—C31.392 (5)C19—H190.9300
C3—H30.9300C19—C201.388 (4)
C3—C41.357 (5)C20—C211.502 (4)
C4—H40.9300C21—H21A0.9700
C4—C51.383 (4)C21—H21B0.9700
C5—H50.9300C21—C221.532 (3)
C5—C61.382 (4)C22—H220.9800
C6—C71.483 (3)C22—C231.530 (4)
C7—C81.377 (3)C23—H23A0.9700
C8—C91.486 (3)C23—H23B0.9700
C9—C101.385 (4)C24—C251.471 (3)
C9—C141.376 (4)C25—C261.352 (4)
C10—H100.9300C26—H260.9300
C10—C111.385 (4)C26—C271.412 (4)
C11—H110.9300C27—H270.9300
C11—C121.381 (6)C27—C281.331 (5)
C28—S1—C2590.92 (14)C20—C15—H15119.1
C23—O1—H1105 (3)C15—C16—H16120.0
C24—N1—C7106.5 (2)C15—C16—C17120.0 (3)
C8—N2—C22124.47 (19)C17—C16—H16120.0
C24—N2—C8106.65 (19)C16—C17—H17120.4
C24—N2—C22128.8 (2)C18—C17—C16119.3 (3)
C2—C1—H1A119.8C18—C17—H17120.4
C2—C1—C6120.3 (3)C17—C18—H18119.9
C6—C1—H1A119.8C17—C18—C19120.1 (3)
C1—C2—H2119.9C19—C18—H18119.9
C1—C2—C3120.2 (3)C18—C19—H19119.2
C3—C2—H2119.9C18—C19—C20121.6 (3)
C2—C3—H3120.2C20—C19—H19119.2
C4—C3—C2119.5 (3)C15—C20—C19117.2 (3)
C4—C3—H3120.2C15—C20—C21120.4 (3)
C3—C4—H4119.6C19—C20—C21122.5 (3)
C3—C4—C5120.7 (3)C20—C21—H21A109.0
C5—C4—H4119.6C20—C21—H21B109.0
C4—C5—H5119.6C20—C21—C22113.1 (2)
C6—C5—C4120.9 (3)H21A—C21—H21B107.8
C6—C5—H5119.6C22—C21—H21A109.0
C1—C6—C7119.0 (3)C22—C21—H21B109.0
C5—C6—C1118.4 (3)N2—C22—C21112.3 (2)
C5—C6—C7122.5 (2)N2—C22—H22106.5
N1—C7—C6119.6 (2)N2—C22—C23111.38 (19)
N1—C7—C8109.9 (2)C21—C22—H22106.5
C8—C7—C6130.6 (2)C23—C22—C21113.3 (2)
N2—C8—C9122.65 (19)C23—C22—H22106.5
C7—C8—N2105.4 (2)O1—C23—C22108.6 (2)
C7—C8—C9131.9 (2)O1—C23—H23A110.0
C10—C9—C8119.9 (2)O1—C23—H23B110.0
C14—C9—C8120.9 (2)C22—C23—H23A110.0
C14—C9—C10119.2 (3)C22—C23—H23B110.0
C9—C10—H10119.9H23A—C23—H23B108.3
C11—C10—C9120.2 (3)N1—C24—N2111.6 (2)
C11—C10—H10119.9N1—C24—C25121.9 (2)
C10—C11—H11120.0N2—C24—C25126.5 (2)
C12—C11—C10120.1 (3)C24—C25—S1119.39 (19)
C12—C11—H11120.0C26—C25—S1110.4 (2)
C11—C12—H12120.2C26—C25—C24129.5 (3)
C13—C12—C11119.5 (3)C25—C26—H26123.0
C13—C12—H12120.2C25—C26—C27114.0 (3)
C12—C13—H13119.6C27—C26—H26123.0
C12—C13—C14120.7 (3)C26—C27—H27124.3
C14—C13—H13119.6C28—C27—C26111.4 (3)
C9—C14—C13120.2 (3)C28—C27—H27124.3
C9—C14—H14119.9S1—C28—Br1119.80 (18)
C13—C14—H14119.9C27—C28—Br1126.9 (2)
C16—C15—H15119.1C27—C28—S1113.2 (2)
C16—C15—C20121.9 (3)
S1—C25—C26—C270.6 (4)C10—C11—C12—C131.0 (6)
N1—C7—C8—N20.1 (3)C11—C12—C13—C140.5 (6)
N1—C7—C8—C9177.5 (2)C12—C13—C14—C91.1 (5)
N1—C24—C25—S172.7 (3)C14—C9—C10—C111.5 (5)
N1—C24—C25—C2696.9 (4)C15—C16—C17—C180.5 (5)
N2—C8—C9—C1079.5 (3)C15—C20—C21—C2279.7 (3)
N2—C8—C9—C14100.2 (3)C16—C15—C20—C190.9 (5)
N2—C22—C23—O162.7 (3)C16—C15—C20—C21178.7 (3)
N2—C24—C25—S1107.7 (3)C16—C17—C18—C190.6 (5)
N2—C24—C25—C2682.7 (4)C17—C18—C19—C200.1 (5)
C1—C2—C3—C40.6 (6)C18—C19—C20—C150.9 (4)
C1—C6—C7—N131.8 (4)C18—C19—C20—C21178.8 (3)
C1—C6—C7—C8147.7 (3)C19—C20—C21—C22100.6 (3)
C2—C1—C6—C51.0 (4)C20—C15—C16—C170.3 (5)
C2—C1—C6—C7177.5 (3)C20—C21—C22—N266.4 (3)
C2—C3—C4—C50.4 (5)C20—C21—C22—C23166.3 (2)
C3—C4—C5—C60.7 (5)C21—C22—C23—O1169.6 (2)
C4—C5—C6—C10.0 (4)C22—N2—C8—C7176.0 (2)
C4—C5—C6—C7176.4 (3)C22—N2—C8—C91.8 (4)
C5—C6—C7—N1144.6 (3)C22—N2—C24—N1175.4 (2)
C5—C6—C7—C835.8 (4)C22—N2—C24—C255.0 (4)
C6—C1—C2—C31.3 (5)C24—N1—C7—C6179.7 (2)
C6—C7—C8—N2179.6 (2)C24—N1—C7—C80.6 (3)
C6—C7—C8—C92.1 (5)C24—N2—C8—C70.5 (3)
C7—N1—C24—N21.0 (3)C24—N2—C8—C9178.3 (2)
C7—N1—C24—C25178.6 (2)C24—N2—C22—C2171.2 (3)
C7—C8—C9—C1097.7 (3)C24—N2—C22—C2357.1 (3)
C7—C8—C9—C1482.6 (3)C24—C25—C26—C27170.9 (3)
C8—N2—C22—C21113.1 (2)C25—S1—C28—Br1176.47 (18)
C8—N2—C22—C23118.7 (2)C25—S1—C28—C270.2 (3)
C8—N2—C24—N11.0 (3)C25—C26—C27—C280.4 (4)
C8—N2—C24—C25178.6 (2)C26—C27—C28—Br1175.9 (2)
C8—C9—C10—C11178.8 (3)C26—C27—C28—S10.1 (4)
C8—C9—C14—C13178.2 (3)C28—S1—C25—C24171.9 (2)
C9—C10—C11—C120.1 (6)C28—S1—C25—C260.5 (2)
C10—C9—C14—C132.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.83 (4)2.04 (4)2.838 (3)162 (4)
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.83 (4)2.04 (4)2.838 (3)162 (4)
Symmetry code: (i) x+1/2, y+3/2, z+1.
 

Acknowledgements

The authors thank Ms Y. Zhu for technical assistance. This research was supported by the National Natural Science Foundation of P. R. China (No. 21172055) and the High-Level Talents Foundation of Henan University of Technology.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEseola, A. O., Zhang, M., Xiang, J., Zuo, W., Li, Y., Woods, J. A. O. & Sun, W. (2010). Inorg. Chim. Acta, 363, 1970–1978.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJiang, B., Wang, X., Shi, F., Tu, S., Ai, T., Ballew, A. & Li, G. (2009). J. Org. Chem. 74, 9486–9489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMao, P., Cai, Y., Xiao, Y., Yang, L., Xue, Y. & Song, M. (2010). Phosphorus Sulfur Silicon Relat. Elem. 185, 2418–2425.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, X., Jiang, R., Xu, X., Su, X., Lu, W. & Ji, S. (2010). J. Comb. Chem. 12, 829–835.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationXiao, Y., Yang, L., He, K., Yuan, J. & Mao, P. (2012). Acta Cryst. E68, o264.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, L., Xiao, Y., He, K., Yuan, J. & Mao, P. (2012). Acta Cryst. E68, o1670.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds