organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1365-o1366

2-(3-Cyano-4-methyl-5,5-di­phenyl-5H-furan-2-yl­­idene)malono­nitrile

aCallaghan Innovation Research Limited, PO Box 31-310, Lower Hutt, New Zealand, and bIndustrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand
*Correspondence e-mail: graeme.gainsford@callaghaninnovation.govt.nz

(Received 20 July 2013; accepted 26 July 2013; online 3 August 2013)

The title compound, C21H13N3O, crystallizes with two independent molecules with similar conformations per asymmetric unit. The dihydrofuran rings are essentially planar with maximum deviations of 0.017 (1) and 0.006 (1) Å for the O atoms. The dihedral angles between the di­hydro­furan ring and the attached phenyl rings are 79.90 (6) and 82.07 (6)° in one mol­ecule and 79.36 (6) and 72.26 (6)° in the other. In the crystal, the molecules are linked by weak C—H⋯π and C—H⋯N inter­actions similar to those in other closely related crystals. The replacement of appended methyl by phenyl groups has not significantly affected the dihydrofuran ring structure or the crystal packing interactions.

Related literature

For general background to NLO chromophores, see: Smith et al. (2006[Smith, G. J., Dunford, C. L., Kay, A. J. & Woolhouse, A. D. (2006). J. Photochem. Photobiol. A, 179, 237-242.], 2010[Smith, G. J., Middleton, A. P., Clarke, D. J., Teshome, A., Kay, A. J., Bhuiyan, M. D. H., Asselberghs, I. & Clay, K. (2010). Opt. Mater. 32, 1237-1243.]); Carey et al. (2002[Carey, J. J., Bailey, R. T., Pugh, D., Sherwood, J. N., Cruikshank, F. R. & Wynne, K. (2002). Appl. Phys. Lett. 81, 4335-4337.]); Kay et al. (2004[Kay, A. J., Woolhouse, A. D., Zhao, Y. & Clays, K. (2004). J. Mater. Chem. 14, 1321-1330.]). For details of the synthesis, see: Anderson (2009[Anderson, J. (2009). BSc (Hons.) project report. Victoria University of Wellington, New Zealand.]). For related structures, see: Anderson (2009[Anderson, J. (2009). BSc (Hons.) project report. Victoria University of Wellington, New Zealand.]); Gainsford et al. (2011[Gainsford, G. J., Anderson, J., Bhuiyan, M. D. H. & Kay, A. J. (2011). Acta Cryst. E67, o3046-o3047.]); Li et al. (2005[Li, S.-Y., Song, Y.-Y., You, Z.-L., Wen, Y.-W. & Qin, J.-G. (2005). Acta Cryst. E61, o2093-o2095.]); Liao et al. (2005[Liao, Y., Eichinger, B. E., Firestone, K. A., Haller, M., Luo, J., Kaminsky, W., Benedict, J. B., Reid, P. J., Jen, A. K.-Y., Dalton, L. R. & Robinson, B. H. (2005). J. Am. Chem. Soc. 127, 2758-2766.]). For geometric analysis of structures, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C21H13N3O

  • Mr = 323.34

  • Triclinic, [P \overline 1]

  • a = 9.2308 (3) Å

  • b = 12.5991 (4) Å

  • c = 14.3043 (4) Å

  • α = 89.954 (2)°

  • β = 89.052 (2)°

  • γ = 79.233 (2)°

  • V = 1634.07 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 123 K

  • 0.36 × 0.32 × 0.29 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.651, Tmax = 0.746

  • 45305 measured reflections

  • 9930 independent reflections

  • 7329 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.119

  • S = 1.04

  • 9930 reflections

  • 453 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C15 phenyl ring

D—H⋯A D—H H⋯A DA D—H⋯A
C20′—H20′⋯Cg1i 0.95 2.69 3.4041 (14) 133
C9—H9B⋯N3′ 0.98 2.70 3.4560 (14) 134
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Organic non-linear optical (NLO) chromophores consist of donor and acceptor units connecting through π-conjugation. To realise a strong NLO response, chromophores need to be in uniform alignment. Unfortunately organic chromophores have a tendency to aggregate rather than align due to their highly polar nature (Smith et al., 2006). These push-pull chromophores can also exist as two rotomeric (cis and trans) forms (Kay et al., 2004). As a result, these chromophores are difficult to crystallize, therefore they may not be able to be used in devices that require crystals such as terahertz wave emitters (Carey et al., 2002). Consequently it is of interest to design and synthesize molecules which will be much less prone to aggregation and isomerization. It has been found that through changing the shape of the chromophore molecules, aggregation can be minimized. The most successful strategy has been to add bulky pendant groups onto the donor end (Smith et al., 2010). We have reported our previous attempts with two benzyloxyphenyl groups (Gainsford et al., 2011; Anderson, 2009) and report here the structure of a related acceptor unit with two phenyl groups.

The asymmetric unit of the title compound (I) contains two independent, nearly identical, 2-(3-cyano-4-methyl-5,5-diphenyl-5H-furan-2-ylidene)malononitrile molecules (Fig. 1). The second molecule (1') has identical labels with an appended prime (e.g. C10 and C10'); the r.m.s. bond and angle fits are 0.003 Å and 0.48° (Spek, 2009). The five-membered dihydrofuran rings (atoms C4-C7/O1, hereafter plane 1) are planar (maximum deviation 0.017 (1) Å for O1) with the appended cyano groups almost coplanar (maximum deviation 0.093 (1) Å for N1). The 5,5-dimethyl adduct (Li et al., 2005; CSD refcode PANLUM), in which plane 1 was constrained to a crystallographic mirror plane, has identical ring dimensions with the exception of the C4–C5 bond which is just significantly longer here (by 0.013 (4) Å). This marginally longer distance seems the exception and is not observed in related molecules [Allen (2002); CSD version 5.34 with May 2013 updates: e.g. KAJCII and KATCEE, 1.518 and 1.536, 1.537 Å respectively (Liao et al., 2005); YAHKUP 1.512 Å (Gainsford et al., 2011)].

The only significant conformational differences between the two molecules concern the interplanar angles between the phenyl rings and plane 1, corresponding to the different torsion angles (C4–C5–C10–C15 = -21.21 (15)°; O1–C5–C16–C17 = -30.62 (13)°; C4'–C5'–C10'–C15' = -30.22 (14)°; O1'–C5'–C16'–C17' = -21.91 (15)°). The plane 1 angle to phenyl plane (C10–C15) is 79.90 (6) and 82.07 (6)° for molecules 1 and 1' while the other phenyl plane (C16–C21) makes interplane angle of 79.36 (6) and 72.26 (6)° for molecules 1 and 1'.

Lattice binding is provided mainly by one non-classical C–H···π interaction (Table 1, Figure 2 where Cg1 is the centroid of the C10–C15 ring), the dominant binding interaction type in related compound YAHKUP (Gainsford et al., 2011). As in PANLUM, a weak methylCH···N(cyano) interaction is observed. Other CH···N(cyano), C–H···π and cyano···cyano very weak interactions even closer to van der Waal's contact distances are also present. Overall, the effect of the phenyl for methyl replacement on C5 has given insignificant molecular structural and cystal packing alignment affects.

Related literature top

For general background to NLO chromophores, see: Smith et al. (2006, 2010); Carey et al. (2002); Kay et al. (2004). For details of the synthesis, see: Anderson (2009). For related structures, see: Anderson (2009); Gainsford et al. (2011); Li et al. (2005); Liao et al. (2005). For geometric analysis of structures, see: Spek (2009). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The title compound was prepared by the condensation of 1-hydroxy-1,1-diphenylpropan-2-one with 4 equivalents of malononitrile over 10 days as described in Anderson (2009). A small portion was recrystallized in dichloromethane and acetone (1:1) mixture to give colourless crystals. M.p. 223 °C. Found: C, 77.70; H, 3.91; N, 13.06, C21H13N3O requires C, 78.00; H, 4.05; N, 13.00%. Found: M+ m/z 323.1059 C21H13N3O requires: M+ m/z 323.1056 (Δ 0.9 p.p.m.). 1H NMR– (300 MHz, CDCl3) δ (p.p.m.): 2.41 (s, 3H), 7.18 (d, J 9.6 Hz, 4H), 7.51–7.47 (m, 6H). 13C NMR– (75 MHz, CDCl3) δ (p.p.m.): 16.2 (CH3), 59.5 (CQ), 105.6 (CQ), 106.4 (CQ), 109.0 (CQ), 110.2 (CQ), 110.7 (CQ), 127.3 (CH), 129.5 (CH), 130.6 (CH), 134.9 (CQ), 175.1 (CQ), 180.2 (CQ).

Refinement top

All carbon-bound H atoms were constrained to their expected geometries [C—H 0.95, 0.98 Å] and refined with Uiso 1.2 times the Ueq of their parent atom. All other non-hydrogen atoms were refined with anisotropic thermal parameters.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Content of the asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. The partially obscured atom C15 is not labelled.
[Figure 2] Fig. 2. Packing diagram of the title compound with one C–H···π and C(methyl)–H···N(cyano) interaction shown as dashed blue lines. H atoms not involved in intermolecular contacts are excluded except on methyl C9. Cg1 is the centroid of the phenyl ring (C10–C15) at symmetry 1-x, 1-y, -z. Symmetry code: (i) -1+x, y, z.
2-(3-Cyano-4-methyl-5,5-diphenyl-5H-furan-2-ylidene)malononitrile top
Crystal data top
C21H13N3OZ = 4
Mr = 323.34F(000) = 672
Triclinic, P1Dx = 1.314 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2308 (3) ÅCell parameters from 9027 reflections
b = 12.5991 (4) Åθ = 2.2–30.5°
c = 14.3043 (4) ŵ = 0.08 mm1
α = 89.954 (2)°T = 123 K
β = 89.052 (2)°Block, colourless
γ = 79.233 (2)°0.36 × 0.32 × 0.29 mm
V = 1634.07 (9) Å3
Data collection top
Bruker APEXII CCD
diffractometer
9930 independent reflections
Radiation source: fine-focus sealed tube7329 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 8.333 pixels mm-1θmax = 30.7°, θmin = 1.4°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1818
Tmin = 0.651, Tmax = 0.746l = 2020
45305 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.3811P]
where P = (Fo2 + 2Fc2)/3
9930 reflections(Δ/σ)max < 0.001
453 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C21H13N3Oγ = 79.233 (2)°
Mr = 323.34V = 1634.07 (9) Å3
Triclinic, P1Z = 4
a = 9.2308 (3) ÅMo Kα radiation
b = 12.5991 (4) ŵ = 0.08 mm1
c = 14.3043 (4) ÅT = 123 K
α = 89.954 (2)°0.36 × 0.32 × 0.29 mm
β = 89.052 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
9930 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
7329 reflections with I > 2σ(I)
Tmin = 0.651, Tmax = 0.746Rint = 0.042
45305 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.04Δρmax = 0.35 e Å3
9930 reflectionsΔρmin = 0.24 e Å3
453 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34806 (9)0.80434 (6)0.09747 (5)0.01913 (17)
N10.71127 (14)0.64480 (10)0.12562 (9)0.0387 (3)
N20.41086 (13)0.95957 (10)0.09834 (8)0.0315 (3)
N30.68541 (13)0.46791 (10)0.06030 (8)0.0320 (3)
C10.62087 (14)0.70061 (10)0.08395 (9)0.0255 (3)
C20.50822 (13)0.77028 (10)0.03197 (8)0.0204 (2)
C30.45366 (13)0.87575 (10)0.06807 (8)0.0228 (2)
C40.40415 (12)0.64052 (9)0.17749 (8)0.0194 (2)
C50.30203 (12)0.74917 (9)0.18178 (8)0.0176 (2)
C60.45279 (12)0.73785 (9)0.04999 (8)0.0183 (2)
C70.49044 (12)0.63614 (9)0.10052 (8)0.0193 (2)
C80.60060 (13)0.54476 (10)0.07557 (8)0.0225 (2)
C90.40783 (15)0.55820 (10)0.25144 (9)0.0269 (3)
H9A0.46370.48890.22880.032*
H9B0.30690.55020.26770.032*
H9C0.45530.58080.30690.032*
C100.14038 (12)0.74436 (9)0.16821 (8)0.0188 (2)
C110.03222 (13)0.83316 (10)0.19229 (8)0.0225 (2)
H110.05890.89400.22190.027*
C120.11448 (14)0.83266 (11)0.17303 (9)0.0278 (3)
H120.18840.89300.18990.033*
C130.15301 (14)0.74430 (12)0.12926 (9)0.0301 (3)
H130.25350.74410.11620.036*
C140.04624 (15)0.65645 (11)0.10437 (9)0.0288 (3)
H140.07330.59630.07380.035*
C150.10062 (14)0.65600 (10)0.12400 (9)0.0238 (2)
H150.17400.59530.10720.029*
C160.33659 (12)0.80840 (9)0.26874 (8)0.0186 (2)
C170.45540 (13)0.86160 (10)0.26897 (9)0.0226 (2)
H170.51190.86540.21340.027*
C180.49144 (15)0.90922 (11)0.35082 (9)0.0287 (3)
H180.57280.94560.35120.034*
C190.40914 (17)0.90379 (12)0.43177 (9)0.0337 (3)
H190.43340.93710.48750.040*
C200.29189 (17)0.85014 (12)0.43188 (9)0.0329 (3)
H200.23520.84680.48750.040*
C210.25681 (15)0.80120 (10)0.35100 (8)0.0255 (3)
H210.17780.76250.35170.031*
O1'0.98981 (9)0.20107 (6)0.40488 (5)0.01929 (17)
N1'1.26942 (15)0.36533 (11)0.61930 (9)0.0397 (3)
N2'1.13037 (14)0.05064 (10)0.60095 (8)0.0346 (3)
N3'1.16038 (13)0.53580 (9)0.43102 (8)0.0302 (2)
C1'1.20774 (14)0.30913 (11)0.57926 (9)0.0265 (3)
C2'1.13161 (13)0.23860 (10)0.53017 (8)0.0214 (2)
C3'1.12990 (14)0.13375 (10)0.56895 (8)0.0236 (2)
C4'0.97057 (12)0.35981 (9)0.31831 (8)0.0192 (2)
C5'0.92300 (12)0.25132 (9)0.31831 (8)0.0181 (2)
C6'1.06105 (12)0.26850 (9)0.44854 (8)0.0183 (2)
C7'1.05045 (12)0.36764 (9)0.39479 (8)0.0194 (2)
C8'1.11373 (13)0.45944 (10)0.41679 (8)0.0220 (2)
C9'0.93503 (15)0.43960 (10)0.24239 (9)0.0262 (3)
H9'A0.96340.50770.26070.031*
H9'B0.82890.45200.23090.031*
H9'C0.98930.41200.18530.031*
C10'0.75678 (12)0.26066 (9)0.33075 (8)0.0187 (2)
C11'0.68589 (13)0.18118 (10)0.29681 (9)0.0231 (2)
H11'0.74010.12140.26300.028*
C12'0.53511 (14)0.18933 (11)0.31243 (9)0.0276 (3)
H12'0.48590.13590.28790.033*
C13'0.45660 (14)0.27472 (11)0.36351 (10)0.0290 (3)
H13'0.35370.27980.37410.035*
C14'0.52747 (14)0.35269 (11)0.39920 (10)0.0291 (3)
H14'0.47370.41060.43530.035*
C15'0.67724 (14)0.34638 (10)0.38225 (9)0.0241 (2)
H15'0.72560.40070.40590.029*
C16'0.99343 (13)0.18644 (9)0.23453 (8)0.0189 (2)
C17'1.13164 (13)0.12020 (9)0.24063 (9)0.0217 (2)
H17'1.17910.10960.29920.026*
C18'1.19993 (14)0.06974 (10)0.16117 (9)0.0262 (3)
H18'1.29490.02540.16540.031*
C19'1.13090 (16)0.08335 (10)0.07570 (9)0.0288 (3)
H19'1.17760.04780.02160.035*
C20'0.99357 (15)0.14899 (11)0.06954 (9)0.0287 (3)
H20'0.94580.15840.01100.034*
C21'0.92545 (14)0.20087 (10)0.14786 (8)0.0252 (3)
H21'0.83170.24670.14280.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0182 (4)0.0211 (4)0.0176 (4)0.0025 (3)0.0024 (3)0.0021 (3)
N10.0364 (7)0.0400 (7)0.0369 (7)0.0012 (6)0.0125 (5)0.0044 (6)
N20.0309 (6)0.0339 (6)0.0282 (6)0.0025 (5)0.0041 (5)0.0049 (5)
N30.0288 (6)0.0323 (6)0.0317 (6)0.0029 (5)0.0057 (5)0.0042 (5)
C10.0244 (6)0.0287 (6)0.0235 (6)0.0057 (5)0.0027 (5)0.0005 (5)
C20.0182 (5)0.0246 (6)0.0184 (5)0.0042 (4)0.0005 (4)0.0005 (4)
C30.0206 (6)0.0305 (6)0.0177 (5)0.0060 (5)0.0025 (4)0.0003 (5)
C40.0180 (5)0.0202 (5)0.0208 (5)0.0057 (4)0.0035 (4)0.0002 (4)
C50.0172 (5)0.0196 (5)0.0160 (5)0.0039 (4)0.0017 (4)0.0020 (4)
C60.0153 (5)0.0216 (5)0.0184 (5)0.0045 (4)0.0021 (4)0.0018 (4)
C70.0171 (5)0.0206 (5)0.0204 (5)0.0039 (4)0.0027 (4)0.0016 (4)
C80.0193 (5)0.0258 (6)0.0225 (6)0.0045 (5)0.0035 (4)0.0022 (5)
C90.0306 (7)0.0238 (6)0.0258 (6)0.0040 (5)0.0005 (5)0.0060 (5)
C100.0170 (5)0.0241 (5)0.0161 (5)0.0055 (4)0.0003 (4)0.0021 (4)
C110.0203 (5)0.0264 (6)0.0211 (5)0.0049 (5)0.0002 (4)0.0015 (5)
C120.0188 (6)0.0365 (7)0.0265 (6)0.0013 (5)0.0000 (5)0.0007 (5)
C130.0187 (6)0.0440 (8)0.0297 (6)0.0110 (5)0.0043 (5)0.0040 (6)
C140.0281 (6)0.0318 (7)0.0301 (6)0.0146 (5)0.0055 (5)0.0011 (5)
C150.0234 (6)0.0238 (6)0.0254 (6)0.0070 (5)0.0015 (5)0.0000 (5)
C160.0180 (5)0.0197 (5)0.0180 (5)0.0032 (4)0.0026 (4)0.0010 (4)
C170.0188 (5)0.0234 (6)0.0259 (6)0.0047 (4)0.0024 (5)0.0033 (5)
C180.0287 (6)0.0274 (6)0.0330 (7)0.0121 (5)0.0109 (5)0.0032 (5)
C190.0466 (8)0.0355 (7)0.0231 (6)0.0175 (6)0.0107 (6)0.0007 (5)
C200.0451 (8)0.0385 (7)0.0185 (6)0.0164 (6)0.0006 (6)0.0005 (5)
C210.0287 (6)0.0306 (6)0.0204 (5)0.0135 (5)0.0011 (5)0.0015 (5)
O1'0.0198 (4)0.0208 (4)0.0176 (4)0.0045 (3)0.0035 (3)0.0023 (3)
N1'0.0412 (7)0.0389 (7)0.0397 (7)0.0079 (6)0.0131 (6)0.0056 (6)
N2'0.0397 (7)0.0325 (6)0.0303 (6)0.0033 (5)0.0062 (5)0.0042 (5)
N3'0.0302 (6)0.0310 (6)0.0312 (6)0.0109 (5)0.0057 (5)0.0038 (5)
C1'0.0250 (6)0.0289 (6)0.0243 (6)0.0013 (5)0.0044 (5)0.0013 (5)
C2'0.0192 (5)0.0246 (6)0.0195 (5)0.0020 (4)0.0017 (4)0.0006 (4)
C3'0.0229 (6)0.0276 (6)0.0184 (5)0.0002 (5)0.0034 (5)0.0010 (5)
C4'0.0154 (5)0.0209 (5)0.0203 (5)0.0016 (4)0.0033 (4)0.0007 (4)
C5'0.0175 (5)0.0201 (5)0.0158 (5)0.0011 (4)0.0022 (4)0.0023 (4)
C6'0.0141 (5)0.0214 (5)0.0188 (5)0.0019 (4)0.0020 (4)0.0018 (4)
C7'0.0161 (5)0.0213 (5)0.0208 (5)0.0036 (4)0.0030 (4)0.0005 (4)
C8'0.0188 (5)0.0251 (6)0.0219 (6)0.0042 (5)0.0032 (4)0.0009 (5)
C9'0.0293 (6)0.0250 (6)0.0241 (6)0.0046 (5)0.0004 (5)0.0061 (5)
C10'0.0167 (5)0.0215 (5)0.0172 (5)0.0015 (4)0.0001 (4)0.0031 (4)
C11'0.0214 (6)0.0240 (6)0.0234 (6)0.0030 (5)0.0003 (5)0.0010 (5)
C12'0.0221 (6)0.0299 (6)0.0325 (7)0.0087 (5)0.0021 (5)0.0027 (5)
C13'0.0177 (6)0.0339 (7)0.0344 (7)0.0025 (5)0.0028 (5)0.0059 (6)
C14'0.0225 (6)0.0284 (6)0.0335 (7)0.0019 (5)0.0060 (5)0.0001 (5)
C15'0.0215 (6)0.0234 (6)0.0268 (6)0.0029 (5)0.0013 (5)0.0013 (5)
C16'0.0185 (5)0.0196 (5)0.0187 (5)0.0037 (4)0.0012 (4)0.0004 (4)
C17'0.0196 (5)0.0208 (5)0.0244 (6)0.0029 (4)0.0004 (4)0.0020 (5)
C18'0.0235 (6)0.0215 (6)0.0313 (6)0.0008 (5)0.0060 (5)0.0021 (5)
C19'0.0347 (7)0.0257 (6)0.0245 (6)0.0023 (5)0.0103 (5)0.0019 (5)
C20'0.0331 (7)0.0337 (7)0.0183 (5)0.0035 (6)0.0014 (5)0.0000 (5)
C21'0.0220 (6)0.0308 (6)0.0208 (6)0.0002 (5)0.0012 (5)0.0022 (5)
Geometric parameters (Å, º) top
O1—C61.3320 (14)O1'—C6'1.3295 (14)
O1—C51.4866 (13)O1'—C5'1.4808 (12)
N1—C11.1450 (17)N1'—C1'1.1469 (18)
N2—C31.1437 (16)N2'—C3'1.1417 (17)
N3—C81.1443 (16)N3'—C8'1.1448 (16)
C1—C21.4280 (18)C1'—C2'1.4239 (18)
C2—C61.3642 (16)C2'—C6'1.3647 (15)
C2—C31.4295 (16)C2'—C3'1.4351 (17)
C4—C71.3432 (17)C4'—C7'1.3432 (16)
C4—C91.4772 (16)C4'—C9'1.4779 (15)
C4—C51.5107 (16)C4'—C5'1.5118 (16)
C5—C161.5197 (16)C5'—C16'1.5180 (16)
C5—C101.5202 (16)C5'—C10'1.5243 (15)
C6—C71.4580 (15)C6'—C7'1.4547 (15)
C7—C81.4277 (17)C7'—C8'1.4273 (17)
C9—H9A0.9800C9'—H9'A0.9800
C9—H9B0.9800C9'—H9'B0.9800
C9—H9C0.9800C9'—H9'C0.9800
C10—C151.3912 (17)C10'—C11'1.3866 (17)
C10—C111.3926 (17)C10'—C15'1.3911 (17)
C11—C121.3875 (17)C11'—C12'1.3907 (17)
C11—H110.9500C11'—H11'0.9500
C12—C131.384 (2)C12'—C13'1.3816 (19)
C12—H120.9500C12'—H12'0.9500
C13—C141.380 (2)C13'—C14'1.380 (2)
C13—H130.9500C13'—H13'0.9500
C14—C151.3879 (17)C14'—C15'1.3872 (18)
C14—H140.9500C14'—H14'0.9500
C15—H150.9500C15'—H15'0.9500
C16—C171.3881 (16)C16'—C17'1.3919 (16)
C16—C211.3898 (17)C16'—C21'1.3952 (16)
C17—C181.3894 (18)C17'—C18'1.3861 (18)
C17—H170.9500C17'—H17'0.9500
C18—C191.383 (2)C18'—C19'1.3837 (19)
C18—H180.9500C18'—H18'0.9500
C19—C201.379 (2)C19'—C20'1.3822 (19)
C19—H190.9500C19'—H19'0.9500
C20—C211.3826 (18)C20'—C21'1.3792 (18)
C20—H200.9500C20'—H20'0.9500
C21—H210.9500C21'—H21'0.9500
C6—O1—C5110.17 (8)C6'—O1'—C5'110.25 (8)
N1—C1—C2179.94 (19)N1'—C1'—C2'179.47 (14)
C6—C2—C1121.39 (11)C6'—C2'—C1'121.78 (11)
C6—C2—C3120.28 (11)C6'—C2'—C3'120.02 (11)
C1—C2—C3118.33 (11)C1'—C2'—C3'118.20 (10)
N2—C3—C2178.90 (14)N2'—C3'—C2'178.76 (14)
C7—C4—C9127.97 (11)C7'—C4'—C9'127.80 (11)
C7—C4—C5109.10 (10)C7'—C4'—C5'109.09 (10)
C9—C4—C5122.86 (11)C9'—C4'—C5'123.09 (10)
O1—C5—C4102.37 (9)O1'—C5'—C4'102.35 (9)
O1—C5—C16109.19 (9)O1'—C5'—C16'109.11 (8)
C4—C5—C16108.53 (9)C4'—C5'—C16'108.89 (9)
O1—C5—C10105.72 (8)O1'—C5'—C10'106.34 (8)
C4—C5—C10114.22 (10)C4'—C5'—C10'112.82 (9)
C16—C5—C10115.82 (10)C16'—C5'—C10'116.33 (10)
O1—C6—C2120.36 (10)O1'—C6'—C2'120.27 (10)
O1—C6—C7109.26 (10)O1'—C6'—C7'109.49 (9)
C2—C6—C7130.38 (11)C2'—C6'—C7'130.22 (11)
C4—C7—C8123.65 (11)C4'—C7'—C8'124.09 (11)
C4—C7—C6109.02 (10)C4'—C7'—C6'108.81 (10)
C8—C7—C6127.34 (11)C8'—C7'—C6'127.10 (10)
N3—C8—C7175.48 (14)N3'—C8'—C7'176.62 (13)
C4—C9—H9A109.5C4'—C9'—H9'A109.5
C4—C9—H9B109.5C4'—C9'—H9'B109.5
H9A—C9—H9B109.5H9'A—C9'—H9'B109.5
C4—C9—H9C109.5C4'—C9'—H9'C109.5
H9A—C9—H9C109.5H9'A—C9'—H9'C109.5
H9B—C9—H9C109.5H9'B—C9'—H9'C109.5
C15—C10—C11119.65 (11)C11'—C10'—C15'119.72 (11)
C15—C10—C5120.37 (11)C11'—C10'—C5'120.81 (10)
C11—C10—C5119.70 (11)C15'—C10'—C5'119.32 (11)
C12—C11—C10119.95 (12)C10'—C11'—C12'119.71 (12)
C12—C11—H11120.0C10'—C11'—H11'120.1
C10—C11—H11120.0C12'—C11'—H11'120.1
C13—C12—C11119.97 (12)C13'—C12'—C11'120.31 (12)
C13—C12—H12120.0C13'—C12'—H12'119.8
C11—C12—H12120.0C11'—C12'—H12'119.8
C14—C13—C12120.39 (12)C14'—C13'—C12'120.11 (12)
C14—C13—H13119.8C14'—C13'—H13'119.9
C12—C13—H13119.8C12'—C13'—H13'119.9
C13—C14—C15119.99 (12)C13'—C14'—C15'119.93 (12)
C13—C14—H14120.0C13'—C14'—H14'120.0
C15—C14—H14120.0C15'—C14'—H14'120.0
C14—C15—C10120.03 (12)C14'—C15'—C10'120.18 (12)
C14—C15—H15120.0C14'—C15'—H15'119.9
C10—C15—H15120.0C10'—C15'—H15'119.9
C17—C16—C21119.62 (11)C17'—C16'—C21'119.14 (11)
C17—C16—C5120.49 (11)C17'—C16'—C5'120.97 (10)
C21—C16—C5119.64 (10)C21'—C16'—C5'119.62 (10)
C16—C17—C18119.77 (12)C18'—C17'—C16'119.95 (11)
C16—C17—H17120.1C18'—C17'—H17'120.0
C18—C17—H17120.1C16'—C17'—H17'120.0
C19—C18—C17120.14 (12)C19'—C18'—C17'120.54 (11)
C19—C18—H18119.9C19'—C18'—H18'119.7
C17—C18—H18119.9C17'—C18'—H18'119.7
C20—C19—C18120.17 (13)C20'—C19'—C18'119.58 (12)
C20—C19—H19119.9C20'—C19'—H19'120.2
C18—C19—H19119.9C18'—C19'—H19'120.2
C19—C20—C21119.97 (13)C21'—C20'—C19'120.41 (12)
C19—C20—H20120.0C21'—C20'—H20'119.8
C21—C20—H20120.0C19'—C20'—H20'119.8
C20—C21—C16120.30 (12)C20'—C21'—C16'120.36 (11)
C20—C21—H21119.9C20'—C21'—H21'119.8
C16—C21—H21119.9C16'—C21'—H21'119.8
C6—O1—C5—C42.74 (11)C6'—O1'—C5'—C4'1.01 (11)
C6—O1—C5—C16117.63 (10)C6'—O1'—C5'—C16'116.26 (10)
C6—O1—C5—C10117.13 (10)C6'—O1'—C5'—C10'117.54 (10)
C7—C4—C5—O11.50 (12)C7'—C4'—C5'—O1'0.64 (12)
C9—C4—C5—O1175.57 (10)C9'—C4'—C5'—O1'177.60 (10)
C7—C4—C5—C16116.87 (11)C7'—C4'—C5'—C16'116.05 (10)
C9—C4—C5—C1660.21 (14)C9'—C4'—C5'—C16'62.19 (13)
C7—C4—C5—C10112.25 (11)C7'—C4'—C5'—C10'113.21 (11)
C9—C4—C5—C1070.67 (14)C9'—C4'—C5'—C10'68.54 (14)
C5—O1—C6—C2177.73 (10)C5'—O1'—C6'—C2'179.83 (10)
C5—O1—C6—C72.95 (12)C5'—O1'—C6'—C7'1.00 (12)
C1—C2—C6—O1179.78 (11)C1'—C2'—C6'—O1'179.38 (11)
C3—C2—C6—O10.45 (17)C3'—C2'—C6'—O1'0.38 (17)
C1—C2—C6—C70.6 (2)C1'—C2'—C6'—C7'2.1 (2)
C3—C2—C6—C7179.61 (11)C3'—C2'—C6'—C7'178.17 (12)
C9—C4—C7—C82.6 (2)C9'—C4'—C7'—C8'1.5 (2)
C5—C4—C7—C8179.51 (11)C5'—C4'—C7'—C8'179.64 (11)
C9—C4—C7—C6177.01 (11)C9'—C4'—C7'—C6'178.04 (11)
C5—C4—C7—C60.12 (13)C5'—C4'—C7'—C6'0.10 (13)
O1—C6—C7—C41.95 (13)O1'—C6'—C7'—C4'0.57 (13)
C2—C6—C7—C4178.82 (12)C2'—C6'—C7'—C4'179.24 (12)
O1—C6—C7—C8177.67 (11)O1'—C6'—C7'—C8'178.96 (11)
C2—C6—C7—C81.6 (2)C2'—C6'—C7'—C8'0.3 (2)
O1—C5—C10—C1590.54 (12)O1'—C5'—C10'—C11'94.48 (12)
C4—C5—C10—C1521.21 (15)C4'—C5'—C10'—C11'154.11 (10)
C16—C5—C10—C15148.43 (10)C16'—C5'—C10'—C11'27.23 (14)
O1—C5—C10—C1183.48 (12)O1'—C5'—C10'—C15'81.20 (12)
C4—C5—C10—C11164.77 (10)C4'—C5'—C10'—C15'30.22 (14)
C16—C5—C10—C1137.56 (14)C16'—C5'—C10'—C15'157.09 (10)
C15—C10—C11—C120.68 (17)C15'—C10'—C11'—C12'1.69 (17)
C5—C10—C11—C12174.74 (11)C5'—C10'—C11'—C12'177.34 (10)
C10—C11—C12—C130.52 (18)C10'—C11'—C12'—C13'1.61 (18)
C11—C12—C13—C140.1 (2)C11'—C12'—C13'—C14'0.16 (19)
C12—C13—C14—C150.6 (2)C12'—C13'—C14'—C15'1.22 (19)
C13—C14—C15—C100.41 (19)C13'—C14'—C15'—C10'1.13 (19)
C11—C10—C15—C140.22 (17)C11'—C10'—C15'—C14'0.33 (17)
C5—C10—C15—C14174.24 (11)C5'—C10'—C15'—C14'176.05 (11)
O1—C5—C16—C1730.62 (13)O1'—C5'—C16'—C17'21.91 (15)
C4—C5—C16—C1780.23 (12)C4'—C5'—C16'—C17'89.06 (12)
C10—C5—C16—C17149.77 (10)C10'—C5'—C16'—C17'142.14 (11)
O1—C5—C16—C21155.10 (10)O1'—C5'—C16'—C21'164.16 (10)
C4—C5—C16—C2194.05 (12)C4'—C5'—C16'—C21'84.88 (13)
C10—C5—C16—C2135.95 (15)C10'—C5'—C16'—C21'43.92 (15)
C21—C16—C17—C181.44 (17)C21'—C16'—C17'—C18'0.08 (18)
C5—C16—C17—C18175.72 (10)C5'—C16'—C17'—C18'173.88 (11)
C16—C17—C18—C190.09 (19)C16'—C17'—C18'—C19'0.94 (19)
C17—C18—C19—C200.7 (2)C17'—C18'—C19'—C20'0.8 (2)
C18—C19—C20—C210.3 (2)C18'—C19'—C20'—C21'0.1 (2)
C19—C20—C21—C161.8 (2)C19'—C20'—C21'—C16'1.0 (2)
C17—C16—C21—C202.41 (18)C17'—C16'—C21'—C20'0.86 (19)
C5—C16—C21—C20176.74 (11)C5'—C16'—C21'—C20'174.90 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 phenyl ring
D—H···AD—HH···AD···AD—H···A
C20—H20···Cg1i0.952.693.4041 (14)133
C9—H9B···N30.982.703.4560 (14)134
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 phenyl ring
D—H···AD—HH···AD···AD—H···A
C20'—H20'···Cg1i0.952.693.4041 (14)133
C9—H9B···N3'0.982.703.4560 (14)134
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

This work was supported by a New Zealand Foundation for Research Science and Technology grant (contract No. C08X0704). We thank Dr C. Fitchett of the University of Canterbury, New Zealand, for his assistance.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAnderson, J. (2009). BSc (Hons.) project report. Victoria University of Wellington, New Zealand.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarey, J. J., Bailey, R. T., Pugh, D., Sherwood, J. N., Cruikshank, F. R. & Wynne, K. (2002). Appl. Phys. Lett. 81, 4335–4337.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGainsford, G. J., Anderson, J., Bhuiyan, M. D. H. & Kay, A. J. (2011). Acta Cryst. E67, o3046–o3047.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKay, A. J., Woolhouse, A. D., Zhao, Y. & Clays, K. (2004). J. Mater. Chem. 14, 1321–1330.  Web of Science CrossRef CAS Google Scholar
First citationLi, S.-Y., Song, Y.-Y., You, Z.-L., Wen, Y.-W. & Qin, J.-G. (2005). Acta Cryst. E61, o2093–o2095.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiao, Y., Eichinger, B. E., Firestone, K. A., Haller, M., Luo, J., Kaminsky, W., Benedict, J. B., Reid, P. J., Jen, A. K.-Y., Dalton, L. R. & Robinson, B. H. (2005). J. Am. Chem. Soc. 127, 2758–2766.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. J., Dunford, C. L., Kay, A. J. & Woolhouse, A. D. (2006). J. Photochem. Photobiol. A, 179, 237–242.  Web of Science CrossRef CAS Google Scholar
First citationSmith, G. J., Middleton, A. P., Clarke, D. J., Teshome, A., Kay, A. J., Bhuiyan, M. D. H., Asselberghs, I. & Clay, K. (2010). Opt. Mater. 32, 1237–1243.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 9| September 2013| Pages o1365-o1366
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds